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Abstract. The Trio project at Stanford [35] for managing data, unéetyaand
lineage is developed on top of a conventional DBMS. Uncedata with lineage
is encoded in relational tables, and Trio queries are tagéedlto SQL queries on
the encoding. Such a layered approach reaps significanfitsaneéerms of archi-
tectural simplicity, and the ability to use an off-the-dtiglery processing engine.
In this paper, we present special-purpose indexes andtgtatihat complement
the layered approach to further enhance its performance.

First, we identify a well-defined structure of Trio querieslations, and their
encoding that can be exploited by the underlying query agénto improve the
performance using Trio’s layered approach. We proposeaevechanisms for
indexing Trio’s uncertain relations and study when thesiexes are useful. We
then present an interesting order, and an associated opavhich are especially
useful to consider when composing query plans. The decisiomhich query
plan to use for a Trio query is dictated by various statispicaperties of the input
data. We identify the statistical data that can guide theetlgithg optimizer, and
design histograms that enable estimating the statistmgately.

1 Introduction

The field of uncertain databases has received considertibigian for several decades
now. While most prior work (e.g., [1,5, 12,16, 18, 24-27]¢dises on theoretical as-
pects, there has been recent interest in building syster8s10, 29]. Motivated by a
diverse set of applications such as data integration, deddipn, scientific data man-
agement, information extraction, and others, the Triogmbat Stanford [29, 35] has
been studying the combination of uncertainty and lineagbeabasis for a new type of
database management system.

In this paper, we study techniques for enhancing query dpdition in Trio. The ba-
sic construct for uncertainty in Trio’'s ULDB data model [6hilternatives Alternatives
in a tuple specify a nonempty finite set of possible valuestfertuple. For example:

[(Thomas, Main St.)| (Tom, Maine St.)

* This work was supported by the National Science Foundatmmteugrants [1S-0324431 and
11S-0414762, by grants from the Boeing and Hewlett-Packaodporations, by a Microsoft
Graduate Fellowship, and by Stanford Graduate Fellowghips Cisco Systems and Sequoia
Capital.



contains a tuple with two alternatives giving the two poksilalues for the tuple. The
ULDB data model is defined formally in Section 2. The Trio gystis layered on top
of a conventional relational DBMS [29]. ULDB relations aneceded as conventional
relational tables, and a rewriting-based approach is umatdst data management and
query processing.

The simple and elegant layered approach in Trio enableg wsinoff-the-shelf
query processing engih¢QPE) and its optimization capabilities. However, the per-
formance of the layered approach can further improve if tR&E@etects and exploits
the inherent “structure” of encoded ULDB relations duringety processing. This pa-
per suggests novel techniques that augment the optimizegipability of the layered
approach’s QPE.

We show that the structure of ULDB relations merits buildsmecialized index
structures and associated access methods. While somesef itaex structures are
equivalent to conventional indexes over encoded ULDB i@lat some others are non-
traditional indexes that cannot be created by a traditiQf. We then show that query
plans executing queries over Trio relations need to considpeciainteresting ordey
namely that of grouping alternatives based on the tupledhew part of. Consequently,
we need an operator that performs the grouping. Such a grgtipiough the query plan
eliminates the need for an expensive sort operation cuyrgetformed on the result in
Trio.

Every Trio query can be answered using many query plans &dsdifitom the new
operators, indexes, and access methods mentioned abawejimction with those al-
ready existing in the QPE. As in conventional query optirtiarg the choice of which
query planto use is based on an estimate of the cost of ergautery plans, which crit-
ically depend on various forms of statistics and cardiresitmaintained by the database.
We enumerate several important statistics, and providedrams that allow us to ef-
ficiently and accurately estimate the statistics. The teghes describe in this paper
can be incorporated into the underlying QPE, while stillmaining the overall layered
architecture adopted by Trio.

Finally, we present several interesting avenues for fuuoek that our paper sug-
gests. Although several systems have been built recentipémaging uncertain data,
none of them incorporate query optimization techniquedairto the ones described in
this paper. Prior work in Trio itself has also focussed oreoispects such as modeling
and design, confidence computation, and versioning. OBlyipguery optimization in
conventional databases is an extensively studied areayabelieve this first paper on
query optimization for uncertain databases can form thislfasa lot of further work.
Since many previously proposed data models for uncertéimtgxample, [3,5,12,17,
28, 32]) use similar constructs as ULDBs, the techniquesrdes] in this paper can be
suitably adapted for these data models as well.

1.1 Contributions and Outline

The specific contributions of this paper are as follows:

1 Our current implementation uses PostgreSQL



1. We provide techniques for indexing ULDB relations enabds conventional rela-
tions, and describe the new access methods they yieldi¢g8&t

2. We motivate the need for considering a new interestingrirdquery plans, and
design an operator that ensures this order. (Section 4)

3. We enumerate various kinds of statistics necessary insthg the optimal query
plan from the set of all query plans combining conventiomal aew operators
described above. We present histograms that enable dsiintla¢se statistics effi-
ciently and accurately. (Section 5)

4. We discuss a slew of interesting and challenging probmmsgaper opens up, that
we hope would form the basis for further research in the g8=ction 6)

Section 2 introduces our data model and its relational engo&ection 7 presents
related work, and we conclude with future work in Section 8.

2 Preliminaries

We first introduce Trio’s ULDB data model, then present thiatienal encoding of
ULDBs in the layered approach, and finally describe the vaai#tlof queries we con-
sider.

2.1 ULDB Data Model

We briefly introduce the ULDB data model here, and refer trelee to [6] for ad-
ditional features and detailed semantics. Each tuple in BRJtelation consists of a
set of mutually-exclusivalternatives each of which can be the tuple’s actual value.
ULDB relations conform to the standapdssible-worlds semanti¢$, 6,11, 31, 33]: A
ULDB relation represents a set of possible worlds, each a¢lnis an ordinary relation.
The possible worlds for an uncertain relation are obtainedimosing one alternative
value for each tuple, in all possible ways. For example, thlewing ULDB relation
represents four possible worlds. (Alternatives are sepdtay||.)

R(Name, Address)
(Thomas,Main St.)| (Thomas,Maine St})
(Bill,Poplar Ave) || (William,Poplar Ave

The ULDB data model also has other uncertainty construaeth as “?” and confidence
values, which are not crucial for optimization. It's impanmt to note that the Trio system
decouples confidence computation from data computatioly §l hence confidence
values are disregarded for the rest of the paper. Also, w& dscuss the lineage fea-
ture in ULDBs (refer to [6]), as lineage is only a function bétquery, and independent
of the specific query plan used to compute the result.

2.2 Relational encoding

We now describe how the restricted ULDB data model descrétiexve is encoded in
regular relational tables. We refer the reader to [7, 29ttamplete details on encoding



ULDB databases. Hereafter we ustupleto refer to a tuple in the ULDB model, which
includes alternatives, and we usgleto denote a regular relational tuple.

Consider a ULDB relationT'(A4, ..., A,,). The data portion ofT" is stored
as a conventional table referred to &5,. with two additional attributes:
Tenc(aid, xid, Ay, ..., A,). Each alternative in the original ULDB table is stored as
its own tuple inT,,,., and the additional attributes function as follows:

— aid is a unique alternative identifier.
— xid identifies the x-tuple that this alternative belongs to.

RelationR from the previous section would be encoded as follows.

Renc
aid| Name | Address
11|{Thomas Main St.
12|Thomas Maine St.
13| Bill |Poplar Ave
14|William [Poplar Ave

X,
=%

NN |-

2.3 Queries

As mentioned before, queries over ULDB relations are tededlto queries over the
encoded relations. To obtaim d’s on the resulting relation, the alternatives of the result
need to be grouped based on which x-tuple they are a part efefdre, all tuples in the
result of the translated query are grouped by xids of thetinglations. For example,

if we perform a join of R and S, the translated query ovei.,. and S.,. includes
the clause gr oup- by Repc. Xi d, Sene. Xi d”. Exact details of this translation are
omitted, and can be found in [7, 29].

3 Indexing ULDB Relations

As described in Section 2, there is a special attribuitd in all Trio encoded relations,
and all query translations involve a group byxand. In this section, we introduce new
indexes that are especially useful in the presence of thasiapattribute. We use a
simple running example to ground our discussion.

Consider arelatioR, and a selection query which does a range scan on the adtribut
A:“select » fromR where A < 5”. The translated query groups the result
by thexi d attribute. The relatiorR,,,. is often stored clustered odi d, but may also
be clustered on other attributes, which may or may no.deor the selection query on
A, the following indexes may be useful:

— Index onA
An index onA may be used to retrieve only the tuplesify,,. that satisfy the
predicateA < 5. This index lets us efficiently retrieve all alternativeattlatisfy
the predicate, but now they need to be grouped to form x-$uglesort onxi d
is required to group the result alternatives into x-tupfasch a query plan can be
efficient for highly selective queries, i.e., the result @oms very few alternatives,
making the grouping step inexpensive.



— Index onxi d
Anindexonxi d lets us retrieve all alternatives in an x-tuple together; it returns
tuples of R.,,. in order of theirxi d values. This allows us to avoid the sort since
result tuples are generated already groupexlilyy. This index may be useful if the
predicate is not very selective, especially if the datadsest clustered byi d.

— Index on( xi d, A)
If x-tuples are very wide, i.e., contain a large number cfralatives, we may be able
to use anindex orxf d, A), to only retrieve alternatives that satisfy the predicate
This also avoids the sort at the end, and thus may yield anegftiexecution plan.

— Index on( A, xi d)
For queries that use an equality predicatefpit might be useful to use an index
that returns all alternatives satisfying the predicateugeal byxi d. This index
allows us to avoid the sort which may be expensive for largaltse. But equality
predicates seldom have large results. We would ideallydikndex that also works
for range queries, and still avoids the sort. Such an indprasented next.

The indexes discussed above help in either avoiding theemuired for the group-
by onxi d, or prune down the amount of data accessed by evaluatingréftécpte
before retrieving the tuples. An index ¢, xi d) accomplishes both objectives for
equality predicates oA. We now describe a new index that generalizes this index for
efficient range scans over relations stored clustered fuy

— Index onA,
An index on A, refers to an index that retrieves all x-tuples that contairah
ternative satisfying some predicate AnWe can then apply the predicate to each
alternative of the x-tuple to keep only those that satisfplithough this index may
often retrieve more tuple alternatives than an indeXpit can often be more ef-
ficient because it makes no more random accesses, and alds twneed for a
sort. The sort is avoided because the index guarantees &me$ting order” that
has result alternatives groupedsoyd.

— Indexon( 4,, A
For wide x-tuples, it may again be useful to have an indeAaevithin an x-tuple.
This index is similar to the index ofixi d, A) , but prunes x-tuples and retrieves
only those that contain at least one alternative that sedigifie predicate.

Example 1.We illustrate the benefit off, over the conventional indexes described
before using an example. Again consider the quesgl‘ect * from R where

A < 5" Supposek contains: alternatives satisfying the predicate, and suppose these
a alternatives constitute x-tuples. Let us consider the cost of executing this query
using four of the relevant indexes:

1. Index orA: We would use the index to get all thalternatives using index lookups,
and then these alternatives would need to be grouped in memory based on thei
xi ds. Hence the total cost ig:index lookups + group tuples.

2. Index on( A, xi d) : Since the query involves a range scan, using the additional
index onxi d does not help us do the grouping along with the index lookups.
Hence, the cost by using the index A, xi d) is the same as the cost by using
the index orA.



3. Index onxi d: Using the indexi d we scan the entire relation, and within each x-
tuple we check whether there is any alternative witke 5. The cost of this would
be to do an index scan of the entire relation. The groupirmistsaved because all
alternatives are obtained groupedxiyds.

4. Index onA,: Finally consider using the index of,. We perform an index scan to
obtain all x-tuples containing at least one alternativéhwit< 5. The cost of this
step is an index scan af x-tuples. We then need to filter all alternatives among
these x-tuples that do not satisfy the predicate. HenceyubamindexA,., we save
the grouping step and still require looking only at x-tuplleat have alternatives
satisfying the predicate.

O

4 Query Plans

In this section, we discuss some new challenges that areietered in creating query
plans to answer queries over uncertain data. We start byglistg a new “interesting
order” that can benefit many queries.

4.1 XGroup

Recall the index oM, described above, which allows for an efficient access method
to retrieve alternatives grouped By d. For complicated queries, possibly including
several joins, it may be useful to maintain this grouped oiterementally all through
the query plan in order to avoid a massive group-by at the lewitively, the idea is

to have x-tuples flowing through operators instead of adtivas. By maintaining all
alternatives of an x-tuple (nearly) together, we may getieffit executions of queries
with large results. We now formally define the XGroup ordee $all see that XGroup

is a fundamentally weaker requirement than sort on an at&jland hence can often be
maintained over the entire query plan without significargrbead.

Definition 1 (XGroup). LetR = {Ry,--- , R,,} be the relations in thé r omclause
of a query. The translated query containgieoup- by on thexi d attributes of each
relations inR. Suppose the subtree rooted at a ndd@n the query tree joins relations
in Ry C R. If the tuples flowing out oV are guaranteed to be grouped by thieds
of a setBy C Ry of the relations, therV is said to guarantee the XGroup order on
the set of relation® . The final query result thus needs to be XGroupe®on [

Anindex access on relatidR using the index onl,. for some attributé guarantees
an XGroup on{R}. Other access methods that use an indexiod or ( xi d, A),
or that scan relations clustered Ry d also guarantee an XGroup diR}. Note that
selection and projection operators also preserve XGrdugsijf the input to such an
operator is XGrouped of, the output will also be XGrouped dh.

Many join operators also preserve XGroups. For instance, nested join opera-
tor, suppose the inner set of input alternatives are XGrduel3; and the outer are
XGrouped on,,. It is easy to see that operators like nested-loop join (stateblock



joins) and nested-loop index join preserve the XGroup oh lfo# inner and the outer,
i.e., the result alternatives will be XGrouped 8aU B,. Some other join operators
may only preserve XGroups for one of the inputs. For instambash-join preserves
the XGroup of the outer, i.e., returns alternatives XGralipe3,. Many operators in
traditional database query processors naturally presé®reup, making it efficient to
maintain and utilize.

Recognizing and incrementally maintaining XGroups thtoagjuery plan can of-
ten help avoid an expensigg oup- by (usually implemented through a sort) at the
end. As an extreme example, if all relations in a query aress®d using access meth-
ods that guarantee XGroups on input relations, and all egerpreserve them, then no
finalgr oup- by needs to be performed in the query plan. Our selection exaegulier
was the simplest case that illustrates howgheup- by can be eliminated. Requiring
all access methods and operators to preserve XGroups raathenset of acceptable
query plans to a very small set. Hence, we allow query plaiat@ combinations of
access methods and operators that may or may not presereig&However, we can
still benefit from partially XGrouped results in making thedigr oup- by cheaper,
through a new unary operator described next.

Definition 2 (XGB). Let the input to operator XGB be alternatives XGrouped3n
XGB returns the alternatives XGrouped Bp D B;. O

The XGB operator is thus XGroup-aware ensuring that theltresternatives are
XGrouped on a larger set of relations. It essentially bregkeach group in the input
corresponding to one combinationxaf ds of 3; into even smaller groups, correspond-
ing to combinations oki ds of B,. The advantages of using this new operator are
threefold: (1) In conjunction with an access method thavig®s the XGroup order,
the XGB operator allows us to incrementally do tireoup- by. This may have lower
cost than doing a single expensigeoup- by at the end of the query plan. (2) The
operator only needs to look at one group in the input streamaitefnatives at a time
to construct the output grouping. If the groups in the inpetrot large, XGB can be
performed very efficiently, operating in a non-blockingHas. (3) For the same rea-
son, the memory requirements for performing XGB is also wmrably less than an
operator that XGroups 08, assuming no input grouping.

Example 2.Consider a query that joins two relatioy and Ry with n; andny X-
tuples respectively. Consider a query plan that joins @édtéves from the two relations
in any arbitrary order and then does a figaloup- by on R, .xi d, R,.xi d. The cost
of this finalgr oup- by will be C(n1n2), whereC¢ gives the expected cost of do-
ing thegr oup- by as a function of the total number of x-tuples. For instantthe

gr oup- by is achieved by sorting the alternativesBy.xi d, Ro.xi d thenCg (n1nz2)
would be Gnins log(ninz)). In contrast, if the output of the join is already XGrouped
on Ry .xi d, the cost of the finair oup- by is O(n1C¢(n2)), which is typically less
thanCg (ning). Intuitively, a problem of sizev; ns is reducech; problems of size,.

O

The presence of even one access method or operator thahtpesthe XGroup or-
der can thus reduce the cost of tireoup- by, if the optimizer recognizes the operators
preserving XGroups.



4.2 Query Planning

In order to choose an optimal plan for executing a query, theryplanner needs to
decide which combination of the new indexes, operatorsdéhiced, and the traditional
relational operators must be used for a given query. We @@tihe need for estimating
various statistics that would guide the query planner irosirg an efficient query plan.

Consider our example query from Section 3et ect * from R where A
< 5”. We now look at each access method discussed in Section Basizing the
relevant statistics that impact their execution cost.

— Index onA
To estimate the cost of accessing the relation through aexindA, the optimizer
needs to determine the number of alternatives that satisfprtedicate.

— Index onxi d
To estimate the number of x-tuples retrieved using an inagexial, the optimizer
needs to know the total number of x-tuples in the relafon

— Index on( xi d, A)
As discussed in Section 3, this index is useful only if x-agptontain large number
of alternatives. Hence, to decide whether or not to use titiex, an estimate indi-
cating the average number of alternatives per x-tuple fwadtx-tuple) is useful.
The average width of x-tuples satisfying the predicate nilffer from the average
width for the entire relation, and can yield more accurat estimates.

— Index on( A, xi d)
The number of alternatives that satisfy the predicate detess the cost of access-
ing the relation using an index dm, xi d) . In addition, the number of x-tuples
returned is determined by estimating the number of x-tufilas contain at least
one alternative that satisfies the predicat&on

— Index onA,
The number of random accesses made in accessing the rdRatising an index
on A, is determined by the number of x-tuples that contain at leastalternative
satisfying the predicate.

— Indexon( A;, A)
This index is useful in cases where the average width of aiplets large, thus jus-
tifying indexing onA within an x-tuple. A useful statistic to determine the effigza
of the index is the average width of x-tuples that satisfygheicate.

In the next section, we formally define the above statisticb@ovide methods for
estimating them.

5 Statistics and Histograms

We will now formally define the different statistics from theevious section that guide
the optimizer in choosing the optimal query plan. Some cé¢tstatistics can be exactly
maintained, while others need to be estimated and we inteodew kinds of histograms
for this purpose.



5.1 Exact Cardinalities

For each relatior® in the database, the following global statistics can be thxawain-
tained:

— X-Card(®): The number of x-tuples iR. In terms of R’s encoding, X-CardgR)
gives the number of distinati ds in R.,,..

— A-Card(R): The number of alternatives iR. A-Card(R) translates to the number
of tuples inR.,..

— AvgWidth(R): The average number of alternatives per x-tuple in i.e.,
A-Card r)
X-Cardr)"

Example 3.Consider the following relatiof.

R(Name, Address, Salary)
(Thomas, Main St., 50K)| (Thomas, Maine St., 50K)
(Bill, Poplar Ave, 35K)|| (William, Poplar Ave, 40k)| (Billy, Poplar Ave, 40K
(Alice, Euclid Ave, 10K)

Here X-CardR) = 3, A-Card(R) = 6 and AvgWidthR) = 2. O

Next we consider statistics that are infeasible to mairgaarctly, and hence need to be
estimated.

5.2 Alternative Counts

Consider a relatio with an attributeA. The following are statistics about alternatives
that we would like to maintain for point and range queries:

— A-Selectivity(®,A,v): The number of alternatives iR that satisfyA = v.
— A-Selectivity®,A,z,y): The number of alternatives iR that satisfyr < A < y.

Example 4.Consider the relatio® from Example 3. A-Selectivityf, Name, Thomas)
= 2, whereas A-Selectivity{, Salary, 40K, 60K) = 4. O

Clearly, the above selectivities translate to countingrtheber of tuples ink,,. sat-
isfying A = v andx < A < y respectively. These cardinalities over the conventional
relational tableR.,,. can be estimated using well-known sampling or histogram-tec
nigues. For example, in Trio we can build a histogram avgr.: The histogram con-
sists of buckets corresponding to the range of all possiblees inA. A histogram
bucket with bucket boundarfp, ¢] maintains the count of the number of tuples in
Rene that satisfyp < A < ¢. Now, we can use the bucket frequencies to estimate
A-selectivities by making standard uniformity assumpsion

Example 5.For relationS.,,. with integer attributed, suppose the histogram ohhas
bucket interval$), 5, 10, and so on; i.e., bucké} 5 stores the number of tuples i,
with 0 < A < 5, Bs 19 for 5 < A < 10, etc. The number of tuples ik, satisfying
3 < A < 8is estimated ag'BSﬁ + 4'3%. O
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5.3 X-tuple Counts

For relationR with attribute A, we would also like to estimate the number of x-tuples
in R that contain some alternative satisfying a point or rangelisate onA:

— X-Selectivity(R,A,v): The number of x-tuples i containing at least one alterna-
tive satisfyingA = v.

— X-Selectivity®,A,z,y): The number of x-tuples ifk containing at least one alter-
native that satisfies < A < y.

Example 6.Consider relatior? from Example 3 again. Here X-Selectivifg( Name,
Thomas) = 1 and X-Selectivity{, Salary, 40K, 60K) = 2. O

Estimating X-Selectivity(R,A,v): Just as for estimating A-selectivities, here too we
can build a histogram that now counts the number of x-tupisead of the number of
alternatives. No existing histograms can be used, howewerwe build new kinds of
histograms for this purpose.

Let us first attempt constructing a histogram by creatindbtscon attributed, and
we shall then improve on this histogram. Within a budket], we store the number of
x-tuples that contain at least one alternative satisfying A < ¢. Note that, unlike in
the case of the histogram for A-selectivity whose bucketsted distinct alternatives,
in this histogram a single x-tuple may contribute to the ¢oamultiple buckets. For
instance, if an x-tuple contains an alternative witin range[p:, ¢:] as well as another
alternative withA in range[ps, ¢=|, then the x-tuple will contribute to the counts in both
the buckets. Given a value suppose corresponds to buckép, ¢, i.e.,p < v < ¢,

then we estimate X-selectivitii| 4,v) to be 2z whereB, , is the stored count in

(¢—p)’
bucket|p, q|.

Note that the above estimate for a specific vallmssumes that if an x-tuple is in
bucket[p, q], the probability of it having an alternative with valugwherep < v < ¢
is ﬁ However, we can refine this probability if we know the numdiesllternatives
in an x-tuple. Suppose an x-tuple haslternatives, whosel values are randomly
and independently distributed betwegand g, the probability of having at least one
alternative with value is 1 — (%;1)’“. (If we know that the distinctl values in the
alternative are independently and randomly distributdg,in), then we replacé with
the number of distinctl values in the x-tuple.)

We can use the observation above to enhance our histograrnoééruct a 2-D
histogram withA as one dimension, and the siZef the x-tuple (either as the number
of alternatives or the number of distindtvalues, based on the distribution described
above) as the second dimension. In a budket] for dimensionA, and[ny, no] for
dimensionS, we store the number of x-tuples having either: (1) at léaaternatives
with A value in the rang@, ¢), or (2) alternatives with at leastdistinct A values in the
rangelp, ¢). Recall, we use (1) above if we assume the distribution odl&dirnatives
is independent, and we use (2) if we assume the distributiatistinct A values is
independent.
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Estimating X-Selectivity(R,A,z,y): While at first glance it might seem that we
can use the histogram described above to estimate X-séteCHi, A,x,y) also, that
is not the case. We would get an incorrect estimate using istegnam described
above because each x-tuple contributes to the count inpteuliickets? Hence if we
aggregate counts over multiple buckets, we would end up ldexdunting x-tuples
corresponding to multiple buckets, as shown by the follgngrample.

Example 7.Suppose for relatiory, the histogram on attributd is bucketed at mul-
tiples of 5. If we want an estimate of X-Selectivit§(A4,0,9), adding up the counts
corresponding to buckef8, 5] and[5, 10] gives an incorrect answer, because x-tuples
could contain both alternatives with values in[0,5) as well asA values in[5, 10).
Hence the returned sum would be an overestimate of the amuat. O

We need to create a more complex histogram to be able to goweate expected
estimates. We use a 3-D histogram with dimensiéns,., A, and sizeS. A,,,;,, cor-
responds to the minimum value for an alternative in an x-tupld,,,,,. corresponds to
the maximumaA value. As beforeS corresponds to the size of the alternatives falling
in the bucket, where size is given either by the number ofradtiéves or by the num-
ber of distinctA values, depending on the distribution assumption. In tiséogram
bucket corresponding to range q| for A,in, [r, s] for A, and[ny, ns] for S, we
store the number of x-tuples with sizein range[n,, n2) that have the minimuns
value in rang€p, ¢), maximumA value in ranggr, s). Note that now every single
x-tuple corresponds to exactly one bucket of the histogkéence, we can estimate X-
Selectivity(R,A,x,y) by adding up the contributions from all relevant buckettheuit
any danger of double-counting.

5.4 Other Statistics

Finally, we note that several other kinds of statistics cae$timated using the estima-
tion techniques described above. For example, supposelfdion R we want to the
know the average number of alternatives satisfying 5 among x-tuples that contain
atleast one alternative with = 5, we can compute the average%:szzllzftg%((g:ﬁ:?) .
Another similar statistic worth mentioning that can berestied using techniques
described earlier is finding the total or average numbertefradtives ink in x-tuples

that contain at least one alternative satisfying a predicat

— A-AverageR,A): The average number of alternatives in x-tuples that é¢orgt
least one alternative satisfying= v or A € [z, y].

For A-Average we can use a histogram similar to the one foreke@&ivity, but by
eliminating the size dimension. We can then store the tatahtof alternatives from
the x-tuples in each bucket, instead of storing the numbgstaples.

2 By ‘incorrect’, we mean that the estimator will not be an wrssid estimator for X-Selectivities,
even under standard uniformity assumptions.
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6 Discussion and Future Work

In this section we discuss important issues arising from plaiper that we do not ad-
dress, as well as more general directions for the futuredtimatvork suggests.

Construction and Maintenance: The first question that arises about our techniques
presented in Section 5 is how we construct the histogramsetieble estimating the
various statistics. Construction of a histogram entailsidieg the bucket boundaries
for all the dimensions followed by populating the counts atke bucket. Recall that
our histograms for ULDB relations translate to statistiosttoe encoded conventional
relations. Hence we can leverage previously proposed igebs for determining the
bucket boundaries and constructing the histogram throaigipng [9, 30]. Alternately,
we could scan the entire relations apriori and compute dxaqtiencies for all buckets.
The second issue that arises is that of incrementally maintghistograms as data
is modified. While at first glance it seems like we can still traglitional techniques for
maintaining histograms [23], we plan to explore whetherdlrae more efficient tech-
nigues that can be applied specific to the kinds of data matiiics Trio supports. [13]

Operators and Indexes: An interesting followup of our work would be to study
whether there are any other specialized operators and esdivat would be useful
for query execution in Trio. One possibility we considereda combine the grouping
operator we have proposed with other operators such assgdnanms of join operators.
However, this does not seem to provide any obvious additioe@efit over using the
join and grouping operator in sequence. (For instance, aanthXGB with a hash join
might on one hand perform fewer operations, but on the otaed hequire more mem-
ory.) Detailed study of combining groups of operators torfa single more efficient
operator is left as future work.

Another issue that we have not addressed is the problem orfratically deciding
the indexes to be created given a specific instance of a datalpa workload of queries,
in the spirit of design advisers provided by most comme@BMSs.

System: We intend to implement the new operators and techniqueepied in this
paper, and incorporate them into the Trio system. We themtplaerform an extensive
experimental evaluation quantifying the benefits thesartiegies add to the current
layered approach.

Statistics Propagation:We have proposed techniques for estimating statisticsfarti
relations. These statistics can be used in conjunctioneitiventional sampling-based
approaches [2, 15] to estimate certain statistics, altemand x-tuple cardinalities, for
intermediate results output by operators in a query planveyer, reusing other recent
techniques such as sketches [20] and wavelets [21, 22] fonaging all statistics of
intermediate results to uncertain databases forms arstieg direction of future work.

Other Models and Systems:n this paper we've presented techniques that are moti-
vated by the Trio system and its data model. However, someofechniques can be
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adapted for other data models that use similar construcss 12, 17, 28, 32]. More gen-
erally, it would be interesting to explore operators anaeisged estimation techniques
for other uncertain database systems. The grand goal afibgib generic optimizer
for uncertain databases poses several challenging prebtestuding efficient index-
ing, estimating statistics, constructing and costing géans, and much more.

7 Related Work

The study of uncertainty in databases goes back to the e@sly/8large body of pre-
vious work has been theoretical in nature and a very smaBefulif it can be found
in[1,5,12,16,18,24-27,36]. Recently there have beerrakg#orts in building sys-
tems for managing uncertainty [4, 8, 10, 29]. While most @fsth projects have studied
efficient algorithms for query processing, none of them abtladdresses the problem
of query optimization through specialized indexes, omgrgtand statistics estimation,
which are the subject of our paper.

Two notable pieces of recent work studying query procesgingrobabilistic
databases are [11, 14], whose focus is on probability coatiput Reference [11] char-
acterizes when a query can be computed usisafa planwhich can be very efficiently
executed. Reference [14] studies how lineage in Trio camaithking confidence com-
putation more efficient. Importantly, it shows that lineadjews us to decouple data and
confidence computation in Trio, enabling us to use any qukny for data computa-
tion. It is this decoupling that allows the optimizer to cules any query plan, without
worrying about confidence computation.

Reference [34] proposes interesting new techniques fexingd uncertain data with
probabilities. The indexes proposed in [34] are differentf ours and focus on the
probabilities. Their indexes are very useful for queriethliresholds on probabilities.
However, as described above, Trio adopts lineage-basdwlpitiy computation, and
hence we focus only on data computation in this paper. We vapmosed new indexing
mechanisms specific to the ULDB data model and its relatienabding, which are
more useful for Trio query processing. Finally, [34] does$ cansider the problem of
estimating various kinds of statistics on uncertain data.

Obviously there has been a huge body of work studying evergaof query op-
timization for conventional databases. Since there haea Ineany papers written on
every topic, including relational operations, indexinggthgrams, statistics, and query
plan selection, we do not review this literature here. Weré#ie interested reader to
any standard database textbook, such as [19].

8 Conclusions

We argued that Trio’s current architecture of layering gm a6 a conventional DBMS
can be enhanced for better performance by exploiting therffermity in the structure
of queries and encoded Trio relations. To this end, we pregosvel indexing tech-
niques in Trio, and defined a new interesting order, whichlmanseful in assembling
query plans. We devised a relational operator that ensheemteresting order on its
output. To guide the query optimizer in choosing the optimary plan, we designed
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histograms that enable estimating various useful stegigproperties of uncertain data.
Finally, we suggested several avenues for interestingduttork in the area of query
optimization for Trio and other uncertain database systems
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