
Trio: A System for Data, Uncertainty, and Lineage∗

(Demonstration Description)

Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,
Shubha Nabar, Tomoe Sugihara, and Jennifer Widom

Stanford University InfoLab
http://infolab.stanford.edu/trio

1 Introduction

In theTrio project at Stanford, we are building a new kind
of database management system: one in whichdata, uncer-
taintyof the data, and datalineageare all first-class citizens
in an extended relational model and SQL-based query lan-
guage. In an initial vision paper for the Trio project [5],
we motivated the need for these three aspects to coexist
in one system, and detailed numerous potential applica-
tions including scientific data management, data cleaning
and integration, information extraction systems, and others.
(Specific example application scenarios will be discussed
in Sections 2 and 4.)

Since the inception of the project, we have:

1. Studied the space of representation schemes for un-
certain data, and properties of various schemes [3, 4].

2. Proposed a new scheme calledULDBs. ULDBs ex-
tend the relational model with simple forms of uncer-
tainty that, when combined with lineage, yield nice
properties and strong expressiveness [1].

3. Proposed a SQL-based query language for ULDBs
calledTriQL (pronounced “treacle”). TriQL modifies
the semantics of SQL to take uncertainty and lineage
into account, and introduces new constructs to query
uncertainty and lineage directly [2].

4. Implemented a first working prototype of our model
and language by building on top of a conventional
DBMS [2].

∗This work was supported by the National Science Foundation under
grants IIS-0324431 and IIS-0414762, by a grant from the Boeing Cor-
poration, and by Stanford Graduate Fellowships from Cisco Systems and
Sequoia Capital. Sugihara is on leave from NEC Corporation.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
to post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.

VLDB ’06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

We demonstrate our initial prototype, illustrating
through sample applications how uncertainty and lineage
are represented in ULDBs, how TriQL operates over
ULDBs (from both the user and the system perspective),
and in general how data, uncertainty, and lineage can work
together to support interesting new functionality.

The next section presents the basic principles of the
ULDB model, along with the TriQL query language. Sec-
tion 3 provides an overview of the architecture and features
of the initial Trio prototype. Section 4 describes the data
sets, application scenarios, and user interfaces in the sys-
tem demonstration.

2 Uncertainty-Lineage Databases

This section introduces the new data model and query lan-
guage underlying the demonstrated system.

2.1 The ULDB Model

We present the ULDB model through examples using
a highly simplified “crime-solver” application. Tables
Drives(person,car) and Saw(witness,car)
capture (possibly uncertain) driver information and crime-
vehicle sightings, respectively.

ULDBs extend the standard SQL relational model with
four new features:

1. alternatives, representing uncertainty about the con-
tents of a tuple

2. maybe (‘?’) annotations, representing uncertainty
about the presence of a tuple

3. numericalconfidencevalues optionally attached to al-
ternatives and ‘?’

4. lineage, connecting tuple alternatives to other alterna-
tives from which they were derived

We discuss these four features in turn.

Alternatives

ULDB relations are comprised ofx-tuples(and therefore
are calledx-relations). Each x-tuple consists of one or more
alternatives, where each alternative is a regular tuple over
the schema of the relation. For example, if a witness Amy
saw either a Honda, Toyota, or Mazda, then in tableSaw
we have:

(witness, car)
(Amy,Honda) || (Amy,Toyota) || (Amy,Mazda)

This x-tuple logically yields threepossible instancesfor ta-
ble Saw, one for each alternative. In general, the possible
instances of an x-relationR correspond to all combinations
of alternatives for the x-tuples inR. For example, if a sec-
ond tuple inSawhad four alternatives, then there would be
12 possible instances altogether.

In cases like the example above in which only some at-
tributes are uncertain, users may abbreviate usingor-sets:

witness car
Amy {Honda,Toyota,Mazda }

‘?’ (Maybe) Annotations

Suppose a second witness, Betty, thinks she saw a car but
is not sure. However, if she saw a car, it was definitely
an Acura. In ULDBs, uncertainty about the existence of
a tuple (more generally of an x-tuple) is denoted by a ‘?’
annotation on the x-tuple. Thus we have:

(witness, car)
(Amy,Honda) || (Amy,Toyota) || (Amy,Mazda)

(Betty,Acura) ?

The ‘?’ on the second x-tuple indicates that this entire tuple
may or may not be present (so we call it amaybe x-tuple).
Now the possible instances of an x-relation include not only
all combinations of alternatives, but also all combinations
of inclusion/exclusion for the maybe x-tuples.

ThisSaw table has six possible instances: three choices
for Amy’s car times two choices for whether or not Betty
saw an Acura. For example, one possible instance ofSawis
the two tuples(Amy,Honda),(Betty,Acura) , while
another instance is just(Amy,Mazda) .

Confidences

Numericalconfidencevalues may be attached to the alter-
natives of an x-tuple. Suppose Amy decided she saw either
a Honda or a Toyota with confidence 0.7 and 0.3 respec-
tively, while Betty’s confidence in seeing a vehicle is 0.6.
Then we have:

(witness, car)
(Amy,Honda):0.7 || (Amy,Toyota):0.3

(Betty,Acura):0.6 ?

In [1] we formalize an interpretation of these confidences
in terms of probabilities, which is the current default in the
Trio system (although other interpretations could be used
instead). Thus, ifΣ is the sum of confidences for the alter-
natives of an x-tuple, then we must haveΣ ≤ 1. Implicitly,
‘?’ is given confidence(1 − Σ) and denotes the probabil-
ity that the tuple is not present. Each possible instance of
a ULDB has a probability, and we show in [1] how proba-
bilities of possible instances are derived in a consistent and
complete fashion from confidence values.

An important special case of ULDBs is when every x-
tuple has only one alternative with a confidence value that
may be< 1. This case corresponds to the traditional no-
tion of probabilistic databases, which are thus subsumed
by ULDBs.

Lineage

In general, lineage augments data with information about
how the data was derived. ULDBs support bothinternal
lineage, connecting derived data to other data within the
database, andexternallineage, connecting data to outside
sources [1, 5]. The initial Trio system focuses on internal
lineage.

Lineage in ULDBs is recorded at the granularity of tuple
alternatives: lineage connects a derived x-tuple alternative
to the x-tuple alternatives from which it was derived. By
default, lineage is generated by Trio automatically when-
ever a TriQL query is executed.

Consider the join of base tablesSaw andDrives on
attributecar , followed by a projection onperson to pro-
duce a tableSuspects(person) . We show some sam-
ple data for all three tables, including lineage for the de-
rived data inSuspects . We use(i, j) to denote thejth

alternative of the x-tuple with IDi. For example, the lin-
eage of Jimmy’s presence in tableSuspects is the sec-
ond alternative of tuple 21 in tableSaw, together with the
second alternative of tuple 31 in tableDrives .

ID Saw (witness, car)
21 (Cathy,Honda) || (Cathy,Mazda)

ID Drives (person, car)
31 (Jimmy,Toyota) || (Jimmy,Mazda)
32 (Billy,Honda)
33 (Hank,Honda)

ID Suspects
41 Jimmy
42 Billy
43 Hank

? lineage(41,1) ={ (21,2), (31,2)}
? lineage(42,1) ={ (21,1), (32,1)}
? lineage(43,1) ={ (21,1), (33,1)}

An interesting and important effect of lineage is that it
imposes restrictions on the possible instances of a ULDB,
effectively coordinating the uncertainty in derived data
with the uncertainty in the data from which it was derived.
Consider derived tableSuspects . Even though there is a

‘?’ on each of its three tuples, not all combinations are pos-
sible. If Billy is present inSuspects then alternative 1
must be chosen for tuple 21, and therefore Hank must be
present as well. Jimmy is present inSuspects only if
alternative 2 is chosen for tuple 21, in which case neither
Billy nor Hank can be present. The above ULDB has six
possible instances, determined by the two choices for tuple
21 times the three choices (including ‘?’) for tuple 31.

Another important effect of lineage is that it enables
efficient on-demand computation of confidence values on
query results. Although result confidences can be com-
puted during query processing, in some cases it can be sig-
nificantly more efficient to compute them as a separate step
based on lineage. See [1] for details.

2.2 TriQL: The Trio Query Language

We now introduceTriQL, Trio’s SQL-based query lan-
guage, again through examples. Except for built-in func-
tions and predicates for querying confidence values and
lineage (discussed below), TriQL uses the same syntax as
SQL.1 For example, our join query producingSuspects
is written in TriQL exactly as expected:

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car

Logically, if we executed this query as regular SQL over
each of the possible instances ofSaw and Drives , we
would obtain the possible instances of the result. Of course
in reality we do not enumerate possible instances, and in-
stead execute queries on x-relations directly. In [2] we
give an operational semantics for TriQL queries that re-
spects the formal possible-instances semantics. Although
details are omitted, the reader can rest assured that the
above query produces theSuspects result as shown in
the previous section, including the lineage to base tables
SawandDrives .

Querying Confidences

TriQL provides a built-in functionconf() for accessing
confidence values. Suppose we want ourSuspects query
to only use sightings having confidence> 0.5 and driver
information having confidence> 0.8. We write:

SELECT Drives.person INTO Suspects
FROM Saw, Drives
WHERE Saw.car = Drives.car

AND conf(Saw)>0.5 AND conf(Drives)>0.8

Querying Lineage

For querying lineage, TriQL introduces a built-in predi-
cate designed to be used as a join condition. If we include

1A follow-on version of TriQL includes additional new constructs
for querying and manipulating uncertainty and confidence values; see
http://infolab.stanford.edu/trio . The version presented
here is the one demonstrated in the initial prototype.

predicatelineage (R, S) in theWHEREclause of a TriQL
query with x-relationsR andS in its FROMclause, then we
are constraining the joinedR andS tuple alternatives to be
connected by lineage. For example, suppose we want to
find all witnesses contributing to Hank being a suspect. We
can write:

SELECT Saw.witness
FROM Suspects, Saw
WHERE lineage(Suspects,Saw)

AND Suspects.person = ’Hank’

In theWHEREclause,lineage(Suspects,Saw) eval-
uates to true for any pair of alternativesx1 andx2 from
Suspects and Saw such that x1’s lineage includes
x2. We could instead write this query directly on the
original tables by considering the query that produced
Suspects (somewhat like manualview unfolding), but
the lineage() predicate provides a more general con-
struct that is insensitive to query history.

TriQL also provides a transitive versionlineage*()
of the lineage predicate. The Trio system currently imple-
mentslineage* by keeping track of the lineage struc-
ture in the database, and using the structure to translate
lineage*() into a fixed set oflineage() -based joins.

As a final TriQL example incorporating both lineage and
confidence, the following query finds persons who are sus-
pected based on high-confidence driving of a Honda:

SELECT Drives.person
FROM Suspects, Drives
WHERE lineage(Suspects,Drives)

AND Drives.car = ’Honda’
AND conf(Drives)>0.8

3 The Trio System

We now briefly describe the architecture and features of the
demonstrated Trio prototype. More details can be found
in [2].

3.1 Software Architecture

The initial Trio system is built entirely on top of a conven-
tional relational DBMS: ULDBs are represented in rela-
tional tables, and TriQL queries and commands are rewrit-
ten automatically into SQL commands evaluated against
the representation.

The core system is implemented in Python and presents
a simple API that extends the standard Python DB 2.0 API
for database access (Python’s analog of JDBC). The Trio
API supports TriQL queries instead of SQL, query results
are cursors enumerating x-tuple objects instead of regular
tuples, and x-tuple objects provide programmatic access to
their alternatives, including confidences and lineage. Using
the Trio API, we built a generic command-line interactive
client similar to that provided by most DBMS’s, and a full-
featured graphical user interface,TrioExplorer, discussed
in Section 4.1 below.

Our prototype is built on thePostgresopen-source
DBMS, but we intentionally rely on very few Postgres-
specific features. Porting to any other DBMS providing
a DB 2.0 API would be straightforward.

3.2 Functionality

The user may create a ULDB x-relationR with any stan-
dard relational schema, with or without confidence values.
This x-relation is represented as a conventional table stor-
ing tuples inR’s schema augmented withaid’s (globally
unique alternative identifiers) andxid’s (x-tuple identifiers
that encode which alternatives belong to the same x-tuple).
When a TriQL query creates a derived x-relationS, in ad-
dition to creating a table forS as described above, an ad-
ditional table ‘lin:S ’ is created to store the lineage of
data inS. Tuples in the lineage table contain three at-
tributes: theaid for an alternative inS, and thetable-
nameandaid for an alternative inS’s lineage. Trio also
maintains a catalog containing Trio-specific metadata, such
as schema-level lineage information and which x-relations
contain confidence values.

TriQL queries are rewritten automatically into SQL
commands over the representation just described. Query
processing proceeds in two phases. In the first phase, a
single SQL query generates a table (call itT) containing
all information needed to construct the query result. In the
second phase, tableT is post-processed to correctly group
alternatives into the x-tuples in the result, and to construct
the lineage table for the result. This second phase offers
two options: It can produce the final result as a stored x-
relation, or it can expose a cursor, in which case result x-
tuples and their lineages are assembled as the application
iterates through the cursor. Result confidence values are ei-
ther computedimmediatelyas part of the second phase, or
on-demandwhen requested by a user or by a subsequent
TriQL query with aconf() predicate.

4 Demonstration Highlights

Two data sets are used for the demonstration. One is a syn-
thetic crime-solver database similar to the one used for ex-
amples in this description, but with additional tables and
much more data. The second is a large product data set
provided to us by Yahoo! Shopping, on which we have per-
formeddeduplication. Deduplication produces uncertainty
(product matches with less than full confidence) and lin-
eage (connecting merged product records to the originals).

4.1 User Interface

ULDBs and TriQL queries are demonstrated through
TrioExplorer, a generic graphical user interface built on
top of Trio’s API. TrioExplorer lets the user connect to a
ULDB, browse its schema and schema-level lineage struc-
ture, browse data in x-relations, ask TriQL queries and
visualize their results, and navigate lineages of stored x-
relations and query results.

4.2 Demonstration Walk-Through

The demonstration consists of three parts:

1. Basic functionality. We begin by introducing the
ULDB model by visualizing the contents of base x-
relations in the crime-solver application. A few sim-
ple TriQL queries are run to introduce their intuitive
semantics over ULDBs. A selected TriQL query is
then used to demonstrate result x-relations, how result
data is connected to input data via lineage, and how
lineage coordinates uncertainty between derived and
base x-relations. Further queries demonstrate layers of
derived x-relations and lineage, and thelineage()
and lineage*() predicates in TriQL that enable
lineage to be queried declaratively. Lastly, confidence
values are introduced, and we show how queries can
reference them.

2. Second application.Next we demonstrate our second
application: deduplicated product data. This part il-
lustrates scalability on a very large data set and shows
a few additional queries over a different type of appli-
cation.

3. Under-the-hood. Finally, for interested participants,
we provide a glimpse into Trio’s architecture and im-
plementation. We return to our crime-solver database
and show how its x-relations are mapped to the under-
lying relational representation, and how TriQL queries
are translated into SQL commands over the represen-
tation. Time permitting we also demonstrate how Trio
stores information on lineage structure and uses it to
implement thelineage*() predicate, and how con-
fidence computations are performed on-demand by
traversing lineage.

References
[1] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.

ULDBs: Databases with uncertainty and lineage. InProc. of
Intl. Conference on Very Large Databases (VLDB), Septem-
ber 2006.

[2] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom.
An introduction to ULDBs and the Trio system.IEEE
Data Engineering Bulletin, Special Issue on Probabilistic
Databases, 29(1):5–16, March 2006.

[3] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. InProc. of Intl. Con-
ference on Data Engineering (ICDE), April 2006.

[4] A. Das Sarma, S.U. Nabar, and J. Widom. Representing un-
certain data: Uniqueness, equivalence, minimization, and ap-
proximation. Technical report, Stanford InfoLab, December
2005. Available at http://dbpubs.stanford.edu/pub/2005-38.

[5] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. InProc. of Conference on Innovative
Data Systems Research (CIDR), 2005.

