
Scalable Exploration of Physical Database Design

Arnd Christian König
Microsoft Research

chrisko@microsoft.com

Shubha U. Nabar
Stanford University

sunabar@stanford.edu

Abstract

Physical database design is critical to the performance of a
large-scale DBMS. The corresponding automated design tuning
tools need to select the best physical design from a large set of
candidate designs quickly. However, for large workloads, evaluat-
ing the cost of each query in the workload for every candidate does
not scale. To overcome this, we present a novel comparison prim-
itive that only evaluates a fraction of the workload and provides
an accurate estimate of the likelihood of selecting correctly. We
show how to use this primitive to construct accurate and scalable
selection procedures. Furthermore, we address the issue of en-
suring that the estimates are conservative, even for highly skewed
cost distributions. The proposed techniques are evaluated through
a prototype implementation inside a commercial physical design
tool.

1 Introduction

The performance of applications running against enter-
prise database systems depends crucially on the physical
database design chosen. To enable the exploration of po-
tential designs, today’s commercial database systems have
incorporated APIs that allow “What-if” analysis [8]. These
take as input a query Q and a database configuration C, and
return the optimizer-estimated cost of executing Q if config-
uration C were present. This interface is the key to building
tools for exploratory analysis as well as automated recom-
mendation of physical database designs [13, 20, 1, 10].

The problem of physical design tuning is then defined
as follows: a physical design tool receives a representa-
tive query workload WL and constraints on the “configu-
ration space” to explore as input, and outputs a configura-
tion in which executing WL has the least possible cost (as
measured by the optimizer cost model)1. To determine the
best configuration, a number of candidate configurations are
enumerated and then evaluated using “What-if” analysis.

The representative workload is typically obtained by
tracing the queries that execute against a production system
(using tools such as IBM Query Patroler, SQL Server Pro-
filer, or ADDM [10]) over a representative period of time.

1Note that queries include both update and select statements. Thus this
formulation models the trade-off between the improved performance of
select-queries and the maintenance costs of additional indexes and views.

Since a large number of SQL statements may execute in
this time, the straightforward approach of comparing con-
figurations by repeatedly invoking the query optimizer for
each query in WL with every configuration is often not
tractable [5, 20]. Our experience with a commercial phys-
ical design tool shows that a large part of the tool’s over-
head arises from repeated optimizer calls to evaluate large
numbers of configuration/query combinations. Most of the
research on such tools [13, 20, 1, 10, 7, 8] has focused on
minimizing this overhead by evaluating only a few carefully
chosen configurations. Our approach is orthogonal to this
work and focuses on reducing the number of queries for
which the optimizer calls are issued. Because the topic of
which configurations to enumerate has been studied exten-
sively, we will not comment further on the configuration-
space.

Current commercial tools address the issue of large
workloads by compressing them up-front, i.e. initially se-
lecting a subset of queries and then tuning only this smaller
set [5, 20]. These approaches do not offer any guarantees on
how the compression affects the likelihood of choosing the
right configuration. However, such guarantees are impor-
tant due to the significant overhead of changing the physical
design and the performance impact of bad database design.

The problem we study in this paper is that of efficiently
comparing two (or more) configurations for large work-
loads. Solving this problem is crucial for scalability of au-
tomated physical design tuning tools [20, 1, 10]. We pro-
vide probabilistic guarantees on the likelihood of correctly
choosing the best configuration for a large workload from
a given set of candidate configurations. Our approach is to
sample from the workload and use statistical inference tech-
niques to compute the probability of selecting correctly.

The resulting probabilistic comparison primitive can be
used for (a) fast interactive exploratory analysis of the con-
figuration space, allowing the DB administrator to quickly
find promising candidates for full evaluation, or (b) as the
core comparison primitive inside an automated physical de-
sign tool, providing both scalability and locally good deci-
sions with probabilistic guarantees on the accuracy of each
comparison. Depending on the search strategy used, the lat-
ter can be extended to guarantees on the quality of the final
result.

The key challenges to this probabilistic approach are

twofold. First, the accuracy of the estimation depends crit-
ically on the variance of the estimator we use. The chal-
lenge is thus to pick an estimator with as little variance as
possible. Second, sampling techniques rely on (a) the ap-
plicability of the Central Limit Theorem (CLT) [9] to derive
confidence statements for the estimates and (b) the sample
variance being a good estimate of the true variance of the
underlying distribution. Unfortunately, both assumptions
may not be valid in this scenario. Thus, there is a need for
techniques to determine the applicability of the CLT for the
given workload and set of configurations.

1.1 Our Contributions

We propose a new probabilistic comparison primitive
that – given as input a workload WL, a set of configura-
tions C and a target probability α – outputs the configura-
tion with the lowest optimizer-estimated cost of executing
WL with probability at or above the target probability α.
It works by incrementally sampling queries from the origi-
nal workload and computing the probability of selecting the
best configuration with each new sample, stopping once the
target probability is reached. Our work makes the following
salient contributions:

• We derive probabilistic guarantees on the likelihood of
selecting the best configuration (Section 4).

• We propose a modified sampling scheme that signif-
icantly reduces estimator variance by leveraging the
fact that query costs exhibit some stability across con-
figurations (Section 4.2).

• We show how to reduce the estimator variance fur-
ther through a stratified sampling scheme that lever-
ages commonality between queries (Section 5).

• Finally, we describe a novel technique to address the
problem of highly skewed distributions in which the
sample may not be representative of the overall distrib-
ution and/or the CLT may not apply for a given sample
size (Section 6).

The remainder of the paper is organized as follows: In
Section 2 we review related work. In Section 3 we give a
formal description of the problem and introduce the nec-
essary notation. In Section 4 we describe two sampling
schemes that can be used to estimate the probability of se-
lecting the correct configuration. In Section 5 we then show
how to reduce variances through the use of stratification
and combine all parts into an efficient algorithm. In Sec-
tion 6 we describe how to validate the assumptions on which
the probabilistic guarantees described earlier are based. We
evaluate our techniques experimentally in Section 7.

2 Related Work

The techniques developed in this paper are related to the
field of statistical selection and ranking [15] which is con-
cerned with the probabilistic ranking of systems in experi-
mental setups based on a series of measurements from each
system. However, statistical ranking techniques are typi-
cally aimed at comparing systems for which the individual
measurements are distributed according to a normal distri-
bution. This is clearly not the case in our scenario. To in-
corporate non-normal distributions into statistical selection,
techniques like batching (e.g. [17]) have been suggested,
that initially generate a large number of measurements, and
then transform this raw data into batch means. The batch
sizes are chosen to be large enough so that the individual
batch means are approximately independent and normally
distributed. However, because procedures of this type need
to produce a number of normally distributed estimates per
configuration, they require a large number of initial mea-
surements (according to [15], batch sizes of over 1000 mea-
surements are common), thereby nullifying the efficiency
gain due to sampling for our scenario.

Workload compression techniques such as [5, 20] com-
pute a compact representation of a large workload before
submitting it to a physical design tool. Both of these ap-
proaches are heuristics in the sense that they have no means
of assessing the impact of the compression on configura-
tion selection or consequently on physical design tuning it-
self. [5] poses workload compression as a clustering prob-
lem, using a distance function that models the maximum
difference in cost between two queries for arbitrary configu-
rations. This distance function does not use the optimizer’s
cost estimate, so it is not clear how well this approxima-
tion holds for complex queries. [20] compresses a work-
load by selecting queries in order of their current costs, until
a user-specifiable percentage X of the total workload cost
has been reached. While computationally simple, this ap-
proach may lead to a significant reduction in tuning quality
for workloads in which queries of some templates are gen-
erally more expensive than the remaining queries, as then
only some templates are considered for tuning. Making X
user-specifiable does not alleviate this problem, for the user
has no way of assessing the impact of X on tuning quality.

The most serious drawback of both approaches is that
they do not adapt the number of queries retained to the space
of configurations considered. Consequently, they may re-
sult in compression that is either too conservative, resulting
in excessive numbers of optimizer calls or too coarse, re-
sulting in inferior physical designs.

3 Problem Statement

In this section we give a formal definition of the problem
addressed in this paper. This definition is identical to the
informal one given in Section 1.1, but in addition to the pa-
rameters C,WL and the target probability α, we introduce

an additional parameter δ, which describes the minimum
difference in cost between configurations that we care to de-
tect. Specifying a value of δ > 0 helps to avoid scenarios in
which the algorithm samples a large fraction of the work-
load when comparing configurations of (nearly) identical
costs. While accuracy for such configurations is necessary
in some cases, detecting large differences is all that matters
in others. For instance, when comparing a new candidate
configuration to the current one, the overhead of changing
the physical database design is justified only when the new
configuration is significantly better.

3.1 Notation

In this paper, we use Cost(q, C) to denote the optimizer-
estimated cost of executing a query q in a configura-
tion C. Similarly, the total estimated cost of execut-
ing a set of queries {q1, . . . , qN} in configuration C is
Cost({q1, . . . , qN}, C) :=

∑N
i=1 Cost(qi, C); when the

set of queries includes the entire workload, this will be re-
ferred to as ‘the cost of configuration C’. In the interest
of simple notation, we will use the simplifying assumption
that the overhead of making a single optimizer call is con-
stant across queries2. In the remainder of the paper we use
the term ‘cost’ to describe optimizer-estimated query costs.

We use the phrase ‘to sample a query’ to denote the
process of obtaining the query’s text from a workload ta-
ble or file, and evaluating its cost using the query optimizer.
The configuration being used to evaluate the query will be
clear from context.

The probability of an event A will be denoted by Pr(A),
and the conditional probability of event A given event B by
Pr(A|B).

3.2 The Configuration Selection Problem

Problem Formulation: Given a set of physical database
configurations C = {C1, . . . , Ck} and a workload WL =
{q1, . . . , qN}, a target probability α and a sensitivity para-
meter δ, select a configuration Ci such that the probability
of a correct selection, Pr(CS), is larger than α, where
Pr(CS) :=

Pr(Cost(WL, Ci) < Cost(WL, Cj) + δ,∀j �= i), (1)

while making a minimal number of optimizer-calls.
Our approach to solving the configuration selection

problem is to repeatedly sample queries from WL, evaluate
Pr(CS), and terminate once the target probability α has
been reached. Next, we describe how to estimate Pr(CS)
(Section 4) and how to use these estimates and stratification
of the workload to construct an algorithm for the configura-
tion selection problem (Section 5).

2We discuss how to incorporate differences in optimization costs be-
tween queries in Section 5.2.

4 Sampling Techniques

In this section we present two sampling schemes to
derive Pr(CS) estimates – first we describe a straight-
forward approach called Independent Sampling (Sec-
tion 4.1); then we describe Delta Sampling, which exploits
properties of query costs to come up with a more accurate
estimator (Section 4.2).

4.1 Independent Sampling

Independent Sampling is the base sampling scheme that
we use to estimate the differences in costs of pairs of con-
figurations. First, we define an unbiased estimator Xi of
Cost(WL, Ci). The estimator is obtained by sampling a
set of queries SLi from WL and is calculated as

Xi = N
|SLi|

∑
q∈SLi

Cost(q, Ci),

i.e., Xi is the mean of |SLi| random variables, scaled up by
the total number of queries in the workload. The variance
of the underlying cost-distribution is

σ 2
i =

�N
l=1(Cost(ql,Ci)−Cost(WL,Ci)

N)2

N .

Now, when using a simple random sample of size n to es-
timate Xi, the variance of this estimate is V ar(Xi) :=
N2

n
σ 2

i ·N
N−1

(
1− n

N

)
[9]. In the following, we will use the short-

hand S 2
i := σ 2

i · N/(N − 1).
To choose the better of two configurations Cl and Cj

we now use the random variable Xl − Xj , which is an
unbiased estimator of the true difference in costs µl,j :=
Cost(WL, Cl) − Cost(WL, Cj). Under large-sample as-
sumptions, the standardized random variable

∆l,j := (Xl−Xj)−µl,j

N

����
(

S 2
l

|SLl|
(
1− |SLl|

N

)
+

S 2
j

|SLj |
(
1− |SLj |

N

)) (2)

is normally distributed with mean 0 and variance 1 (accord-
ing to the CLT). Based on this we can assess the probability
of making a correct selection when choosing between Cl

and Cj , which we write as Pr(CSl,j).
The decision procedure to choose between the two con-

figurations is to pick the configuration Cl, for which the es-
timated cost Xl is the smallest. In this case the probability
of making an incorrect selection corresponds to the event
Xl − Xj < 0 and µl,j > δ. Thus,

Pr(CSl,j) = 1 − Pr(Xl − Xj < 0|µl,j > δ)
= Pr(Xl − Xj ≥ 0|µl,j > δ)
≥ Pr(Xl − Xj ≥ 0|µl,j = δ) =

Pr

(
∆l,j >

−δ

N

√
S 2

l

|SLl|
(
1−|SLl|

N

)
+

S 2
j

|SLj |
(
1−|SLj |

N

)
)

.

Given that ∆l,j ∼ N(0, 1), we can compute this probability
using the appropriate lookup-tables. Because the true vari-
ances of the cost distributions are not known, we use the
sample variances

s 2
i =

�
q∈SLi

(Cost(q,Ci)−
�

q∈SLi
(Cost(q,Ci)

|SLi|)2

|SLi|−1 ,

which are unbiased estimators of the true variances, in their
place in Pr(CSl,j). Consequently, accurate estimation
of Pr(CSl,j) depends on (a) having sampled sufficiently
many values for the Central Limit Theorem (CLT) [9] to be
applicable and (b) being able to estimate σ 2

i accurately by
s 2

i . It is not possible to verify these conditions based on a
sample alone, as a single very large outlier value may dom-
inate both the variance and the skew of the cost distribution.
We will describe how to use additional domain knowledge
on the cost distributions to verify (a) and (b) in Section 6. In
practice, a standard rule-of-thumb is to sample nmin := 30
queries before Pr(CS) is computed based on the normality
of ∆l,j . While this in many cases results in the CLT being
applicable, the dependence on the sample-variances s 2

i still
means that Pr(CS) may be either over- or under-estimated.

When the number of configurations k is greater than two,
we derive the probability of correct selection Pr(CS) based
on the pairwise selection probabilities Pr(CSl,j). Once
again, the selection procedure here is to choose the con-
figuration, Ci, with the smallest estimate, Xi. Consider
the case where Ci is chosen as the best configuration from
C1, . . . , Ck. Ci would be an incorrect choice, if for any
j �= i, Xi − Xj < 0 but µi,j > δ. Thus we can derive a
trivial bound for Pr(CS) using the Bonferroni inequality:

Pr(CS) ≥ 1 −
∑

j∈{1,...,k},j �=i

(
1 − Pr(CSi,j)

)
. (3)

4.2 Delta Sampling

Delta-Sampling is a variation of Independent Sampling,
that leverages the stability of the rankings of query costs
across configurations to obtain significant reduction in the
variance of the resulting estimator. In Delta Sampling, we
pick only a single set of queries SL ⊆ WL from the work-
load and then estimate the difference in total cost between
two configurations Cl, Cj as

Xl,j = N
|SL|

∑
q∈SL(Cost(q, Cl) − Cost(q, Cj)).

The selection procedure here is to pick the configuration
Cl for which Xl,j < 0. To give bounds for the probability
of correct selection, we define

∆l,j := Xl,j−µl,j

N ·
�

S 2
l,j

|SL|
(
1− |SL|

N

) (4)

where S 2
l,j := N

N−1 ·σ 2
l,j and σ 2

l,j is the variance of the distri-
bution {Cost(qi, Cl) − Cost(qi, Cj)|i = 1, . . . , N} of the
cost-differences between Cl and Cj . Again ∆l,j ∼ N(0, 1)
and we can derive PR(CSl,j) as in the case of Independent

Sampling. The lower bound on PR(CS) from equation 3
in the case of multiple configurations applies here as well.

To explain why Delta Sampling typically outperforms
Independent sampling, compare equation 4 to equation 2.
The difference in estimator-variance between Delta Sam-
pling and Independent Sampling depends on the differ-
ence between the terms S 2

l,j/|SL| (in Equation 4) and
S 2

l /|SLl|+S 2
j /|SLj | (in Equation 2), i.e. on the weighted

difference between the respective variances. It is known that
σ 2

l,j = σ 2
l +σ 2

j −2 ·Covl,j [3], where Covl,j is the covari-
ance of the distributions of the query costs of the workload
when evaluated in configurations Cl and Cj .

Delta Sampling exploits this as follows. For large work-
loads it typically holds that – when ranking the queries by
their costs in Cl and Cj – the ranks for each individual query
do not vary too much between configurations (especially
configurations of similar costs which correspond to difficult
selection problems). This means that in most cases if the
cost of a query qi, when evaluated in Cl is higher than the
average cost of all queries in Cl, its cost when evaluated
in Cj is likely to be higher than that of the average query
in Cj (and vice versa for below-average costs). For exam-
ple, multi-join queries will be typically more expensive than
single-value lookups, no matter what the physical design.
Now, the covariance Covl,j is defined as

N∑
i=1

((
Cost(qi,Cl)−Cost(WL,Cl)

N

)(
Cost(qi,Cj)−

Cost(WL,Cj)
N

))
.

All queries qi for which the above property holds, will
add a positive term to the summation in the above for-
mula (as the signs of both factors will be equal). Conse-
quently, if this property holds for sufficiently many queries,
the covariance Covl,j itself will be positive, thereby making
σ 2

l,j < σ 2
l + σ 2

j . So, if the number of optimizer calls are
roughly equally distributed between configurations in Inde-
pendent Sampling, Delta-Sampling should result in tighter
estimates of Pr(CS). We verify this experimentally in Sec-
tion 7.

5 Workload Stratification

It is possible to further reduce the estimator variances
using stratified sampling [9]. Stratified sampling is a gener-
alization of uniform sampling, in which the workload is par-
titioned into L disjunct ‘strata’ WL1 ∪ . . .∪WLL = WL.
Strata that exhibit high variances contribute more samples.

We introduce stratification by partitioning the WL into
increasingly fine strata as the sampling progresses. The re-
sulting algorithm for the configuration selection problem is
shown in Algorithm 1. The algorithm samples from WL
until Pr(CS) is greater than α. After each sample, we
check if further stratification is expected to lower estimator
variance; if so, we implement it. We describe this in detail
in Section 5.1. Once the workload is stratified, we also have

to choose which stratum to pick the next sample from. We
describe this in detail in Section 5.2.

A further heuristic (for large k) is to stop sampling for
configurations that are clearly not optimal. If Cl is the cho-
sen configuration in an iteration and 1−Pr(CSl,j) is negli-
gible for some Cj , then Cj is dropped from future iterations.
This way, many configurations are eliminated quickly, and
only the ones contributing the most uncertainty remain in
the pool. We study the effects of this optimization in Sec-
tion 7.

1: // Input: Workload WL, Configurations C1, . . . , Ck,
2: // Probability α, Sensitivity δ
3: // Output: Configuration Cbest, Probability Pr(CS)
4: For each Cl, pick pilot-sample SLl, |SLl| = nmin.
5: // Note: for Delta-Sampling SL = . . . = SLk

6: repeat
7: if further Stratification beneficial then
8: Create new strata; sample additional queries so that

every stratum contains ≥ nmin queries (Section 5.1)
9: end if

10: Select next query q and – in case of Independent Sampling
– configuration Ci to evaluate(Section 5.2)

11: Evaluate ∆i,j for all 1 ≤ i < j ≤ k (Sections 4.1, 4.2)
12: Select Cbest from C s.t. Xbest − Xj < 0 ∀j �= best

for Independent-sampling or Xbest,j < 0 ∀j �= best for
Delta-sampling (Sections 4.1, 4.2)

13: until Pr(CS) > α
14: return Cbest,Pr(CS)

Algorithm 1: Computing Pr(CS) through Sampling

Preprocessing: For workloads large enough that the query
strings do not fit into memory, we write all query strings
to a database table, which also contains the query’s ID and
template (also known as a query’s signature [6, 5] or skele-
ton [18]). Two queries have the same template if they are
identical in everything but the constant bindings of their pa-
rameters. Template-information can be acquired either by
using a workload-collection tool capable of recording tem-
plate information (e.g. [6]) or by parsing the queries, which
generally requires a small fraction of the overhead neces-
sary to optimize them. Now we can obtain a random sample
of size n from this table by computing a random permuta-
tion of the query IDs and then (using a single scan) reading
the queries corresponding to the first n IDs into memory.
This approach trivially extends to stratified sampling.

5.1 Progressive Stratification

Given the strata WLh, h = 1, . . . , L and a configuration
Ci, the stratified estimates Xi, in the case of independent
sampling, are calculated as the sum of the weighted esti-
mates for each stratum WLh. Let the variance of the cost
distribution of WLh, when evaluated in configuration Ci

be denoted by σ 2
i(h) (and S 2

i(h) := σ 2
i(h) · |WLh|

(|WLh|−1)). Let
the number of queries sampled from WLh be nh. Then the

variance of the estimator Xi of the cost of Ci for Indepen-
dent Sampling is [9]

V ar(Xi) =
∑L

h=1 |WLh|2
S 2

i(h)

nh
·
(
1 − nh

|WLh|
)
. (5)

We would thus like to pick a stratification and an allocation
of sample sizes n1+. . .+nL = n that minimizes equation 5.
For Delta-sampling, the variances of the estimators Xi,j can
be obtained analogously.
Picking a stratification: Initially, consider the case of In-
dependent Sampling: here, we can use a different stratifica-
tion of WL for every Xi. In the following we discuss how
to stratify WL for one configuration Ci.

Because the costs of queries that share a template typ-
ically exhibit much smaller variance than the costs of the
entire workload, it is often possible to get a good estimate
of the average cost of queries sharing a template using only
few sample queries. Consequently, we only consider strat-
ifications in which all queries of one template are grouped
into the same stratum and use the average costs per tem-
plate to estimate the strata variances S 2

i(h). This does not
mean that using a very fine-grained stratification with a sin-
gle stratum for every template must necessarily be the best
way to stratify. While a fine stratification may result in a
small variance for large sample-sizes, it comes at a price:
in order for the estimate based on stratified sampling to be
valid, the number of samples nh taken from each stratum
WLh has to be sufficiently large so that the estimator of the
cost of a configuration in each stratum is normal.
Choosing between stratifications: Based on the above, we
can compute the stratum variances resulting from a stratifi-
cation ST = {WL1, . . . ,WLL}, given a sample alloca-
tion NT = (n1, . . . , nL) using equation 5. Using these
variances, we can then estimate the number of samples,
#Total Samples, necessary to achieve Pr(CS) > α for
a set of configurations C. We omit the details of this al-
gorithm due to space constraints, but it essentially involves
computing target variances TargetV ar(Xi) for each esti-
mator Xi such that these variances, when substituted in to
the formulas in Section 4, give us the target probability. For
a given a stratification ST , initial sample allocation NT
and configuration Ci we denote the minimum number of
samples required to achieve the target variance (under the
assumption that the underlying σ 2

i(h) remain constant) by

#Samples(Ci,ST ,NT).3 We use this estimate to com-
pare different stratification schemes.

We now choose the stratification of WL for a configura-
tion Ci as follows: when sampling, we maintain the average
cost of the queries for Ci in each template and use it to es-
timate S 2

i(h), once we have seen a small number of queries
for each template. The algorithm starts with a single stra-
tum (ST = WL). After every sample from Ci it evaluates

3If we ignore the finite population correction, then this number can be
computed using O(L · log2(N)) operations by combining a binary search
and Neyman Allocation [9].

if it should change the stratification of the queries for this
configuration. This is done by iterating over a set of possi-
ble new stratifications ST p, p = 1 . . . ,#templates − 1
– resulting from splitting one of the existing strata into
two at the pth-most expensive template – and computing
#Samples(Ci,ST p, NT p). Here, we chose the NT p

such that initially each stratum contains the maximum of the
number of queries already sampled from it and nmin. For
scalability, we only add a single stratum per step. Note that
unlike stratification in the context of survey sampling or ap-
proximate query processing (e.g. [4] where the chosen strat-
ification is the result of a complex optimization problem),
we incur negligible computational overhead for changing
the stratification. The details are shown in Algorithm 2.

1: // Input: Strata WL1, . . . ,WLL, Configuration Ci

2: // Output: Stratum to split WLs = WL1
s ∪WL2

s

3: // Templates to store in WL1
s,WL2

s

4: s := L + 1. // Initialization
5: min sam :=

#Samples
�
Ci, {WL1, . . ,WLL}, (n1, . . , nL)

�
.

6: for all WLj ∈ {WL1, . . . ,WLL} do
7: Set n′

j := the expected number of samples from WLj in
#Samples

�
Ci, {WL1, . . . ,WLL}, (n1, . . . , nL)

�
.

8: if n′
j ≥ 2 · nmin then

9: Order the query templates in WLj by their average cost
as tmpp1 , . . . , tmppm .

10: for Every split point t ∈ {p1, . . . , pm−1} do
11: Consider the split WLj = WL1

j ∪ WL2
j into tem-

plates {tmpp1 , . . . , tmpt}, {tmpt+1, . . . , tmppm}.
12: Compute sam[t] :=

#Samples
�
Ci, {WL1 . . .WL1

j ,WL2
j . . .WLL},

(n1, . . . , max{nmin, |WL1
j |}, max{nmin, |WL2

j |}
, . . . , nL)

�
.

13: if sam[t] < min sam then
14: min sam := sam[t]; s = t.
15: end if
16: end for
17: end if
18: end for
19: if s �= L + 1 then
20: Update #Total Samples and target variances.
21: return WLs and template information.
22: end if

Algorithm 2: Computing the optimum stratification

Overhead: Given T templates in WL, there can only
be T − 1 possible split points over all strata. For each
split point, we have to evaluate the corresponding value of
#Samples(. . .), which requires O(L·log2(N)) operations.
Consequently, the entire algorithm runs in O(L·log2(N)·T)
time. Because the number of different templates is typically
orders of magnitude smaller than the size of the entire work-
load, the resulting overhead is negligible when compared to
the overhead of optimizing even a single query.

Note that we execute this algorithm only for the config-
uration Ci that the last sample was chosen from, as the es-
timates and sample variances for the remaining configura-

tions stay unchanged.
Stratification for Delta Sampling: For Delta-Sampling,
the problem of finding a good stratification is compli-
cated by the fact that Delta-Sampling samples the same
set of queries for all configurations and thus a stratification
scheme needs to reconcile the variances of multiple random
variables Xi,j . As a consequence, we consider the reduc-
tion in the average variance of Xi,j , 1 ≤ i < j ≤ k when
comparing stratification schemes. Furthermore, the order-
ing of the templates for each Xi,j may vary, resulting in up
to k ·(k−1)/2 orderings to consider when computing a new
candidate stratification. For reasons of tractability, we only
consider a single ranking over the Xi,j instead.

5.2 Picking the next sample

We first consider Independent Sampling without strati-
fication: ideally, we would like to pick the next combina-
tion of query and configuration to evaluate so that Pr(CS)
is maximized. We use a heuristic approach, attempting to
minimize the sum of the estimator-variances instead. In
case of Independent Sampling this means increasing one
sample-size |SLj | by one, so that

∑k
i=1 V ar(Xi) is min-

imized. Since we don’t know the effect the next query will
have on sample means and s 2

i s beforehand, we estimate the
change to the sum of variances assuming that these remain
unchanged. For Delta-Sampling, the sampled query is eval-
uated in every configuration, so sample selection is trivial.

If the workload is stratified, we use a similar approach
for Independent Sampling, choosing the configuration and
stratum resulting in the biggest estimated improvement in
the sum of variances. For Delta-Sampling with stratifica-
tion, a query from the stratum resulting in the biggest esti-
mated improvement in the sum of the variances of all esti-
mators is chosen and evaluated in every configuration.

While this approach assumes optimization times to be
constant, different optimization times for each template can
be modeled by computing the average overhead for each
configuration/stratum pair and selecting the one maximiz-
ing the variance reduction relative to the expected overhead.

6 Applicability of the CLT

As discussed in Section 4.1, the estimation of Pr(CS)
relies on the fact that (i) we have sampled sufficiently many
queries for the central limit theorem to apply and (ii) the
sample variances s 2

i are accurate estimators of the true vari-
ances σ 2

i . While these assumptions often do hold in prac-
tice, the potential impact of choosing an inferior database
design makes it desirable to be able to validate them.

We do this as follows: in the scenario of physical data-
base design, we do know the total number of queries in
the workload and can obtain upper and lower bounds on
their individual costs. Using these, we then compute upper
bounds on the skew and variance of the underlying distrib-
ution and use these to verify the assumptions (i) and (ii). In

Section 6.1, we will describe how to obtain bounds on the
costs of queries that have not been sampled; then, in Sec-
tion 6.2 we describe how to use these bounds to compute
upper bounds on skew and variance.

6.1 Deriving Cost Bounds for Queries

The problem of bounding the true cost of arbitrary data-
base queries has been studied extensively and is known to be
hard (e.g. [14]). However, in the context of physical data-
base design, we only seek the configuration with the best
optimizer-estimated cost, and not bounds on the true selec-
tivity of query expressions. This simplification allows us
to utilize knowledge on the space of physical database de-
signs and the optimizer itself to make this problem tractable;
moreover, it is actually essential to physical design tuning,
as the tuning tool cannot influence optimizer-decisions at
run-time and thus needs to keep its recommendations in
sync with optimizer behavior.

First, consider the issue of obtaining bounds on
SELECT-queries. In the context of automated physical de-
sign tools, it is possible to determine a so-called base con-
figuration, consisting of all indexes and views that will be
present in all configurations enumerated during the tuning
process. If the optimizer is well-behaved, then adding an
index or view to the base configuration can only improve
the optimizer estimated cost of a SELECT-query. Conse-
quently, the cost of a SELECT-query in its base configura-
tion gives an upper bound on the cost for any configuration
enumerated during the tuning. Lower bounds on the costs of
a SELECT-query can be obtained using the reverse method:
using the cost of a query Q in a configuration containing all
indexes and views that may be useful to Q. All automated
physical design tools known to us have components that
suggest a set of structures the query may benefit from; how-
ever, ultimately the number of such structures may be very
large. To overcome this, it is possible to use the techniques
described in [2]. Here, the query-optimizer is instrumented
with additional code that outputs – for any individual ac-
cess path considered during the optimization of a query –
the corresponding index or view that would be optimal to
support this access path. This reduces the number of rele-
vant indexes and views significantly, as (i) we do not have
to ‘guess’ which access paths may be relevant and (ii) while
a complex SQL query may be executed in a extremely large
number of different ways, the optimizer itself – for reasons
of scalability – only considers a subset of them.

In order to bound the costs of UPDATE statements (in-
cluding INSERT and DELETE statements), we use the stan-
dard approach of splitting a complex update statement into
a SELECT and an UPDATE part, e.g. the statement ’UP-
DATE R SET A1 = A3 WHERE A2 < 4’ is separated into:

(i) SELECT A3 FROM R WHERE A2 < 4, and
(ii) UPDATE TOP(k) R SET A1 = 0,

where k is the estimated selectivity of (i). The SELECT-

part of the query is handled as outlined above. To bound
the cost of the UPDATE-part, we use two observations: (1)
the number of different update templates occurring tends to
be orders of magnitude smaller than the workload size and
(2) in the cost models currently used in query optimizers,
the cost of a pure update statement grows with its selectiv-
ity. Thus, we can bound the cost of all UPDATE-statements
of a specific template T on a configuration C using the
optimizer cost-estimate in C for the two queries with the
largest/smallest selectivity in T . This means that we have to
make 2 optimizer calls per template and configuration (un-
like when bounding the cost of SELECT queries); however,
this approach scales well since the number of different tem-
plates is generally orders of magnitude smaller than the size
of the workload. Note that automated physical design tun-
ing tools already issue a single optimizer call for all queries
in WL to derive initial costs (e.g. [20], figure 2) and require
a second optimizer call per query for report generation.

While these techniques are very simple, even very con-
servative cost bounds tend to work well, as the result-
ing confidence bounds given by the CLT converge quickly.
An exhaustive discussion of bounding techniques for SQL
queries is not the focus of this paper, and these are an inter-
esting research challenge themself.

6.2 Verifying the validity of the estimators

Now, the presence of bounds on the costs of the queries
not part of the sample allows us to compute an upper bound
σ 2

max on σ 2
i , which we can use in its place, thereby en-

suring that the estimated value of Pr(CS) will be conser-
vative. Computing σ 2

max is a maximization problem with
constraints defined by the cost intervals.

Problem Statement [Bounding the Variance]: Given a
set of variables V = {v1, . . . , vn} representing query costs,
with each vi bounded by lowi ≤ vi ≤ highi, compute

σ2
max = max

(v1,...,vn)∈R
n

∀i:lowi≤vi≤highi

1
n

n∑
i=0

(
vi −

∑n
i=0 vi

n

)2

. (6)

It is known that this problem is NP-hard [11] to solve ex-
actly or to approximate within an arbitrary ε > 0 [12].
The best known algorithm for this problem requires up to
O(2n · n2) operations [12], and is thus not practical for
the workload sizes we consider. Therefore, we propose a
novel algorithm approximating σ2

max. The basic idea is to
solve the problem for values of vi that are multiples of an
appropriately chosen factor ρ and to bound the difference
between the solution obtained this way (which we’ll refer
to as σ̂2

max) and the solution σ2
max for unconstrained vi.

We use the notation vρ
i when describing the rounded val-

ues. Rewriting equation 6, we get

σ2
max = max

(v1,...,vn)∈R
n

∀i:lowi≤vi≤highi

1
n

(
n∑

i=0

(vi)2−n

(
1
n

n∑
i=0

vi

)2
)

. (7)

Now, we define MaxV 2[m][j] as the maximum value
of
∑m

i=1(v
ρ
i)2 under the constraint that

∑m
i=1(v

ρ
i) =∑m

i=1 lowρ
i + j · ρ. Consequently, every solution σ̂2

max to
the maximization problem for multiples of ρ must be of the
form

1
n

(
MaxV 2[n][j] − n · (1

n

m∑
i=1

lowρ
i + j · ρ)2

)
, (8)

and we can find the solution by examining all possible val-
ues of equation 8. Because we are only considering multi-
ples of ρ, we round the boundaries of each vi to the clos-
est multiples of ρ: lowρ

i :=
⌊
(lowi + ρ/2)/ρ

⌋
· ρ and

highρ
i :=

⌊
(highi + ρ/2)/ρ

⌋
· ρ. Thus each vi can only

take on rangei = (highρ
i − lowρ

i)/ρ + 1 distinct values.
Consequently, the average of the first m values can take on
totalm =

(∑m
i=1 rangei

)
− (m−1) different values. This

limitation is the key idea to making our approximation al-
gorithm scalable, as the values of totali typically increase
much more slowly than the number of combinations of dif-
ferent highi and lowi values.

We can compute all possible values of MaxV 2[m][j] for
m = 1, . . . , n, j = 0, . . . , totalm−1−1 using the following
recurrence:

MaxV 2[i][j + l]

=

{
max

l=1,...,totali−1
MaxV 2[i − 1][l] + (lowρ

i + j · ρ)2, if i > 1

(lowρ
i + j · ρ)2, otherwise.

This computation requires totali−1 steps for each i =
1, . . . , n. Now we can compute the solution to the con-
strained maximization problem using equation 8 in totaln
steps. Two further performance-optimizations are possible:
because the 2nd central moment of a distribution has no
global maximum over a compact box that is not attained
at a boundary point [16], each vρ

i must either take on its
maximum or minimum value. Consequently, we only need
to check the cases of j = 0 and j = totalm−1 − 1 in the
recurrence. Furthermore, we can minimize the number of
steps in the algorithm by traversing the values vi in increas-
ing order of rangei when computing MaxV 2[m][j].
Accuracy of the approximation: The difference between
the approximate solution σ̂2

max and the true optimum σ2
max

can be bounded as follows: the existence of a set of vari-
ables v1, . . . , vn with ∀i : lowi ≤ vi ≤ highi implies
that there exists a set of of multiples of ρ, vρ

1 , . . . , vρ
n with

∀i : lowρ
i ≤ vρ

i ≤ highρ
i , so that ∀i : |vi−vρ

i | ≤ ρ/2. Con-
sequently, the difference between the value of

∑n
i=0(v

ρ
i)2

and the value of
∑n

i=0(vi)2 in equation 7 for these sets of
values is at most

∑n
i=0

(
ρ · vρ

i + ρ2/4
)
. Similarly, the dif-

ference between n · (1
n

∑n
i=0 vρ

i)2 and n · (1
n

∑n
i=0 vi)2 in

equation 7 is at most
∑n

i=0

(
ρ · vρ

i + ρ2/4
)
.

Therefore, the existence of a solution σ2
max to equation 6

implies the existence of a set of of multiples of ρ, vρ
1 , . . . , vρ

n

with ∀i : lowρ
i ≤ vρ

i ≤ highρ
i such that the difference

between σ2
max and the variance of vρ

1 , . . . , vρ
n is bounded

by θ := 2
n

∑n
i=0

(
ρ · vρ

i + ρ2/4
)

(*).

Similarly, the existence of a solution σ̂2
max to the opti-

mization problem for multiples of ρ implies the existence of
a set of variables v1, . . . , vn with ∀i : lowi ≤ vi ≤ highi

such that the difference between σ̂2
max and the variance of

v1, . . . , vn is bounded by θ as well (**).
Therefore, if we compute a solution σ̂2

max to the op-
timization problem for multiples of ρ, then (**) implies
that the solution to the unconstrained problem is at least
σ̂2

max − θ and (*) implies that no solution σ2
max to equa-

tion 6 exists that is larger than σ̂2
max + θ.

Overhead: To demonstrate the scalability of this approxi-
mation algorithm, we have measured the overhead of com-
puting σ̂2

max for a TPC-D workload of 100K queries and
various values of ρ on a Pentium 4 (2.8GHz) PC in Table 1.

N=100K
ρ=10

N=100K
ρ=1

N=100K
ρ=1/10

Time(σ̂2
max) 0.4 sec. 5.2 sec. 53 sec.

Table 1: Overhead of approximating σ2
max

Verifying the applicability of the CLT: The 2nd assump-
tion made when modeling Pr(CS) is that the sample size
is sufficiently large for the CLT to apply. However, we have
not stated thus far how a sufficiently large minimum sam-
ple size nmin is picked. One general result in this area is
Cochran’s rule ([9], p. 42) which states that for popula-
tions marked by positive skewness (i.e. the population con-
tains significant outliers), the sample size n should satisfy
n > 25 · (G1)2, where G1 is Fisher’s measure of skew.
Under the assumption that the disturbance in any moment
higher than the 3rd is negligible (and additional conditions
on the sampling fraction f := 1 − n/N), it can be shown
that this condition guarantees that a 95% confidence state-
ment will be wrong no more than 6% of the time, i.e. for

the standardized statistic Zn :=
√

n
1−f

Xi−µi√
σ2 :

Pr(Zn ≤ 1.96) − Pr(Zn ≤ −1.96) > 0.94.

The derivation of additional results of this type is stud-
ied in [19]. While details of this work are beyond the scope
of this paper, we use a modification of Cochran’s Rule pro-
posed in [19], which was found to be robust for the popula-
tion sizes we consider:

n > 28 + 25 · (G1)2. (9)

In order to verify this condition, we need to be able to com-
pute an upper bound on G1:

Problem Statement [Bounding the skew]: Given a set
of variables V = {v1, . . . , vn}, with each vi bounded by

lowi ≤ vi ≤ highi, compute

G1max = max
(v1,...,vn)∈R

n

∀i:lowi≤vi≤highi

∑n
i=0

(
vi −

�n
i=0 vi

n

)3

n ·
(∑n

i=0

(
vi −

�n
i=0 vi

n

)2
) 3

2
.

Unlike the case of variance maximization, to the best of
our knowledge, the complexity of maximizing G1 is not
known. We approach this problem using an approximation
scheme similar to the one used for σ2

max; because of size
constraints, we omit the full description of this algorithm.

Because of the quick convergence of the CLT, even the
rough bounds derived in the previous section allow us to
formulate practical constraints on sample size. For exam-
ple, for the highly skewed (query costs vary by multiple de-
grees of magnitude) 13K query TPC-D workload described
in Section 7, satisfying equation 9 required about a 4% sam-
ple; for a 131K query TPC-D workload, a samples of less
than 0.6% of the queries was needed.

7 Experiments

In this section we first evaluate the efficiency of the sam-
pling techniques described in Sections 4 and 5. Then, we
show how the estimation of Pr(CS) can be used to con-
struct a scalable and accurate comparison primitive for large
numbers of configurations. Finally, we compare our ap-
proach to existing work experimentally.
Setup: All experiments were run on a Pentium 4 (2.8GHz)
PC and use the cost model of the SQL Server optimizer.
We evaluated our techniques on two databases, one syn-
thetic, and one real-life. The synthetic database follows the
TPC-D schema and was generated so that the frequency of
attribute values follows a Zipf-like distribution, using the
skew-parameter θ = 1. The total data size is ∼1GB. Here,
we use a workload consisting of about 13K queries, gener-
ated using the standard QGEN tool. The real-life database
used was a database running a CRM application with over
500 tables and of size ∼0.7 GB. We obtained the workload
for this database by using a trace tool; the resulting work-
load contains about 6K queries, inserts, updates and deletes.

7.1 Evaluating the Sampling Techniques

In this section, we evaluate the efficiency of the differ-
ent sampling techniques described (Independent and Delta
Sampling, both with and without progressive stratification).
In the first experiment, we use the TPC-D workload and
consider the problem of choosing between two configura-
tions C1, C2 that have a significant difference in cost (7%)
and in their respective sets of physical design structures (C2

is index-only, whereas C1 contains a number of views).
Note that |WL| =∼13K, so solving the configuration-
selection problem for k = 2 exactly requires ∼26K opti-
mizer calls. In the first experiment we set δ = 0 and run

each sampling scheme for a given sample size and output
the selected configuration. This process is repeated 5000
times, resulting in a Monte Carlo simulation to compute the
‘true’ probability of correct selection for a given number of
samples. The results are shown in Figure 1. We can see that

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Sample Size

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 S

el
ec

tio
n

Independent
Sampling

Delta Sampling

Independent
Sampling +
Stratification

Delta Sampling +
Stratification

Figure 1: Monte Carlo Simulation of Pr(CS)

the sampling-based approach to configuration selection is
efficient: less than 1% of the number of optimizer calls re-
quired to compute the configuration costs exactly suffice to
select the correct configuration with near-certainty. Delta-
Sampling outperforms Independent Sampling significantly
for small sample sizes, whereas adding progressive stratifi-
cation makes little difference, given the small sample sizes.

In the next experiment we illustrates the issues of ini-
tially picking a very fine stratification of the workload.
Here, we run the same experiment again, and use both sam-
pling schemes when having partitioned the workload into L
strata, one for each query template (Figure 2). For the fine

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Sample Size

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 S

el
ec

tio
n

Independent
Sampling + prog.
Stratification

Delta Sampling +
prog. Stratification

Independent
Sampling + simple
Stratification

Delta Sampling +
simple Stratification

Figure 2: Progressive vs. fine stratification

stratification and small sample sizes, the estimates within
each stratum are not normal and thus the probability of cor-
rect selection is significantly lower. For large sample sizes,
the accuracy of the fine stratification is comparable to the
progressive stratification scheme. We have found this to
hold true for a number of different experimental setups.

The next experiment (Figure 3) uses the same workload,
but two configurations that are significantly harder to dis-
tinguish (difference in cost ≤ 2%), and share a signifi-
cant number of design structures (both configurations are
index-only). Here, Delta Sampling outperforms Indepen-

dent Sampling by a bigger margin, since the configurations
share a large number of objects, resulting in higher covari-
ance between the cost distributions. Because of the larger
sample sizes, stratification significantly improves the accu-
racy of Independent Sampling.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

Sample Size

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 S

el
ec

tio
n

Independent
Sampling

Delta Sampling

Independent
Sampling + prog.
Stratification
Delta Sampling +
prog. Stratification

Figure 3: Monte-Carlo Simulation of Pr(CS)

We conducted the same experiments on the real-life data-
base, using two configurations that were difficult to com-
pare (difference in cost < 1%), and had little overlap in
the physical design structures (Figure 4). Consequently, the
advantage of Delta Sampling is less pronounced. Further-
more, this workload contains a relatively large number of
distinct templates (> 120). This means that we rarely have
estimates of the avg. cost of all templates, so progressive
stratification is used only in a few cases.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 60 11
0

16
0

21
0

26
0

31
0

36
0

41
0

46
0

51
0

56
0

61
0

66
0

71
0

Sample Size

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 S

el
ec

tio
n

Independent
Sampling

Delta Sampling

Independent
Sampling + prog.
Stratification
Delta Sampling +
prog. Stratification

Figure 4: Monte-Carlo Simulation of Pr(CS)

7.2 Experiments on multiple configurations

In this section we evaluate the accuracy and scalability of
the comparison primitive based on Pr(CS)-estimates for
large numbers of configurations k, which were collected
from a commercial physical design tool. We run Algo-
rithm 1 to determine the best configuration with probability
α = 90%, σ = 0 and using Delta-Sampling with progres-
sive stratification as the sampling technique.

In these experiments, we use the sample variances s 2
i to

estimate σ 2
i . In order to guard against the oscillation of the

Pr(CS)-estimates, we only accept a Pr(CS)-condition if
it holds for more than 10 consecutive samples. As an addi-
tional optimization, we stop sampling from configurations

Cj for which the contribution to the overall uncertainty in
Pr(CS) is negligible (in this case Pr(CSl,j) > .995).

We compare the primitive to two alternative sample-
allocation methods (using identical number of samples): (a)
sampling without stratification and (b) sampling the same
number of queries from each stratum. For all methods, we
report the resulting probability of selecting the best config-
uration (“True Pr(CS)”) and the maximum difference in
cost between the best configuration and the one selected by
each method (“Max. ∆”). The latter allows us to assess the
worst-case impact of using the alternative techniques. Each
experiment was carried out 5000 times, for both the TPC-D
(Table 2) and the CRM database (Table 3).

Method k = 50 k = 100 k = 500

Delta-Sampling True Pr(CS) 91.7% 88.2% 88.3%
Max. ∆ 0.5% 1.5% 1.6%

No Strat. True Pr(CS) 39.1% 28.2% 12.0%
Max. ∆ 8.8% 9.9% 9.8%

Equal Alloc. True Pr(CS) 42.5% 28.6% 12.8%
Max. ∆ 7.7% 9.0% 8.6%

Table 2: Results for TPCD-Workload

Method k = 50 k = 100 k = 500

Delta-Sampling True Pr(CS) 97.5% 94.4% 89.7%
Max. ∆ 1.7% 1.4% 0.8%

No Strat. True Pr(CS) 56.0% 37.5% 11.0%
Max. ∆ 10.53% 12.69% 6.5%

Equal Alloc. True Pr(CS) 71.1% 52.8% 17.0%
Max. ∆ 7.2% 5.8% 3.26%

Table 3: Results for CRM-Workload

In both cases, the comparison primitive based on Delta-
Sampling performs significantly better than the alternatives.
Moreover, the true Pr(CS) resulting from the selection
primitive matches the target probability α closely or ex-
ceeds it4, demonstrating its capability to chose the sample
size effectively to match the accuracy requirement.

7.3 Comparison to Workload Compression

In this section, we compare existing workload compres-
sion technqiues [5, 20] to our approach with three key eval-
uation criteria: scalability, quality and adaptivity. In [20],
queries are selected in order of their costs for the current
configuration until a prespecified percentage, X , of the
total workload cost is selected. Obviously, this method
scales well. Regarding quality, however, the technique fails
when only few query templates contain the most expensive
queries. To illustrate this, we generated a 2K query TPC-D
workload using the QGEN tool. If X = 20%, [20] will cap-
ture queries corresponding to only few of the TPC-D query

4The high Pr(CS) for the CRM workload is due to the requirement
that Pr(CS) > α must hold for 10 consecutive samples, which causes
over-sampling for easy selection problems.

templates. Consequently, tuning this compressed workload
fails to yield several design structures beneficial for the re-
maining templates. To show this, we tuned 5 different ran-
dom samples of the same size as the compressed workload;
the improvement (over the entire workload) resulting from
tuning each sample was more than twice the improvement
resulting from tuning the compressed workload.

To evaluate the quality resulting from [5], we measured
difference in improvement when tuning a Delta-sample and
a compressed workload of the same size for a TPC-D work-
load; in this experiment, both approaches performed com-
parably. Regarding scalability, [5] requires up to O(|WL|2)
complex distance-computations as a preprocessing step to
the clustering problem. In contrast, the overhead for exe-
cuting the Algorithms 1 and 2 is negligible, as all necessary
counters and measurements can be maintained incremen-
tally at constant cost.

The biggest difference between [5, 20] and our technique
concerns adaptivity. [5, 20] both depend on an initial guess
of a sensitivity parameter. In [5], it is the maximum allow-
able increase in the estimated running time when queries
are discarded and in [20] it is the percentage of total cost re-
tained. It is not clear how to set this parameter correctly, as
these deterministic techniques do not allow the formulation
of probabilistic guarantees similar to the ones in this pa-
per; in both [5, 20] the sensitivity parameter is set up-front,
without taking the configurations space into account. We
have observed in experiments that the fraction of a work-
load required for accurate selection varies significantly for
different sets of candidate configurations. Thus choosing
the sensitivity parameter incorrectly has significant impact
on tuning quality and speed. Our algorithm, in contrast, of-
fers a principled way of adjusting the sample size online.

8 Conclusion and Outlook

In this paper, we presented a scalable comparison primi-
tive solving the configuration selection problem, while pro-
viding accurate estimates of the probability of correct se-
lection. This primitive is of crucial importance to scalable
exploration of the space of physical database designs and
can serve as a core component within automated physical
design tools. Moreover, we described a novel scheme to
verify the validity of using the Central Limit Theorem and
sample variances to compute Pr(CS). These techniques
are not limited to this problem domain, but can be used for
any CLT-based estimator, if the required bounds on individ-
ual values in the underlying distribution can be obtained.

Acknowledgements: This paper benefitted tremendously
from many insightful comments from Vivek Narasayya,
Surajit Chaudhuri, Sanjay Agrawal and Amin Saberi.

References

[1] S. Agrawal, S. Chaudhuri, et al. Database Tuning Advisor
for Microsoft SQL Server. Proc. of the 30th VLDB Conf.,
Toronto, Canada, 2004.

[2] N. Bruno and S. Chaudhuri. Automatic Physical Database
Tuning: a Relaxation-based Approach. In ACM SIGMOD
Conf., 2005.

[3] G. Casella and R. L. Berger. Statistical Interference.
Duxbury, 2002.

[4] S. Chaudhuri, G. Das, et al. A Robust, Optimization-Based
Approach for Aprroximate Answering of Aggregate Queries.
In Proc. of ACM SIGMOD Conf., 2001.

[5] S. Chaudhuri, A. Gupta, et al. Compressing SQL Workloads.
In Proc. of ACM SIGMOD Conf., 2002.

[6] S. Chaudhuri, A. C. König, et al. SQLCM: A Continuous
Monitoring Framework for Relational Database Engines. In
Proc. of 20th I CDE Conf., 2004.

[7] S. Chaudhuri and V. R. Narasayya. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In Proc. the
23rd VLDB Conf., Athens, Greece, 1997.

[8] S. Chaudhuri and V. R. Narasayya. AutoAdmin ”What-If”
Index Analysis Utility. In Proc. of ACM SIGMOD Conf.,
Seattle, WA, USA, 1998.

[9] W. G. Cochran. Sampling Techniques. Wiley, 1977.
[10] B. Dageville, D. Das, et al. Automatic SQL Tuning in Oracle

10g. In Proc. of the 30th VLDB Conf., 2004.
[11] S. Ferson, L. Ginzburg, et al. Computing Variance for Inter-

val Data is NP-Hard. In ACM SIGACT News, Vol. 33, No. 2,
pages 108–118, 2002.

[12] S. Ferson, L. Ginzburg, et al. Exact Bounds on Finite Popu-
lations of Interval Data. Technical Report UTEP-CS-02-13d,
University of Texas at El Paso, 2002.

[13] S. Finkelstein, M. Schikolnick, et al. Physical Database De-
sign for Relational Databases. In ACM TODS, 13(1), 1988.

[14] Y. Ioannidis and S. Christodoulakis. Optimal Histograms for
limiting Worst-Case Error Propagation in the Size of Join
Results. In ACM TODS, 1993.

[15] S.-H. Kim and B. L. Nelson. Selecting the Best System:
Theory and Methods. In Proc. of the 2003 Winter Simulation
Conf., pages 101–112.

[16] V. Kreinovich, S. Ferson, et al. Computing Higher Central
Moments for Interval Data. Technical Report UTEP-CS-03-
14, University of Texas at El Paso, 2003.

[17] N. M. Steiger and J. R. Wilson. Improved Batching for Con-
fidence Interval Construction in Steady-State Simulation. In
Proc. of the 1999 Winter Simulation Conf., 2000.

[18] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -
DB2’s Learning Optimizer. In Proc. of the 27th Conference
on Very Large Databases, 2001.

[19] R. Sugden, T. Smith, et al. Cochran’s rule for simple random
sampling. In Journal of the Royal Statistical Society, pages
787–793, 2000.

[20] D. C. Zilio, J. Rao, et al. DB2 Design Advisor: Integrated
Automatic Physical Database Design. Proc. of the 30th
VLDB Conf., Canada, 2004.

