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Abstract—In recent years, several high-throughput low-delay schedling
algorithms have been designed for input-queued (IQ) switobs. It has been
shown however that scheduling policies such as Maximum Weig Match-
ing, that perform optimally for an isolated switch, fail to provide stability
in a network of 1Q switches[2].

Although there exist algorithms that ensure stability in neworks
of switches [2] [8], they are either not fully local or require knowl-
edge/estimation of rates, and are thus not desirable. Hereanpropose a local
and online switch-scheduling algorithm and prove that it adieves stability
in a network of single-server switches when arriving trafficis admissible
and obeys the Strong Law of Large Numbers. We then propose itsounter-
part for networks of crossbar switches and conjecture that his too is stable.
Additionally, we prove that our algorithms provide a Max-Mi n fair rate al-
location for isolated switches even when arriving traffic isnadmissible. We
believe that fairness is key to ensuring stability in netwoks.
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I. INTRODUCTION
The input-queued (1Q) switch architecture is widely used

achieves 100% throughput under admissible traffic satigfyi
leaky-bucket constraints. LIN's weakness is that it is feam
based and requires knowledge of the traffic pattern at every
switch. In [8], the authors provide stable local schedupog-

cies that include Birkhoff-von Neumann decompositiondaas
policies and algorithms such as Approximate Oldest Ce#itFir
that are MWM-based. However, these require either prior
knowledge of arrival rates or excessive book-keeping fte ra
estimation.

The problems above, motivate our search for a scheduling
policy that is easily implemented, local in that it does remfuire
knowledge-sharing across switchasdonline so that schedul-
ing decisions are a function of the present state alone.

B. Outline and Results
in In [2], the authors specify a network of switches on which

high-speed switching, primarily due to its low memory bandMWM policies fail to achieve 100% throughput. This counter-
width requirements. In aiV x N 1Q switch, cells arrive at input €xample provides intuition for the reason why MWM fails to
i for output; at an average ratg; and are queued up in virtual provide stability in a network and is presented in section Il

output queue (VOQ);; [1]. In each time slot, at most one cell We describe our model for a network of switches in section |1l

arrives at each input and at most one cell can be transferasu t and in section 1V, propose a local and online scheduling-algo
for A = [\;;] under admissible traffic conditions: of service to incoming flows. We extend the algorithm to deal
location of service rates to flows traversing an isolatedsoar

The performance of a switch-scheduling algorithm is evalf€Sults in support. Conclusions follow in section VI.

ble? when arriving traffic is admissible and obeys the Strong !N [2], Andrews & Zhang showed that MWM can be unstable
Interestingly however, scheduling policies that ensusbist Proved that queue sizes grow unboundedly with time.

has been shown [2] that even under admissible traffic, a net-

the authors propose the Longest in Network (LIN) policy that

output. The switch scheduling problem thus reduces to almatéithm - Busy RoundRobin. We prove that it is stable in a net-
ing problem in anV' x N bipartite graph. The following holds work of single-server switches, performing a fair rate editoon

N N with crossbar 1Q switches in section V, and propGséective

Z Ny <1, Vi Z Ny < 1, V) RoundsRobin. We prove that this algorithm provides a fair al-

=t =t switch even when traffic is inadmissible and conjecture ihat
A. Background and Motivation is stable in a network of IQ switches, providing experiménta
ateq on the throughput and dglay it delivers. The Maximum Il. INSTABILITY OF MWM
Weight Matching (MWM)* algorithm has been shown to be sta-
Law of Large Numberd (SLLN) [6], making it ideal for IQ N a network of switches, when the weights used are queus.size
switch-scheduling. For this they used the 8-switch counter-example in Fig. 8, an
ity in an isolated switch, fail to do so in networks of switshe
Although in practice, switches necessarily exist in neksoit
work of 1Q switches implementing MWM (with queue sizes e
as weights) can exhibit unstable behavior. To counter this,
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Fig. 1. The 8-Switch Counter-Example
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1The weight of an edgéi, 5) is usually a measure of the level of congestion,
e.g. the length of);;, or the age of its oldest packet.

2 A stable algorithm is one that ensures 100% throughput fmisglble traffic.

3This law is defined in section Il1.

There are four main switches A, B, C and D in this network



and four auxiliary switches A, B’, C’ and D’. Each main swhitc from the inputs to the outputs in each time slot. At each out-
has12 input ports andl output port while auxiliary switches put port, once again, a dispatcher dispatches the packetg al
havel input and3 output ports. Four types of packets are indifferent paths to their respective next hops.

jected into the system from the outside world. Tyippackets Flows

enter the system at switch A and traverse A, C, C’, D and Ig
before exiting the system. Similarly, ty@e 3 and4 packets,
each follow different routes through the network. Packdts
one type enter the first switch on their route via distinctuinp
ports but subsequently traverse an identical path of ioptput
ports in the network. The injection rate of each flow i80, en-
suring an admissible traffic pattern for the network. Thdarg f it that thev d i
employ a fluid analysis to prove the instability of this netlwo of exposition, we assume that they do not.

under MWM. Note that MWM in this counter-example is equiv- We assume dgterm|n|st|c routing aper-flow queueingo
tHat each queue in the system buffers packets of only one flow

alentto perf(_)rmmg Longest Que_ue F.'rSt (.LQF) on the mo.d'f'qype. We also allow flows to be re-entrant, i.e. once a packet
network in Fig. 2 where each switch is a single-server switch leaves a switch. it can re-enter the switch with the resordhat

it either arrive at a different input port or be destined tafted

ent output port. Thus cyclic paths with respect to the sweisch
themselves are allowed, but not with respect to the VOQs.

A flowis defined as a set of packets that traverse the same
8ath of switches along the network, passing through exéuotly
Same input and output ports. They have a common ingress point
from the outside world and leave the network through a common
egress point. Our proofs in this paper can easily be extetaded
the case when flows are alloweddonverge however for ease

C. Arriving Traffic
o1 The first criterion for arrivals is that they obey the Strorepl
of Large Numbers (SLLN) stated as follows:

A
lim L(j) = \Vi wp.l
n—oo n

Fig. 2. Equivalent Representation of the 8-Switch CouBtemmple

The main reason for LQF's failure in this network is thafi€re: Ai(n) is the number of typé packets injected into the

it rewards flows with high request rates while punishing welfyStém from the outside world at time We also impose the
behaved flows. Consider a situation where packets of ygrel  condition of admissibility on the arriving traffic, that i, f.

2 are queued up at switches A and B respectively while all oth¢notes the set of flows passing through pothen:

gueues in the system are empty. Now typend2 packets will

each arrive at switcly’ at a rate of 1. As a result, ty@epack- Z A <1 Vo

ets will not be serviced for as long as the above queues are not
emptied and will queue up &t. It can be shown that a stage isy Stability

reached when the number of queued up tygackets exceeds |nqitively, stability implies that the total number of peets

the original number of typé and2 packets in the system. in the system remains bounded. Formally, we say that a nktwor

The key idea in our approachiis to avoid such situations by igf syitches igrate stableif it satisfies the following criteria:
corporating fairness in the scheduling policy. We guaraitttat
any flow asking for less than its weighted fair share of seraic Xy L 1, , N
a switch is granted its request rate regardless of the pata 1% 5, — a0 2= (A0) = D7) =0 wp.l
tern of other flows at that switch. All that is required is thz

arrivals of this flow obey SLLN.

i€ fa

Here, X,, represents the queue-lengths vector at timand
D(j) and A(j) are the departure and arrival vectors at tifne
I1l. A NETWORK OF SWITCHES respectively. A system that is rate stable under any adoféssi

We now describe the assumptions made by our model fof"&ffic conditions is said to achieve 100% throughput.

network of switches. We then dichotomize our study into the IV. NETWORKS OFSINGLE-SERVER SWITCHES

single-server switch scenario and the crossbar switchasicen . . .
We now present our local and online scheduling algorithm

A. Switch Architecture Busy Round-Robif3R'R) and prove that it achieves stability

Single-Server SwitchesA single-server switch is an 1Q in a network of single-server switches.
sr\]/wt(_:h Wlth]é |nr|]agts,1 outplqut and a single ser:ver servllcmgk TheBRR Algorithm
the inputs. Each input port has one queue where packets arg, o, 5 get of input queueBR R services non-empty queues
to leave the switch. Once packets reach the output they are |
mediately dispatched by a “dispatcher” along differenhpab
their next hops.

Crossbar SwitchesA crossbar switch had inputs, N out-

2 ; inter = d- r obi int

pUtS andV VOQS_‘ The InpUt and OUtpUt ports are ConneCté(g:ripm:nletro nr;)fger\rlgrl goggl Eofrexam' ne a queue nore than once
by a crossbar fabric that enables the transfer of uy fpackets it queue_rrpointer is non-enpty

isolated single-server switch under admissible traffiaiitons.
The pseudo-code for one scheduling time-steBRBIR follows.



schedul e( queue_rr poi nt er ++) ; Claim 2: There are infinitely many time slots in whick;, =
break; //queue to be served has been deterni ned H H T+ H
el se rrpointer++; Oie tthglrge)eéxEsts )a s%quence of positive integeis< mq <
- SV, X (my) = 0.
This algorithm is easily implementable. Without knowledge Proof of Claim 2:The proof is by contradiction. Suppose the
of queue sizes, it guarantees stability in a network of einglClaim is not true. The@M s.t. Vi > M, X,(n) > 0. But if
. L ’ K3 N

server swnchsas, as shown by _the proof of the f_ollowmg_themr queue is non-empty then it gets served at least once eveéry
Theorem 1:A network of single-server switches with perin e siots. Now for any: > M

flow queuing, implementingBRR as a scheduling policy

achieves 00% throughput whenever the ingress stochastic pro- sk_ Dy(n) nk D;(n)
. . . n=1-"1 n=M+1"-"1
cesses satisfy SLLN and are admissible. - 5 = = r
Proof: Consider a switct$ in the network. Letd;(n) be S k—M
the number of arrivals of packets of typat this switch in the = EN

nth time slot and leD;(n) be the number of departures of type .y .
i packets fromt in thenth time slot. Let\V be the total number ASk — 00, 5~ — § > A, S0 .
of flows arriving atS. Then the following lemma holds: limsup,, . ¥p_; Di(k)/n > A, contradicting (1). O

Lemma 1:1f limy, .o Xj_; Ai(k)/n = AandA < 1/N,  Now pickmy, > K andng, > max{my,,2/e}. Letmy, be
thenBRR ensures thaim,, .. X3_, D;(k)/n exists and is\,  the largesin; smaller tham,,,. Consider the following facts:
regardless of the arrival patterns of other flow$at

Fact 1: It follows from the definition of the sequenden }
Proof of Lemma 1:

that during the time slotsw,, + 1,-- -, ng, flow ¢ gets service
3 2
S Ai(k) at least once in everyy time slots.
lim === = A< 1/N and Fact 2: If X;(n) = 0thenXr_ Dy(r) = X Ay(r)
n—oo n . 7 - r=1+"1 — Hp=141 .
n_Di(k) < SR Ai(k)= It now follows:
Yr_ Di(k "2 Dy
lim sup —A=1—2"2 (k) < A\ (1) ate > Zr Dilr) (r)
n— o0 n N,
mg Nk
All that remains to be shown is _ Y1 Di(r) + 2,2, 1 Di(r)
nkz
. e Dk m n
hnnlgf k_lﬁ() > A B 08 Ai(r) + Eri“mkg+1Di(r)
n
This is the main part of the proof of Lemma 1; its underly- ki,@
ing ideas are summarized below and explained in greateil deta > My (A —€) + ET:mk3+lDi(T)
in the proof of Claim 1. If the queue carrying floindoes not - Ny
receive service inV consecutive time slots, it was necessarily g (A — €) + Lnkz—mkS—lJ
empty at the beginning of this time frame. This implies tHnt t > . N
total departures for flow from this queue equalled the total ar- k>
rivals until then. Using the fact that < 1/N, we show that the My (A — €) 4 ez —kg Z (D)
qgueue for flowi will be empty infinitely many times. It follows =z Tk,
thatX}_, D;(k)/n approache&}_, A;(k)/n asn grows. The My A — €) + (ng, — g )A — 2
following claim completes the proof of Lemma 1. > nn
2
Claim 1: liminf, .. X7, D;(k)/n > A. < A—e—2
Proof of Claim 1: This claim is proved by contradic- N Ny
tion. Suppose the statement is not true. Then < X s.t. > A —2e
liminf, .o X}, D;(k)/n < «, i.e. there exists a sequence of > a+4e
positive integers; < no < ng--- S.t.
S Di(r) We arrive at a contradiction, proving hence that
vk =l < a+e. liminf, o XF_, Di(k)/n > A, O

Nk

Sinceliminf,, .. £}_; D;(k)/n > X and
We can chooseto be small enough so that< e < 252, Since  Jim SUP,, o0 2i_1 Di(k)/n < A, it follows that
limy oo B3 Ai(k)/n=X3F K >0s.t.

limy, 0o 27_1Di(k)/n = A O
vn > K i Ai(k) > A—e 2) In fact, the foIIov_ving gen_eral result can pe shown:_
n Lemma 2: Consider a single-server switch runniffR R,

rrival flows A;,---, Ay and rates\; < --- < Ay. Let
< Nand M1 < (1 = SE N)/(N — k). If ()
limsup,,_, . X1 A;(r)/n < A; Vi, (ii) the first & flows are

Before finishing the proof of Claim 1, consider the followini
claim for departures:



rate stable and (iii) arrivals for thig + 1)st flow satisfy SLLN, We attribute the stability oBRR to its fairness. As was seen
i.e. limy, oo I Agt1(r)/n = Aky1, then the(k + 1)st flow in section II, when traffic rates temporarily become inadsinis
is also rate stable. ble, load-balancing policies such as LQF worsen the sdnati
By punishing well-behaved floWsand rewarding “bad” flows
attempting to hog the bandwidth3RR, on the contrary, en-
sures that well-behaved flows get their request rates, ptiege
%ﬁem from starvation.

The proof of Lemma 2 is similar to the proof of Lemma 1 an
can be found in the full version of the pagder

We now consider flows in increasing order of injection rat
into the system. Choose the flawvith the smallest arrival rate,
;. Let the flow pass through switches, Ss, ..., S, in that D. Simulations
order. ForS;, we know thatlim,, E;?:lAfl (G)/n =X < We performed simulations on the configuration of switches
1/N. The inequality follows from the fact thatis the smallest in Fig. 2 The results are shown in Fig. 3 It is clear that under
flow passing through switcly; and traffic would be inadmis- LQF, the number of packets in the network grows without bound
sible if the inequality were not satisfied. From Lemma 1, w&hereas undeBRR, the number of packets remains bounded.
know thatlim,, .o 7, D7 (j)/n = A < 1/N. Since the de- Experiment 1: All queues are initially empty
partures fromS; form the arrivals atS; and so on, and at each
of the switches; should be asking for less than its fair share b~ F(')?‘évsl '303"{82 'B"’,ﬁg F()'f’,ol’;g
cause of the admissibility constraints, we can repeatguiiyya | Departure Rate (LQF)| 0.275 | 0.277 | 0.277 | 0.285
Lemma 1 to show that departs from the system at its arrival 2eparture Rate (BRR) 0.329 | 0317 | 0.317 | 0.325
rate ;.

We then pick the next smallest flow and can apply Lemma
2 to show that the flow exits every switch in the network and
the network itself at its arriving rate. Repeating this @mss
until there are no more flows left to consider, we show that our
network is rate stable. |

While the 8-switch counter-example from section Il does not
conform to our model due to the presence of convergent flows, T e e e e
we can easily extend our proof to handle the case of convergen
flows as well and and the reader is referred to the full versfon F
the paper for a proof showing thBR R is stable in the counter-
example.

In [4], the authors show that a policy similar BRR pro-  Andrews & Zhang proved in their seminal paper [2] that
duces stability in wireline networks, but their results imited MWM (where weights are queue sizes) fails to guarantee sta-
to leaky-bucket constrained traffic whereas our result$idd bility in a network of 1Q switches. This happens because when
more general traffic patterns. In addition to stabillBfiz R also a switch in the network becomes temporarily overloadedi-wel

guarantees fairness. We first formalize the notion of faisne behaved flows end up starving. It has been shown [7] that MWM
does not perform a fair rate allocation when incoming traéic

00000

Total number of pacets

g. 3. LQF vs BRR: Comparing Total Packets in System

V. NETWORKS OFCROSSBARSWITCHES

B. Max-Min Fairness an isolated |1Q switch is inadmissibleThe definition of fairness
The following notion ofMax-Min fairnesss well-established in an 1Q switch with virtual output queueing is given below.
[3] and commonly used: Definition 2(Fairness in an 1Q Switch) If every VOQ repre-

Definition 1(Max-Min Fairness) Considen flows arriving sents a flow, there ar&2 flows in a crossbar switch. We call
at a server of capacity' with rates\,, - - - , A, respectively. A R = [r,;] a fair allocation forA = [)\;;] iff it is Max-Min fair
rate allocation = (rq,--- ,r,) is called Max-Min fair iff with respect to each output.

(l) ani = C, T S /\i, and

.. : . To achieve fairness in rate allocations at an 1Q switch, we pr
(if) any r; can be increased only by reducings.t.r; < r;.

poseCollective RoundRobin (CRR) - a variation of an algo-
C. BRR is Max-Min Fair rithm proposed in [5] for wireless network flows. While the re

It has been shown in [7] that when arriving traffic at an isgUlts In [5]imply Max-Min faimess of R? under leaky-bucket

lated single-server switch obeys SLLN but is inadmisﬁblecqnsftralped’ |nadm|55|b:e trf?ﬁlc’ we .ShOVSV WRR is Max-

LQF fails to perform a Max-Min fair rate allocation. We areMm air for more general traffic satisfying SLLN .

able to prove thaBRR on the contrary, is Max-Min fair un- A. TheCRR Algorithm

der similar traffic conditions. The proof is omitted due t@asp  As with single-server switches, we would like to view each

constraints but can be found in the full version of the paper. output of a crossbar switch as an individual server that ean s
Theorem 2:WhenBRR is applied to a single server switch,vice its flows in round-robin fashion. The challenge herdnat t

the allocation of service rates to flows is Max-Min fair when atwo outputs might choose to serve VOQs at the same input si-

rivals satisfy SLLN . This holds even if arrivals are inadsilide. multaneously, when only one can actually be served due to the

crossbar constraints. We get around this by introducitakan

4http://www.stanford.edussunabar/crr.pdf allocation policy similar ta3R'R. Each output assigns service

5Inadmissibility in IQ switches arises only from overloagliof output ports
since admissibility at input ports is guarranteed by lirte @nstraints SWell-behaved flows request at most their fair share of servic




tokens to its flows in round-robin fashion and at most onertok€. Simulations

is generated per output in one iteration of the algorithmoAt  \We performed many simulations on networks 1of x 12
ken is only assigned to a VOQ if the queue has seen an arrig@jitches similar to the network in Fig. 1. In addition to theafs
since the last time it was given a token. The tokens correspaghown in Fig. 1, we inserted additional flows from the inpots t
to the service credit available to each flow, and at each tte® Ssthe unused output ports while maintaing admissibility, sat t
the collection of non-conflicting flows with maximum SerViCQontention at input ports would result in more Comp|ex scived
credit is selected for scheduling. When a flow is served, arntoking decisions than the ones faced®R R and LQF. The results
is removed from its credit. The pseudo-code for one schegulifor one set of experiments are shown in Fig. 4. Itis clearthat
time-step of the algorithm is given below. Note thatforx 1 der MWM the number of packets in the network grows without

switch,CRR is identical toBRR. bound whereas queue sizes remain bounded UHE&.
/| Token Generation
for i =1to N
//rrpointer = round-robin pointer for output i T -
for | =1 to N// i does not exanine a VOQ nore than once
if vog[rrpointer][i] has pkt not accounted for
token[rrpointer++] [i]++;

break; //i has generated a token and stops
el se rrpointer++;

Totl number o packets

/1 Schedul i ng
/1MW with weights of vogs = # tokens

MM schedul e_vogs(); -
/] Token Reduction
for i =1toN Fig. 4. MWM vs CRR: Comparing Total Packets in System
for j =1to N
if voq[i][j] is schedul ed
token[i1[j]--: VI. CONCLUSIONS
We now show that’R'R provides a Max-Min fair allocation  In recent years, isolated input-queued switches have lheen t
of service rates to the flows passing through a switch. focus of much research. Since stable algorithms for 1Q fiwc

2. CRR s Wi Fa e trtable 1 et he st ofstabiiy n etk
Theorem 3:WhenCR'R is applied to a crossbar switch, the To tackle the problem of stability in single-server switshe

allocation of service rates to flows is Max-Min fair if arrisa . :
. : . o L we proposedusyRoundRobin- an easy to implement, local
satisfy SLLN. This holds even for inadmissible arrivingffia . . ) .
?nd online scheduling policy. It guarantees a Max-Min fater

Proof: The packet transmission process is equivalent ?l . . .
N . allocation at every switch, preventing smaller flows fromrst
the following: every time an output port generates a token fo

a VOQ, a packet iseleasedrom the VOQ for transmission. A vation due_ o Iarger_flo_ws. Our assumptions on arriving kaffi
. : were that it be admissible and satisfy the Strong Law of Large
released packet, however, is actually transmitted onlynithe

. . . . . .Numbers. An additional assumption in our model was per-flow
corresponding flow is selected in the maximum weight matghin ; : o
uing, which future work could seek to eliminate.

of the flows. Since the token generation process can be viewoéji_ : .
as though each output port were performB@R on its flows ince fairness guarantees that small flows are not discrimi-
Theorem 2 implies that packets are released for transmiasi natgql against - a property mherently absent in Ioad-.bmgnq
Max-Min fair rate and the packet release process is adnigssitPOlicies such as LQF - we believe this to be the solution to in-
tability. Hence, we followed the same approach with crassb

It follows [6] that MWM with the number of tokens/release itch tistvi il del traint d
packets as weights will allocate a Max-Min fair rate to thevBo Q swi Cches (satis ying simiiar mode constrain S) a”‘m“
Collective Round-Robin - a local and online scheduling pol-

traversing the switch. n . - . .

Simul % | ttest to the fai CRR. F | icy. Even under inadmissible traffic conditions, we provieatt

imurations aiso attest 1o e fairmnes - FOrexample, provides a Max-Min fair rate allocation to incoming flows a
for the following arrival matrix: . . i :
an isolated switch, when arrivals satisfy the Strong Lawarje
06 02 06 o1 Numbers. The focus of future research in this area would be to

A= 0.1 prove stability of this algorithm in an arbitrary networkarbss-
0.1 bar switches.
The MWM andCRR service rate allocations fay are: REFERENCES
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