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Abstract—In recent years, several high-throughput low-delay scheduling
algorithms have been designed for input-queued (IQ) switches. It has been
shown however that scheduling policies such as Maximum Weight Match-
ing, that perform optimally for an isolated switch, fail to p rovide stability
in a network of IQ switches[2].

Although there exist algorithms that ensure stability in networks
of switches [2] [8], they are either not fully local or require knowl-
edge/estimation of rates, and are thus not desirable. Here we propose a local
and online switch-scheduling algorithm and prove that it achieves stability
in a network of single-server switches when arriving traffic is admissible
and obeys the Strong Law of Large Numbers. We then propose itscounter-
part for networks of crossbar switches and conjecture that this too is stable.
Additionally, we prove that our algorithms provide a Max-Mi n fair rate al-
location for isolated switches even when arriving traffic isinadmissible. We
believe that fairness is key to ensuring stability in networks.

Keywords—Switches & Switching, Queueing Theory, Network Stability.

I. I NTRODUCTION

The input-queued (IQ) switch architecture is widely used in
high-speed switching, primarily due to its low memory band-
width requirements. In anN ×N IQ switch, cells arrive at input
i for outputj at an average rateλij and are queued up in virtual
output queue (VOQ)Qij [1]. In each time slot, at most one cell
arrives at each input and at most one cell can be transferred to an
output. The switch scheduling problem thus reduces to a match-
ing problem in anN × N bipartite graph. The following holds
for Λ = [λij ] under admissible traffic conditions:

N∑

j=1

λij < 1, ∀i
N∑

i=1

λij < 1, ∀j

A. Background and Motivation
The performance of a switch-scheduling algorithm is evalu-

ated on the throughput and delay it delivers. The Maximum
Weight Matching (MWM)1 algorithm has been shown to be sta-
ble2 when arriving traffic is admissible and obeys the Strong
Law of Large Numbers3 (SLLN) [6], making it ideal for IQ
switch-scheduling.

Interestingly however, scheduling policies that ensure stabil-
ity in an isolated switch, fail to do so in networks of switches.
Although in practice, switches necessarily exist in networks. It
has been shown [2] that even under admissible traffic, a net-
work of IQ switches implementing MWM (with queue sizes
as weights) can exhibit unstable behavior. To counter this,
the authors propose the Longest in Network (LIN) policy that
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1The weight of an edge(i, j) is usually a measure of the level of congestion,

e.g. the length ofQij , or the age of its oldest packet.
2A stable algorithm is one that ensures 100% throughput for admissible traffic.
3This law is defined in section III.

achieves 100% throughput under admissible traffic satisfying
leaky-bucket constraints. LIN’s weakness is that it is frame-
based and requires knowledge of the traffic pattern at every
switch. In [8], the authors provide stable local schedulingpoli-
cies that include Birkhoff-von Neumann decomposition-based
policies and algorithms such as Approximate Oldest Cell First
that are MWM-based. However, these require either prior
knowledge of arrival rates or excessive book-keeping for rate
estimation.

The problems above, motivate our search for a scheduling
policy that is easily implemented, local in that it does not require
knowledge-sharing across switches,andonline so that schedul-
ing decisions are a function of the present state alone.

B. Outline and Results
In [2], the authors specify a network of switches on which

MWM policies fail to achieve 100% throughput. This counter-
example provides intuition for the reason why MWM fails to
provide stability in a network and is presented in section II.

We describe our model for a network of switches in section III
and in section IV, propose a local and online scheduling algo-
rithm - BusyRound-Robin. We prove that it is stable in a net-
work of single-server switches, performing a fair rate allocation
of service to incoming flows. We extend the algorithm to deal
with crossbar IQ switches in section V, and proposeCollective
Round-Robin. We prove that this algorithm provides a fair al-
location of service rates to flows traversing an isolated crossbar
switch even when traffic is inadmissible and conjecture thatit
is stable in a network of IQ switches, providing experimental
results in support. Conclusions follow in section VI.

II. I NSTABILITY OF MWM

In [2], Andrews & Zhang showed that MWM can be unstable
in a network of switches, when the weights used are queue sizes.
For this they used the 8-switch counter-example in Fig. 1, and
proved that queue sizes grow unboundedly with time.
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Fig. 1. The 8-Switch Counter-Example

There are four main switches A, B, C and D in this network



and four auxiliary switches A’, B’, C’ and D’. Each main switch
has12 input ports and1 output port while auxiliary switches
have1 input and3 output ports. Four types of packets are in-
jected into the system from the outside world. Type1 packets
enter the system at switch A and traverse A’, C, C’, D and D’
before exiting the system. Similarly, type2, 3 and4 packets,
each follow different routes through the network. Packets of
one type enter the first switch on their route via distinct input
ports but subsequently traverse an identical path of input/output
ports in the network. The injection rate of each flow is1/30, en-
suring an admissible traffic pattern for the network. The authors
employ a fluid analysis to prove the instability of this network
under MWM. Note that MWM in this counter-example is equiv-
alent to performing Longest Queue First (LQF) on the modified
network in Fig. 2 where each switch is a single-server switch.
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Fig. 2. Equivalent Representation of the 8-Switch Counter-Example

The main reason for LQF’s failure in this network is that
it rewards flows with high request rates while punishing well-
behaved flows. Consider a situation where packets of type1 and
2 are queued up at switches A and B respectively while all other
queues in the system are empty. Now type1 and2 packets will
each arrive at switchC at a rate of 1. As a result, type3 pack-
ets will not be serviced for as long as the above queues are not
emptied and will queue up atC. It can be shown that a stage is
reached when the number of queued up type3 packets exceeds
the original number of type1 and2 packets in the system.

The key idea in our approach is to avoid such situations by in-
corporating fairness in the scheduling policy. We guarantee that
any flow asking for less than its weighted fair share of service at
a switch is granted its request rate regardless of the arrival pat-
tern of other flows at that switch. All that is required is thatthe
arrivals of this flow obey SLLN.

III. A N ETWORK OFSWITCHES

We now describe the assumptions made by our model for a
network of switches. We then dichotomize our study into the
single-server switch scenario and the crossbar switch scenario.

A. Switch Architecture
Single-Server Switches:A single-server switch is an IQ

switch with N inputs, 1 output and a single server servicing
the inputs. Each input port has one queue where packets are
buffered and in each time slot, only one packet can be scheduled
to leave the switch. Once packets reach the output they are im-
mediately dispatched by a “dispatcher” along different paths to
their next hops.

Crossbar Switches:A crossbar switch hasN inputs,N out-
puts andN2 VOQs. The input and output ports are connected
by a crossbar fabric that enables the transfer of up toN packets

from the inputs to the outputs in each time slot. At each out-
put port, once again, a dispatcher dispatches the packets along
different paths to their respective next hops.

B. Flows
A flow is defined as a set of packets that traverse the same

path of switches along the network, passing through exactlythe
same input and output ports. They have a common ingress point
from the outside world and leave the network through a common
egress point. Our proofs in this paper can easily be extendedto
the case when flows are allowed toconverge, however for ease
of exposition, we assume that they do not.

We assume deterministic routing andper-flow queueingso
that each queue in the system buffers packets of only one flow
type. We also allow flows to be re-entrant, i.e. once a packet
leaves a switch, it can re-enter the switch with the restriction that
it either arrive at a different input port or be destined to a differ-
ent output port. Thus cyclic paths with respect to the switches
themselves are allowed, but not with respect to the VOQs.

C. Arriving Traffic
The first criterion for arrivals is that they obey the Strong Law

of Large Numbers (SLLN) stated as follows:

lim
n→∞

Σn
j=1Ai(j)

n
= λi ∀i w.p.1

Here,Ai(n) is the number of typei packets injected into the
system from the outside world at timen. We also impose the
condition of admissibility on the arriving traffic, that is,if fx

denotes the set of flows passing through portx, then:

∑

i∈fx

λi < 1 ∀x.

D. Stability
Intuitively, stability implies that the total number of packets

in the system remains bounded. Formally, we say that a network
of switches israte stableif it satisfies the following criteria:

lim
n→∞

Xn

n
= lim

n→∞

1

n
Σn

j=1(A(j) − D(j)) = 0 w.p.1

Here, Xn represents the queue-lengths vector at timen and
D(j) andA(j) are the departure and arrival vectors at timej
respectively. A system that is rate stable under any admissible
traffic conditions is said to achieve 100% throughput.

IV. N ETWORKS OFSINGLE-SERVER SWITCHES

We now present our local and online scheduling algorithm
Busy Round-Robin(BRR) and prove that it achieves stability
in a network of single-server switches.

A. TheBRR Algorithm
Given a set of input queues,BRR services non-empty queues

in round-robin order skipping over empty ones. Note thatBRR
is a work conserving policy and thus is stable when applied toan
isolated single-server switch under admissible traffic conditions.
The pseudo-code for one scheduling time-step ofBRR follows.
//rrpointer = round-robin pointer
for i = 1 to n //server does not examine a queue more than once

if queue_rrpointer is non-empty



schedule(queue_rrpointer++);
break; //queue to be served has been determined

else rrpointer++;

This algorithm is easily implementable. Without knowledge
of queue sizes, it guarantees stability in a network of single-
server switches, as shown by the proof of the following theorem:

Theorem 1:A network of single-server switches with per-
flow queuing, implementingBRR as a scheduling policy
achieves100% throughput whenever the ingress stochastic pro-
cesses satisfy SLLN and are admissible.

Proof: Consider a switchS in the network. LetAi(n) be
the number of arrivals of packets of typei at this switch in the
nth time slot and letDi(n) be the number of departures of type
i packets fromS in thenth time slot. LetN be the total number
of flows arriving atS. Then the following lemma holds:

Lemma 1: If limn→∞ Σn
k=1Ai(k)/n = λ and λ < 1/N ,

thenBRR ensures thatlimn→∞ Σn
k=1Di(k)/n exists and isλ,

regardless of the arrival patterns of other flows atS.
Proof of Lemma 1:

lim
n→∞

Σn
k=1Ai(k)

n
= λ < 1/N and

Σn
k=1Di(k) ≤ Σn

k=1Ai(k) ⇒

lim sup
n→∞

Σn
k=1Di(k)

n
≤ λ. (1)

All that remains to be shown is

lim inf
n→∞

Σn
k=1Di(k)

n
≥ λ.

This is the main part of the proof of Lemma 1; its underly-
ing ideas are summarized below and explained in greater detail
in the proof of Claim 1. If the queue carrying flowi does not
receive service inN consecutive time slots, it was necessarily
empty at the beginning of this time frame. This implies that the
total departures for flowi from this queue equalled the total ar-
rivals until then. Using the fact thatλi < 1/N , we show that the
queue for flowi will be empty infinitely many times. It follows
thatΣn

k=1Di(k)/n approachesΣn
k=1Ai(k)/n asn grows. The

following claim completes the proof of Lemma 1.

Claim 1: lim infn→∞ Σn
k=1Di(k)/n ≥ λ.

Proof of Claim 1: This claim is proved by contradic-
tion. Suppose the statement is not true. Then∃α < λ s.t.
lim infn→∞ Σn

k=1Di(k)/n ≤ α, i.e. there exists a sequence of
positive integersn1 < n2 < n3 · · · s.t.

∀k
Σnk

r=1Di(r)

nk

≤ α + ε.

We can chooseε to be small enough so that0 < ε < λ−α
3 . Since

limn→∞ Σn
k=1Ai(k)/n = λ, ∃ K > 0 s.t.

∀n > K
Σn

k=1Ai(k)

n
> λ − ε. (2)

Before finishing the proof of Claim 1, consider the following
claim for departures:

Claim 2: There are infinitely many time slots in whichXi =
0 i.e there exists a sequence of positive integersm1 < m2 <
· · · s.t.∀k, Xi(mk) = 0.

Proof of Claim 2:The proof is by contradiction. Suppose the
claim is not true. Then∃M s.t. ∀n > M , Xi(n) > 0. But if
queuei is non-empty then it gets served at least once everyN
time slots. Now for anyk > M ,

Σk
n=1Di(n)

k
≥

Σk
n=M+1Di(n)

k

≥
k − M

kN
.

As k → ∞, k−M
kN

→ 1
N

> λ, so
lim supn→∞

Σn
k=1Di(k)/n > λ, contradicting (1). �

Now pick mk1
> K andnk2

> max{mk1
, 2/ε}. Let mk3

be
the largestmk smaller thannk2

. Consider the following facts:

Fact 1: It follows from the definition of the sequence{mk}
that during the time slotsmk3

+ 1, · · · , nk2
flow i gets service

at least once in everyN time slots.

Fact 2: If Xi(n) = 0 thenΣn
r=1Di(r) = Σn

r=1Ai(r).
It now follows:

α + ε ≥
Σ

nk2

r=1Di(r)

nk2

=
Σ

mk3

r=1 Di(r) + Σ
nk2

r=mk3
+1Di(r)

nk2

=
Σ

mk3

r=1 Ai(r) + Σ
nk2

r=mk3
+1Di(r)

nk2

≥
mk3

(λ − ε) + Σ
nk2

r=mk3
+1Di(r)

nk2

≥
mk3

(λ − ε) + b
nk2

−mk3
−1

N
c

nk2

≥
mk3

(λ − ε) +
nk2

−mk3
−(N+1)

N

nk2

>
mk3

(λ − ε) + (nk2
− mk3

)λ − 2

nk2

≥
λ − ε − 2

nk2

≥ λ − 2ε

> α + ε.

We arrive at a contradiction, proving hence that
lim infn→∞ Σn

k=1Di(k)/n ≥ λ. �

Sincelim infn→∞ Σn
k=1Di(k)/n ≥ λ and

lim supn→∞
Σn

k=1Di(k)/n ≤ λ, it follows that

limn→∞ Σn
k=1Di(k)/n = λ. �

In fact, the following general result can be shown:
Lemma 2:Consider a single-server switch runningBRR,

arrival flows A1, · · · , AN and ratesλ1 < · · · < λN . Let
k < N and λk+1 < (1 − Σk

i=1λi)/(N − k). If (i)
lim supn→∞

Σn
r=1Ai(r)/n ≤ λi ∀i, (ii) the first k flows are



rate stable and (iii) arrivals for the(k + 1)st flow satisfy SLLN,
i.e. limn→∞ Σn

r=1Ak+1(r)/n = λk+1, then the(k + 1)st flow
is also rate stable.

The proof of Lemma 2 is similar to the proof of Lemma 1 and
can be found in the full version of the paper4.

We now consider flows in increasing order of injection rates
into the system. Choose the flowi with the smallest arrival rate,
λi. Let the flow pass through switchesS1, S2, . . . , Sk in that
order. ForS1, we know thatlimn→∞ Σn

j=1A
S1

i (j)/n = λi <
1/N . The inequality follows from the fact thati is the smallest
flow passing through switchS1 and traffic would be inadmis-
sible if the inequality were not satisfied. From Lemma 1, we
know thatlimn→∞ Σn

j=1D
S1

i (j)/n = λi < 1/N . Since the de-
partures fromS1 form the arrivals atS2 and so on, and at each
of the switches,i should be asking for less than its fair share be-
cause of the admissibility constraints, we can repeatedly apply
Lemma 1 to show thati departs from the system at its arrival
rateλi.

We then pick the next smallest flow and can apply Lemma
2 to show that the flow exits every switch in the network and
the network itself at its arriving rate. Repeating this process
until there are no more flows left to consider, we show that our
network is rate stable.

While the 8-switch counter-example from section II does not
conform to our model due to the presence of convergent flows,
we can easily extend our proof to handle the case of convergent
flows as well and and the reader is referred to the full versionof
the paper for a proof showing thatBRR is stable in the counter-
example.

In [4], the authors show that a policy similar toBRR pro-
duces stability in wireline networks, but their results arelimited
to leaky-bucket constrained traffic whereas our result holds for
more general traffic patterns. In addition to stability,BRR also
guarantees fairness. We first formalize the notion of fairness.

B. Max-Min Fairness

The following notion ofMax-Min fairnessis well-established
[3] and commonly used:

Definition 1(Max-Min Fairness) Considern flows arriving
at a server of capacityC with ratesλ1, · · · , λn respectively. A
rate allocationr = (r1, · · · , rn) is called Max-Min fair iff
(i)

∑
n ri = C, ri ≤ λi, and

(ii) any ri can be increased only by reducingrj s.t. rj ≤ ri.

C. BRR is Max-Min Fair

It has been shown in [7] that when arriving traffic at an iso-
lated single-server switch obeys SLLN but is inadmissible5,
LQF fails to perform a Max-Min fair rate allocation. We are
able to prove thatBRR on the contrary, is Max-Min fair un-
der similar traffic conditions. The proof is omitted due to space
constraints but can be found in the full version of the paper.

Theorem 2:WhenBRR is applied to a single server switch,
the allocation of service rates to flows is Max-Min fair when ar-
rivals satisfy SLLN . This holds even if arrivals are inadmissible.

4http://www.stanford.edu/∼sunabar/crr.pdf
5Inadmissibility in IQ switches arises only from overloading of output ports

since admissibility at input ports is guarranteed by line rate constraints

We attribute the stability ofBRR to its fairness. As was seen
in section II, when traffic rates temporarily become inadmissi-
ble, load-balancing policies such as LQF worsen the situation
by punishing well-behaved flows6 and rewarding “bad” flows
attempting to hog the bandwidth.BRR, on the contrary, en-
sures that well-behaved flows get their request rates, preventing
them from starvation.

D. Simulations
We performed simulations on the configuration of switches

in Fig. 2 The results are shown in Fig. 3 It is clear that under
LQF, the number of packets in the network grows without bound
whereas underBRR, the number of packets remains bounded.

Experiment 1: All queues are initially empty

Flow 1 Flow 2 Flow 3 Flow 4
Injection Rate 0.33 0.318 0.318 0.326

Departure Rate (LQF) 0.275 0.277 0.277 0.285
Departure Rate (BRR) 0.329 0.317 0.317 0.325
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Fig. 3. LQF vs BRR: Comparing Total Packets in System

V. NETWORKS OFCROSSBARSWITCHES

Andrews & Zhang proved in their seminal paper [2] that
MWM (where weights are queue sizes) fails to guarantee sta-
bility in a network of IQ switches. This happens because when
a switch in the network becomes temporarily overloaded, well-
behaved flows end up starving. It has been shown [7] that MWM
does not perform a fair rate allocation when incoming trafficto
an isolated IQ switch is inadmissible5. The definition of fairness
in an IQ switch with virtual output queueing is given below.

Definition 2(Fairness in an IQ Switch) If every VOQ repre-
sents a flow, there areN2 flows in a crossbar switch. We call
R = [rij ] a fair allocation forΛ = [λij ] iff it is Max-Min fair
with respect to each output.

To achieve fairness in rate allocations at an IQ switch, we pro-
poseCollectiveRound-Robin (CRR) - a variation of an algo-
rithm proposed in [5] for wireless network flows. While the re-
sults in [5] imply Max-Min fairness ofCRR under leaky-bucket
constrained, inadmissible traffic, we show thatCRR is Max-
Min fair for more general traffic satisfying SLLN .

A. TheCRR Algorithm
As with single-server switches, we would like to view each

output of a crossbar switch as an individual server that can ser-
vice its flows in round-robin fashion. The challenge here is that
two outputs might choose to serve VOQs at the same input si-
multaneously, when only one can actually be served due to the
crossbar constraints. We get around this by introducing atoken
allocation policy similar toBRR. Each output assigns service

6Well-behaved flows request at most their fair share of service.



tokens to its flows in round-robin fashion and at most one token
is generated per output in one iteration of the algorithm. A to-
ken is only assigned to a VOQ if the queue has seen an arrival
since the last time it was given a token. The tokens correspond
to the service credit available to each flow, and at each time step
the collection of non-conflicting flows with maximum service
credit is selected for scheduling. When a flow is served, a token
is removed from its credit. The pseudo-code for one scheduling
time-step of the algorithm is given below. Note that for anN×1
switch,CRR is identical toBRR.
//Token Generation
for i = 1 to N

//rrpointer = round-robin pointer for output i
for l = 1 to N // i does not examine a VOQ more than once

if voq[rrpointer][i] has pkt not accounted for
token[rrpointer++][i]++;
break; //i has generated a token and stops

else rrpointer++;

//Scheduling
//MWM with weights of voqs = # tokens
MWM_schedule_voqs();

//Token Reduction
for i = 1 to N

for j = 1 to N
if voq[i][j] is scheduled
token[i][j]--;

We now show thatCRR provides a Max-Min fair allocation
of service rates to the flows passing through a switch.

B. CRR is Max-Min Fair
Theorem 3:WhenCRR is applied to a crossbar switch, the

allocation of service rates to flows is Max-Min fair if arrivals
satisfy SLLN. This holds even for inadmissible arriving traffic.

Proof: The packet transmission process is equivalent to
the following: every time an output port generates a token for
a VOQ, a packet isreleasedfrom the VOQ for transmission. A
released packet, however, is actually transmitted only when the
corresponding flow is selected in the maximum weight matching
of the flows. Since the token generation process can be viewed
as though each output port were performingBRR on its flows,
Theorem 2 implies that packets are released for transmission at a
Max-Min fair rate and the packet release process is admissible.
It follows [6] that MWM with the number of tokens/released
packets as weights will allocate a Max-Min fair rate to the flows
traversing the switch.

Simulations also attest to the fairness ofCRR. For example,
for the following arrival matrix:

Λ =

2

6

4

0.6 0.0 0.2 0.1
0.6 0.2 0.0 0.1
0.0 0.6 0.0 0.1
0.2 0.6 0.0 0.1

3

7

5

The MWM andCRR service rate allocations forΛ are:

RMWM =

2

6

4

0.47 0.0 0.2 0.1
0.47 0.06 0.0 0.1
0.0 0.47 0.0 0.1
0.06 0.47 0.0 0.1

3

7

5
RCRR =

2

6

4

0.4 0.0 0.2 0.1
0.4 0.2 0.0 0.1
0.0 0.4 0.0 0.1
0.2 0.4 0.0 0.1

3

7

5

Note thatCRR performs a rate allocation that is Max-Min fair
for every output. Following the same line of argument as with
BRR, we believe that because this algorithm is fair, it will en-
sure stability of the system:

Conjecture 1:A network of crossbar switches runningCRR
is stable whenever the arrivals to the network are admissible and
satisfy SLLN .

C. Simulations

We performed many simulations on networks of12 × 12
switches similar to the network in Fig. 1. In addition to the flows
shown in Fig. 1, we inserted additional flows from the inputs to
the unused output ports while maintaing admissibility, so that
contention at input ports would result in more complex schedul-
ing decisions than the ones faced byBRR and LQF. The results
for one set of experiments are shown in Fig. 4. It is clear thatun-
der MWM the number of packets in the network grows without
bound whereas queue sizes remain bounded underCRR.
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Fig. 4. MWM vs CRR: Comparing Total Packets in System

VI. CONCLUSIONS

In recent years, isolated input-queued switches have been the
focus of much research. Since stable algorithms for IQ switches
are unstable in networks, the study of stability in networksof
switches merits consideration.

To tackle the problem of stability in single-server switches,
we proposedBusyRound-Robin - an easy to implement, local
and online scheduling policy. It guarantees a Max-Min fair rate
allocation at every switch, preventing smaller flows from star-
vation due to larger flows. Our assumptions on arriving traffic
were that it be admissible and satisfy the Strong Law of Large
Numbers. An additional assumption in our model was per-flow
queuing, which future work could seek to eliminate.

Since fairness guarantees that small flows are not discrimi-
nated against - a property inherently absent in load-balancing
policies such as LQF - we believe this to be the solution to in-
stability. Hence, we followed the same approach with crossbar
IQ switches (satisfying similar model constraints) and proposed
CollectiveRound-Robin - a local and online scheduling pol-
icy. Even under inadmissible traffic conditions, we proved that
it provides a Max-Min fair rate allocation to incoming flows at
an isolated switch, when arrivals satisfy the Strong Law of Large
Numbers. The focus of future research in this area would be to
prove stability of this algorithm in an arbitrary network ofcross-
bar switches.
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