
Towards Special-Purpose Indexes and Statistics for
Uncertain Data⋆

Anish Das Sarma, Parag Agrawal, Shubha U. Nabar, Jennifer Widom

{anish,paraga,sunabar,widom}@cs.stanford.edu
Stanford University

Abstract. The Trio project at Stanford [35] for managing data, uncertainty, and
lineage is developed on top of a conventional DBMS. Uncertain data with lineage
is encoded in relational tables, and Trio queries are translated to SQL queries on
the encoding. Such a layered approach reaps significant benefits in terms of archi-
tectural simplicity, and the ability to use an off-the-shelf query processing engine.
In this paper, we present special-purpose indexes and statistics that complement
the layered approach to further enhance its performance.
First, we identify a well-defined structure of Trio queries,relations, and their
encoding that can be exploited by the underlying query optimizer to improve the
performance using Trio’s layered approach. We propose several mechanisms for
indexing Trio’s uncertain relations and study when these indexes are useful. We
then present an interesting order, and an associated operator, which are especially
useful to consider when composing query plans. The decisionof which query
plan to use for a Trio query is dictated by various statistical properties of the input
data. We identify the statistical data that can guide the underlying optimizer, and
design histograms that enable estimating the statistics accurately.

1 Introduction

The field of uncertain databases has received considerable attention for several decades
now. While most prior work (e.g., [1, 5, 12, 16, 18, 24–27]) focuses on theoretical as-
pects, there has been recent interest in building systems [4, 8, 10, 29]. Motivated by a
diverse set of applications such as data integration, deduplication, scientific data man-
agement, information extraction, and others, the Trio project at Stanford [29, 35] has
been studying the combination of uncertainty and lineage asthe basis for a new type of
database management system.

In this paper, we study techniques for enhancing query optimization in Trio. The ba-
sic construct for uncertainty in Trio’s ULDB data model [6] isalternatives. Alternatives
in a tuple specify a nonempty finite set of possible values forthe tuple. For example:

(Thomas, Main St.)|| (Tom, Maine St.)

⋆ This work was supported by the National Science Foundation under grants IIS-0324431 and
IIS-0414762, by grants from the Boeing and Hewlett-PackardCorporations, by a Microsoft
Graduate Fellowship, and by Stanford Graduate Fellowshipsfrom Cisco Systems and Sequoia
Capital.

2

contains a tuple with two alternatives giving the two possible values for the tuple. The
ULDB data model is defined formally in Section 2. The Trio system is layered on top
of a conventional relational DBMS [29]. ULDB relations are encoded as conventional
relational tables, and a rewriting-based approach is used for most data management and
query processing.

The simple and elegant layered approach in Trio enables using an off-the-shelf
query processing engine1 (QPE) and its optimization capabilities. However, the per-
formance of the layered approach can further improve if the QPE detects and exploits
the inherent “structure” of encoded ULDB relations during query processing. This pa-
per suggests novel techniques that augment the optimization capability of the layered
approach’s QPE.

We show that the structure of ULDB relations merits buildingspecialized index
structures and associated access methods. While some of these index structures are
equivalent to conventional indexes over encoded ULDB relations, some others are non-
traditional indexes that cannot be created by a traditionalQPE. We then show that query
plans executing queries over Trio relations need to consider a specialinteresting order,
namely that of grouping alternatives based on the tuple theyare a part of. Consequently,
we need an operator that performs the grouping. Such a grouping through the query plan
eliminates the need for an expensive sort operation currently performed on the result in
Trio.

Every Trio query can be answered using many query plans assembled from the new
operators, indexes, and access methods mentioned above in conjunction with those al-
ready existing in the QPE. As in conventional query optimization, the choice of which
query plan to use is based on an estimate of the cost of executing query plans, which crit-
ically depend on various forms of statistics and cardinalities maintained by the database.
We enumerate several important statistics, and provide histograms that allow us to ef-
ficiently and accurately estimate the statistics. The techniques describe in this paper
can be incorporated into the underlying QPE, while still maintaining the overall layered
architecture adopted by Trio.

Finally, we present several interesting avenues for futurework that our paper sug-
gests. Although several systems have been built recently for managing uncertain data,
none of them incorporate query optimization techniques similar to the ones described in
this paper. Prior work in Trio itself has also focussed on other aspects such as modeling
and design, confidence computation, and versioning. Obviously, query optimization in
conventional databases is an extensively studied area, andwe believe this first paper on
query optimization for uncertain databases can form the basis for a lot of further work.
Since many previously proposed data models for uncertainty(for example, [3, 5, 12, 17,
28, 32]) use similar constructs as ULDBs, the techniques described in this paper can be
suitably adapted for these data models as well.

1.1 Contributions and Outline

The specific contributions of this paper are as follows:

1 Our current implementation uses PostgreSQL

3

1. We provide techniques for indexing ULDB relations encoded as conventional rela-
tions, and describe the new access methods they yield. (Section 3)

2. We motivate the need for considering a new interesting order in query plans, and
design an operator that ensures this order. (Section 4)

3. We enumerate various kinds of statistics necessary in choosing the optimal query
plan from the set of all query plans combining conventional and new operators
described above. We present histograms that enable estimating these statistics effi-
ciently and accurately. (Section 5)

4. We discuss a slew of interesting and challenging problemsour paper opens up, that
we hope would form the basis for further research in the area.(Section 6)

Section 2 introduces our data model and its relational encoding, Section 7 presents
related work, and we conclude with future work in Section 8.

2 Preliminaries

We first introduce Trio’s ULDB data model, then present the relational encoding of
ULDBs in the layered approach, and finally describe the workload of queries we con-
sider.

2.1 ULDB Data Model

We briefly introduce the ULDB data model here, and refer the reader to [6] for ad-
ditional features and detailed semantics. Each tuple in a ULDB relation consists of a
set of mutually-exclusivealternatives, each of which can be the tuple’s actual value.
ULDB relations conform to the standardpossible-worlds semantics[1, 6, 11, 31, 33]: A
ULDB relation represents a set of possible worlds, each of which is an ordinary relation.
The possible worlds for an uncertain relation are obtained by choosing one alternative
value for each tuple, in all possible ways. For example, the following ULDB relation
represents four possible worlds. (Alternatives are separated by||.)

R(Name, Address)
(Thomas,Main St.)|| (Thomas,Maine St.)
(Bill,Poplar Ave)|| (William,Poplar Ave)

The ULDB data model also has other uncertainty constructs, such as “?” and confidence
values, which are not crucial for optimization. It’s important to note that the Trio system
decouples confidence computation from data computation [14], and hence confidence
values are disregarded for the rest of the paper. Also, we don’t discuss the lineage fea-
ture in ULDBs (refer to [6]), as lineage is only a function of the query, and independent
of the specific query plan used to compute the result.

2.2 Relational encoding

We now describe how the restricted ULDB data model describedabove is encoded in
regular relational tables. We refer the reader to [7, 29] forcomplete details on encoding

4

ULDB databases. Hereafter we usex-tupleto refer to a tuple in the ULDB model, which
includes alternatives, and we usetupleto denote a regular relational tuple.

Consider a ULDB relationT (A1, ..., An). The data portion ofT is stored
as a conventional table referred to asTenc with two additional attributes:
Tenc(aid, xid, A1, . . . , An). Each alternative in the original ULDB table is stored as
its own tuple inTenc, and the additional attributes function as follows:

– aid is a unique alternative identifier.
– xid identifies the x-tuple that this alternative belongs to.

RelationR from the previous section would be encoded as follows.

Renc

xid aid Name Address
1 11 Thomas Main St.
1 12 Thomas Maine St.
2 13 Bill Poplar Ave
2 14 William Poplar Ave

2.3 Queries

As mentioned before, queries over ULDB relations are translated to queries over the
encoded relations. To obtainxid’s on the resulting relation, the alternatives of the result
need to be grouped based on which x-tuple they are a part of. Therefore, all tuples in the
result of the translated query are grouped by xids of the input relations. For example,
if we perform a join ofR andS, the translated query overRenc andSenc includes
the clause “group-by Renc.xid,Senc.xid”. Exact details of this translation are
omitted, and can be found in [7, 29].

3 Indexing ULDB Relations

As described in Section 2, there is a special attributexid in all Trio encoded relations,
and all query translations involve a group by onxid. In this section, we introduce new
indexes that are especially useful in the presence of this special attribute. We use a
simple running example to ground our discussion.

Consider a relationR, and a selection query which does a range scan on the attribute
A : “select * from R where A ≤ 5”. The translated query groups the result
by thexid attribute. The relationRenc is often stored clustered onxid, but may also
be clustered on other attributes, which may or may not beA. For the selection query on
A, the following indexes may be useful:

– Index onA
An index onA may be used to retrieve only the tuples inRenc that satisfy the
predicateA ≤ 5. This index lets us efficiently retrieve all alternatives that satisfy
the predicate, but now they need to be grouped to form x-tuples. A sort onxid
is required to group the result alternatives into x-tuples.Such a query plan can be
efficient for highly selective queries, i.e., the result contains very few alternatives,
making the grouping step inexpensive.

5

– Index onxid
An index onxid lets us retrieve all alternatives in an x-tuple together; i.e., it returns
tuples ofRenc in order of theirxid values. This allows us to avoid the sort since
result tuples are generated already grouped byxid. This index may be useful if the
predicate is not very selective, especially if the data is stored clustered byxid.

– Index on(xid,A)
If x-tuples are very wide, i.e., contain a large number of alternatives, we may be able
to use an index on (xid, A), to only retrieve alternatives that satisfy the predicate.
This also avoids the sort at the end, and thus may yield an efficient execution plan.

– Index on(A,xid)
For queries that use an equality predicate onA, it might be useful to use an index
that returns all alternatives satisfying the predicate grouped byxid. This index
allows us to avoid the sort which may be expensive for large results. But equality
predicates seldom have large results. We would ideally likean index that also works
for range queries, and still avoids the sort. Such an index ispresented next.

The indexes discussed above help in either avoiding the sortrequired for the group-
by on xid, or prune down the amount of data accessed by evaluating the predicate
before retrieving the tuples. An index on(A,xid) accomplishes both objectives for
equality predicates onA. We now describe a new index that generalizes this index for
efficient range scans over relations stored clustered byxid.

– Index onAx

An index onAx refers to an index that retrieves all x-tuples that contain an al-
ternative satisfying some predicate onA. We can then apply the predicate to each
alternative of the x-tuple to keep only those that satisfy it. Although this index may
often retrieve more tuple alternatives than an index onA, it can often be more ef-
ficient because it makes no more random accesses, and also avoids the need for a
sort. The sort is avoided because the index guarantees an “interesting order” that
has result alternatives grouped byxid.

– Index on(Ax,A)
For wide x-tuples, it may again be useful to have an index onA within an x-tuple.
This index is similar to the index on(xid,A), but prunes x-tuples and retrieves
only those that contain at least one alternative that satisfies the predicate.

Example 1.We illustrate the benefit ofAx over the conventional indexes described
before using an example. Again consider the query: “select * from R where
A ≤ 5”. SupposeR containsa alternatives satisfying the predicate, and suppose these
a alternatives constitutex x-tuples. Let us consider the cost of executing this query
using four of the relevant indexes:

1. Index onA: We would use the index to get all thea alternatives using index lookups,
and then thesea alternatives would need to be grouped in memory based on their
xids. Hence the total cost is:a index lookups + groupa tuples.

2. Index on(A,xid): Since the query involves a range scan, using the additional
index onxid does not help us do the grouping along with the index lookups.
Hence, the cost by using the index on(A,xid) is the same as the cost by using
the index onA.

6

3. Index onxid: Using the indexxid we scan the entire relation, and within each x-
tuple we check whether there is any alternative withA ≤ 5. The cost of this would
be to do an index scan of the entire relation. The grouping step is saved because all
alternatives are obtained grouped byxids.

4. Index onAx: Finally consider using the index onAx. We perform an index scan to
obtain all x-tuples containing at least one alternative with A ≤ 5. The cost of this
step is an index scan ofx x-tuples. We then need to filter all alternatives among
these x-tuples that do not satisfy the predicate. Hence using the indexAx, we save
the grouping step and still require looking only at x-tuplesthat have alternatives
satisfying the predicate.

�

4 Query Plans

In this section, we discuss some new challenges that are encountered in creating query
plans to answer queries over uncertain data. We start by discussing a new “interesting
order” that can benefit many queries.

4.1 XGroup

Recall the index onAx described above, which allows for an efficient access method
to retrieve alternatives grouped byxid. For complicated queries, possibly including
several joins, it may be useful to maintain this grouped order incrementally all through
the query plan in order to avoid a massive group-by at the end.Intuitively, the idea is
to have x-tuples flowing through operators instead of alternatives. By maintaining all
alternatives of an x-tuple (nearly) together, we may get efficient executions of queries
with large results. We now formally define the XGroup order. We shall see that XGroup
is a fundamentally weaker requirement than sort on an attribute, and hence can often be
maintained over the entire query plan without significant overhead.

Definition 1 (XGroup). LetR = {R1, · · · , Rn} be the relations in thefrom clause
of a query. The translated query contains agroup-by on thexid attributes of each
relations inR. Suppose the subtree rooted at a nodeN in the query tree joins relations
in RN ⊆ R. If the tuples flowing out ofN are guaranteed to be grouped by thexids
of a setBN ⊆ RN of the relations, thenN is said to guarantee the XGroup order on
the set of relationsBN . The final query result thus needs to be XGrouped onR. �

An index access on relationR using the index onAx for some attributeA guarantees
an XGroup on{R}. Other access methods that use an index onxid or (xid,A),
or that scan relations clustered byxid also guarantee an XGroup on{R}. Note that
selection and projection operators also preserve XGroups;i.e., if the input to such an
operator is XGrouped onB, the output will also be XGrouped onB.

Many join operators also preserve XGroups. For instance, ina nested join opera-
tor, suppose the inner set of input alternatives are XGrouped onBi and the outer are
XGrouped onBo. It is easy to see that operators like nested-loop join (or nested-block

7

joins) and nested-loop index join preserve the XGroup on both the inner and the outer,
i.e., the result alternatives will be XGrouped onBi ∪ Bo. Some other join operators
may only preserve XGroups for one of the inputs. For instancea hash-join preserves
the XGroup of the outer, i.e., returns alternatives XGrouped onBo. Many operators in
traditional database query processors naturally preserveXGroup, making it efficient to
maintain and utilize.

Recognizing and incrementally maintaining XGroups through a query plan can of-
ten help avoid an expensivegroup-by (usually implemented through a sort) at the
end. As an extreme example, if all relations in a query are accessed using access meth-
ods that guarantee XGroups on input relations, and all operators preserve them, then no
finalgroup-by needs to be performed in the query plan. Our selection example earlier
was the simplest case that illustrates how thegroup-by can be eliminated. Requiring
all access methods and operators to preserve XGroups narrows the set of acceptable
query plans to a very small set. Hence, we allow query plans tohave combinations of
access methods and operators that may or may not preserve XGroups. However, we can
still benefit from partially XGrouped results in making the final group-by cheaper,
through a new unary operator described next.

Definition 2 (XGB). Let the input to operator XGB be alternatives XGrouped onBi.
XGB returns the alternatives XGrouped onBo ⊃ Bi. �

The XGB operator is thus XGroup-aware ensuring that the result alternatives are
XGrouped on a larger set of relations. It essentially breaksup each group in the input
corresponding to one combination ofxids ofBi into even smaller groups, correspond-
ing to combinations ofxids of Bo. The advantages of using this new operator are
threefold: (1) In conjunction with an access method that provides the XGroup order,
the XGB operator allows us to incrementally do thegroup-by. This may have lower
cost than doing a single expensivegroup-by at the end of the query plan. (2) The
operator only needs to look at one group in the input stream ofalternatives at a time
to construct the output grouping. If the groups in the input are not large, XGB can be
performed very efficiently, operating in a non-blocking fashion. (3) For the same rea-
son, the memory requirements for performing XGB is also considerably less than an
operator that XGroups onBo assuming no input grouping.

Example 2.Consider a query that joins two relationsR1 andR2 with n1 andn2 x-
tuples respectively. Consider a query plan that joins alternatives from the two relations
in any arbitrary order and then does a finalgroup-by onR1.xid, R2.xid. The cost
of this finalgroup-by will be CG(n1n2), whereCG gives the expected cost of do-
ing thegroup-by as a function of the total number of x-tuples. For instance, if the
group-by is achieved by sorting the alternatives byR1.xid, R2.xid thenCG(n1n2)
would be O(n1n2 log(n1n2)). In contrast, if the output of the join is already XGrouped
on R1.xid, the cost of the finalgroup-by is O(n1CG(n2)), which is typically less
thanCG(n1n2). Intuitively, a problem of sizen1n2 is reducedn1 problems of sizen2.
�

The presence of even one access method or operator that guarantees the XGroup or-
der can thus reduce the cost of thegroup-by, if the optimizer recognizes the operators
preserving XGroups.

8

4.2 Query Planning

In order to choose an optimal plan for executing a query, the query planner needs to
decide which combination of the new indexes, operators introduced, and the traditional
relational operators must be used for a given query. We motivate the need for estimating
various statistics that would guide the query planner in choosing an efficient query plan.

Consider our example query from Section 3: “select * from R where A
≤ 5”. We now look at each access method discussed in Section 3 emphasizing the
relevant statistics that impact their execution cost.

– Index onA
To estimate the cost of accessing the relation through an index onA, the optimizer
needs to determine the number of alternatives that satisfy the predicate.

– Index onxid
To estimate the number of x-tuples retrieved using an index on xid, the optimizer
needs to know the total number of x-tuples in the relationR.

– Index on(xid,A)
As discussed in Section 3, this index is useful only if x-tuples contain large number
of alternatives. Hence, to decide whether or not to use this index, an estimate indi-
cating the average number of alternatives per x-tuple (width of x-tuple) is useful.
The average width of x-tuples satisfying the predicate might differ from the average
width for the entire relation, and can yield more accurate cost estimates.

– Index on(A,xid)
The number of alternatives that satisfy the predicate determines the cost of access-
ing the relation using an index on(A,xid). In addition, the number of x-tuples
returned is determined by estimating the number of x-tuplesthat contain at least
one alternative that satisfies the predicate onA.

– Index onAx

The number of random accesses made in accessing the relationR using an index
onAx is determined by the number of x-tuples that contain at leastone alternative
satisfying the predicate.

– Index on(Ax,A)
This index is useful in cases where the average width of an x-tuple is large, thus jus-
tifying indexing onA within an x-tuple. A useful statistic to determine the efficacy
of the index is the average width of x-tuples that satisfy thepredicate.

In the next section, we formally define the above statistics and provide methods for
estimating them.

5 Statistics and Histograms

We will now formally define the different statistics from theprevious section that guide
the optimizer in choosing the optimal query plan. Some of these statistics can be exactly
maintained, while others need to be estimated and we introduce new kinds of histograms
for this purpose.

9

5.1 Exact Cardinalities

For each relationR in the database, the following global statistics can be exactly main-
tained:

– X-Card(R): The number of x-tuples inR. In terms ofR’s encoding, X-Card(R)
gives the number of distinctxids inRenc.

– A-Card(R): The number of alternatives inR. A-Card(R) translates to the number
of tuples inRenc.

– AvgWidth(R): The average number of alternatives per x-tuple inR, i.e.,
A-Card(R)

X-Card(R)
.

Example 3.Consider the following relationR.

R(Name, Address, Salary)
(Thomas, Main St., 50K)|| (Thomas, Maine St., 50K)

(Bill, Poplar Ave, 35K)|| (William, Poplar Ave, 40k)|| (Billy, Poplar Ave, 40K)
(Alice, Euclid Ave, 10K)

Here X-Card(R) = 3, A-Card(R) = 6 and AvgWidth(R) = 2. �

Next we consider statistics that are infeasible to maintainexactly, and hence need to be
estimated.

5.2 Alternative Counts

Consider a relationR with an attributeA. The following are statistics about alternatives
that we would like to maintain for point and range queries:

– A-Selectivity(R,A,v): The number of alternatives inR that satisfyA = v.
– A-Selectivity(R,A,x,y): The number of alternatives inR that satisfyx ≤ A ≤ y.

Example 4.Consider the relationR from Example 3. A-Selectivity(R, Name, Thomas)
= 2, whereas A-Selectivity(R, Salary, 40K, 60K) = 4. �

Clearly, the above selectivities translate to counting thenumber of tuples inRenc sat-
isfying A = v andx ≤ A ≤ y respectively. These cardinalities over the conventional
relational tableRenc can be estimated using well-known sampling or histogram tech-
niques. For example, in Trio we can build a histogram overRenc: The histogram con-
sists of buckets corresponding to the range of all possible values inA. A histogram
bucket with bucket boundary[p, q] maintains the count of the number of tuples in
Renc that satisfyp ≤ A < q. Now, we can use the bucket frequencies to estimate
A-selectivities by making standard uniformity assumptions.

Example 5.For relationSenc with integer attributeA, suppose the histogram onA has
bucket intervals0, 5, 10, and so on; i.e., bucketB0,5 stores the number of tuples inSenc

with 0 ≤ A < 5, B5,10 for 5 ≤ A < 10, etc. The number of tuples inSenc satisfying
3 ≤ A ≤ 8 is estimated as2·B0,5

5 +
4·B5,10

5 . �

10

5.3 X-tuple Counts

For relationR with attributeA, we would also like to estimate the number of x-tuples
in R that contain some alternative satisfying a point or range predicate onA:

– X-Selectivity(R,A,v): The number of x-tuples inR containing at least one alterna-
tive satisfyingA = v.

– X-Selectivity(R,A,x,y): The number of x-tuples inR containing at least one alter-
native that satisfiesx ≤ A ≤ y.

Example 6.Consider relationR from Example 3 again. Here X-Selectivity(R, Name,
Thomas) = 1 and X-Selectivity(R, Salary, 40K, 60K) = 2. �

Estimating X-Selectivity(R,A,v): Just as for estimating A-selectivities, here too we
can build a histogram that now counts the number of x-tuples instead of the number of
alternatives. No existing histograms can be used, however,and we build new kinds of
histograms for this purpose.

Let us first attempt constructing a histogram by creating buckets on attributeA, and
we shall then improve on this histogram. Within a bucket[p, q], we store the number of
x-tuples that contain at least one alternative satisfyingp ≤ A < q. Note that, unlike in
the case of the histogram for A-selectivity whose buckets counted distinct alternatives,
in this histogram a single x-tuple may contribute to the count in multiple buckets. For
instance, if an x-tuple contains an alternative withA in range[p1, q1] as well as another
alternative withA in range[p2, q2], then the x-tuple will contribute to the counts in both
the buckets. Given a valuev, supposev corresponds to bucket[p, q], i.e.,p ≤ v < q,
then we estimate X-selectivity(R,A,v) to be Bp,q

(q−p) , whereBp,q is the stored count in
bucket[p, q].

Note that the above estimate for a specific valuev assumes that if an x-tuple is in
bucket[p, q], the probability of it having an alternative with valuev, wherep ≤ v < q

is 1
(q−p) . However, we can refine this probability if we know the numberof alternatives

in an x-tuple. Suppose an x-tuple hask alternatives, whoseA values are randomly
and independently distributed betweenp andq, the probability of having at least one
alternative with valuev is 1 − (q−p−1

q−p
)k. (If we know that the distinctA values in the

alternative are independently and randomly distributed in[p, q), then we replacek with
the number of distinctA values in the x-tuple.)

We can use the observation above to enhance our histogram. Weconstruct a 2-D
histogram withA as one dimension, and the sizeS of the x-tuple (either as the number
of alternatives or the number of distinctA values, based on the distribution described
above) as the second dimension. In a bucket[p, q] for dimensionA, and[n1, n2] for
dimensionS, we store the number of x-tuples having either: (1) at leastk alternatives
with A value in the range[p, q), or (2) alternatives with at leastk distinctA values in the
range[p, q). Recall, we use (1) above if we assume the distribution of allalternatives
is independent, and we use (2) if we assume the distribution of distinct A values is
independent.

11

Estimating X-Selectivity(R,A,x,y): While at first glance it might seem that we
can use the histogram described above to estimate X-selectivity(R,A,x,y) also, that
is not the case. We would get an incorrect estimate using the histogram described
above because each x-tuple contributes to the count in multiple buckets.2 Hence if we
aggregate counts over multiple buckets, we would end up double-counting x-tuples
corresponding to multiple buckets, as shown by the following example.

Example 7.Suppose for relationS, the histogram on attributeA is bucketed at mul-
tiples of 5. If we want an estimate of X-Selectivity(S,A,0,9), adding up the counts
corresponding to buckets[0, 5] and[5, 10] gives an incorrect answer, because x-tuples
could contain both alternatives withA values in[0, 5) as well asA values in[5, 10).
Hence the returned sum would be an overestimate of the actualcount. �

We need to create a more complex histogram to be able to give accurate expected
estimates. We use a 3-D histogram with dimensionsAmin, Amax, and sizeS. Amin cor-
responds to the minimumA value for an alternative in an x-tuple,Amax corresponds to
the maximumA value. As beforeS corresponds to the size of the alternatives falling
in the bucket, where size is given either by the number of alternatives or by the num-
ber of distinctA values, depending on the distribution assumption. In the histogram
bucket corresponding to range[p, q] for Amin, [r, s] for Amax, and[n1, n2] for S, we
store the number of x-tuples with sizeS in range[n1, n2) that have the minimumA
value in range[p, q), maximumA value in range[r, s). Note that now every single
x-tuple corresponds to exactly one bucket of the histogram.Hence, we can estimate X-
Selectivity(R,A,x,y) by adding up the contributions from all relevant buckets without
any danger of double-counting.

5.4 Other Statistics

Finally, we note that several other kinds of statistics can be estimated using the estima-
tion techniques described above. For example, suppose for relationR we want to the
know the average number of alternatives satisfyingA = 5 among x-tuples that contain
at least one alternative withA = 5, we can compute the average asA−selectivity(R,A,5)

X−selectivity(R,A,5) .
Another similar statistic worth mentioning that can be estimated using techniques

described earlier is finding the total or average number of alternatives inR in x-tuples
that contain at least one alternative satisfying a predicate:

– A-Average(R,A): The average number of alternatives in x-tuples that contain at
least one alternative satisfyingA = v or A ∈ [x, y].

For A-Average we can use a histogram similar to the one for X-Selectivity, but by
eliminating the size dimension. We can then store the total count of alternatives from
the x-tuples in each bucket, instead of storing the number ofx-tuples.

2 By ‘incorrect’, we mean that the estimator will not be an unbiased estimator for X-Selectivities,
even under standard uniformity assumptions.

12

6 Discussion and Future Work

In this section we discuss important issues arising from this paper that we do not ad-
dress, as well as more general directions for the future thatour work suggests.

Construction and Maintenance: The first question that arises about our techniques
presented in Section 5 is how we construct the histograms that enable estimating the
various statistics. Construction of a histogram entails deciding the bucket boundaries
for all the dimensions followed by populating the counts in each bucket. Recall that
our histograms for ULDB relations translate to statistics on the encoded conventional
relations. Hence we can leverage previously proposed techniques for determining the
bucket boundaries and constructing the histogram through sampling [9, 30]. Alternately,
we could scan the entire relations apriori and compute exactfrequencies for all buckets.

The second issue that arises is that of incrementally maintaining histograms as data
is modified. While at first glance it seems like we can still usetraditional techniques for
maintaining histograms [23], we plan to explore whether there are more efficient tech-
niques that can be applied specific to the kinds of data modifications Trio supports. [13]

Operators and Indexes: An interesting followup of our work would be to study
whether there are any other specialized operators and indexes that would be useful
for query execution in Trio. One possibility we considered is to combine the grouping
operator we have proposed with other operators such as various forms of join operators.
However, this does not seem to provide any obvious additional benefit over using the
join and grouping operator in sequence. (For instance, combining XGB with a hash join
might on one hand perform fewer operations, but on the other hand require more mem-
ory.) Detailed study of combining groups of operators to form a single more efficient
operator is left as future work.

Another issue that we have not addressed is the problem of automatically deciding
the indexes to be created given a specific instance of a database and workload of queries,
in the spirit of design advisers provided by most commercialDBMSs.

System:We intend to implement the new operators and techniques presented in this
paper, and incorporate them into the Trio system. We then plan to perform an extensive
experimental evaluation quantifying the benefits these techniques add to the current
layered approach.

Statistics Propagation:We have proposed techniques for estimating statistics for input
relations. These statistics can be used in conjunction withconventional sampling-based
approaches [2, 15] to estimate certain statistics, alternative and x-tuple cardinalities, for
intermediate results output by operators in a query plan. However, reusing other recent
techniques such as sketches [20] and wavelets [21, 22] for estimating all statistics of
intermediate results to uncertain databases forms an interesting direction of future work.

Other Models and Systems:In this paper we’ve presented techniques that are moti-
vated by the Trio system and its data model. However, some of our techniques can be

13

adapted for other data models that use similar constructs [3, 5, 12, 17, 28, 32]. More gen-
erally, it would be interesting to explore operators and associated estimation techniques
for other uncertain database systems. The grand goal of building a generic optimizer
for uncertain databases poses several challenging problems including efficient index-
ing, estimating statistics, constructing and costing query plans, and much more.

7 Related Work

The study of uncertainty in databases goes back to the early 80s. A large body of pre-
vious work has been theoretical in nature and a very small subset of it can be found
in [1, 5, 12, 16, 18, 24–27,36]. Recently there have been several efforts in building sys-
tems for managing uncertainty [4, 8, 10, 29]. While most of these projects have studied
efficient algorithms for query processing, none of them actually addresses the problem
of query optimization through specialized indexes, operators, and statistics estimation,
which are the subject of our paper.

Two notable pieces of recent work studying query processingin probabilistic
databases are [11, 14], whose focus is on probability computation. Reference [11] char-
acterizes when a query can be computed using asafe plan, which can be very efficiently
executed. Reference [14] studies how lineage in Trio can aidin making confidence com-
putation more efficient. Importantly, it shows that lineageallows us to decouple data and
confidence computation in Trio, enabling us to use any query plan for data computa-
tion. It is this decoupling that allows the optimizer to consider any query plan, without
worrying about confidence computation.

Reference [34] proposes interesting new techniques for indexing uncertain data with
probabilities. The indexes proposed in [34] are different from ours and focus on the
probabilities. Their indexes are very useful for queries with thresholds on probabilities.
However, as described above, Trio adopts lineage-based probability computation, and
hence we focus only on data computation in this paper. We haveproposed new indexing
mechanisms specific to the ULDB data model and its relationalencoding, which are
more useful for Trio query processing. Finally, [34] does not consider the problem of
estimating various kinds of statistics on uncertain data.

Obviously there has been a huge body of work studying every aspect of query op-
timization for conventional databases. Since there have been many papers written on
every topic, including relational operations, indexing, histograms, statistics, and query
plan selection, we do not review this literature here. We refer the interested reader to
any standard database textbook, such as [19].

8 Conclusions

We argued that Trio’s current architecture of layering on top of a conventional DBMS
can be enhanced for better performance by exploiting the theuniformity in the structure
of queries and encoded Trio relations. To this end, we proposed novel indexing tech-
niques in Trio, and defined a new interesting order, which canbe useful in assembling
query plans. We devised a relational operator that ensures the interesting order on its
output. To guide the query optimizer in choosing the optimalquery plan, we designed

14

histograms that enable estimating various useful statistical properties of uncertain data.
Finally, we suggested several avenues for interesting future work in the area of query
optimization for Trio and other uncertain database systems.

References

1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the Representation and Querying of Sets of
Possible Worlds.Theoretical Computer Science, 78(1), 1991.

2. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Trackingjoin and self-join sizes in
limited storage. InProc. of ACM PODS, 1999.

3. P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases: A probabilistic
approach. InICDE, 2006.

4. L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing Incomplete Information with
Probabilistic World-Set Decompositions. InProc. of ICDE, 2007.

5. D. Barbará, H. Garcia-Molina, and D. Porter. The Management of Probabilistic Data.IEEE
Trans. Knowl. Data Eng., 4(5), 1992.

6. O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDBs: Databases with uncertainty
and lineage. InProc. of VLDB, 2006.

7. O. Benjelloun, A. Das Sarma, A. Halevy, M. Theobald, and J.Widom. Databases with
uncertainty and lineage.VLDB Journal, 17(2), 2008.

8. J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu. MYSTIQ: a system for
finding more answers by using probabilities. InProc. of ACM SIGMOD, 2005.

9. S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram construction:
how much is enough? InProc. of ACM SIGMOD, 1998.

10. R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system for managing
constantly-evolving data. InProc. of VLDB, 2005.

11. N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic Databases. InProc. of
VLDB, 2004.

12. A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working Models for Uncertain
Data. InProc. of ICDE, 2006.

13. A. Das Sarma, M. Theobald, and J. Widom. Data modifications and versioning in trio.
Technical report, Stanford InfoLab, 2008. Available at http://dbpubs.stanford.edu/pub/2008-
5.

14. A. Das Sarma, M. Theobald, and J. Widom. Exploiting lineage for confidence computation
in uncertain and probabilistic databases. InProc. of ICDE, 2008.

15. C. Estan and J. F. Naughton. End-biased samples for join cardinality estimation. InProc. of
ICDE, 2006.

16. N. Fuhr. A Probabilistic Framework for Vague Queries andImprecise Information in
Databases. InProc. of VLDB, 1990.

17. N. Fuhr and T. Rölleke. A Probabilistic NF2 Relational Algebra for Imprecision in
Databases.Unpublished Manuscript, 1997.

18. N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of information
retrieval and database systems.ACM TOIS, 14(1), 1997.

19. H. G-Molina, J. Widom, and J. D. Ullman.Database Systems: The Complete Book. Prentice-
Hall, 2002.

20. S. Ganguly, M. Garofalakis, and R. Rastogi. Processing data-stream join aggregates using
skimmed sketches. InProc. of EDBT, 2004.

21. M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. InProc. of ACM
SIGMOD, 2002.

15

22. M. Garofalakis and A. Kumar. Deterministic wavelet thresholding for maximum-error met-
rics. InProc. of ACM PODS, 2004.

23. P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate
histograms. InProc. of VLDB, 1997.

24. G. Grahne. Dependency Satisfaction in Databases with Incomplete Information. InProc. of
VLDB, 1984.

25. G. Grahne. Horn Tables - An Efficient Tool for Handling Incomplete Information in
Databases. InProc. of ACM PODS, 1989.

26. T. J. Green and V. Tannen. Models for incomplete and probabilistic information. InProc. of
IIDB Workshop, 2006.

27. T. Imielinski and W. Lipski Jr. Incomplete Information in Relational Databases.Journal of
the ACM, 31(4), 1984.

28. S. K. Lee. An extended Relational Database Model for Uncertain and Imprecise Information.
In Proc. of VLDB, 1992.

29. M. Mutsuzaki, M. Theobald, A. Keijer, J. Widom, P. Agrawal, O. Benjelloun, A. Das Sarma,
R. Murthy, and T. Sugihara. Trio-one: Layering uncertaintyand lineage on a conventional
DBMS. In Proc. of CIDR, 2007. Demonstration description.

30. G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples satisfying
a condition. InProc. of ACM SIGMOD, 1984.

31. C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In
Proc. of ICDE, 2007.

32. C. Re and D. Suciu. Materialized views in probabilistic databases for information exchange
and query optimization. InVLDB, 2007.

33. P. Sen and A. Deshpande. Representing and Querying Correlated Tuples in Probabilistic
Databases. InProc. of ICDE, 2007.

34. S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch. Indexing uncertain cate-
gorical data. InProc. of ICDE, 2007.

35. J. Widom. Trio: A System for Integrated Management of Data, Accuracy, and Lineage. In
Proc. of CIDR, 2005.

36. J. Wijsen. Condensed representation of database repairs for consistent query answering. In
Proc. of ICDT, 2003.

