
CS369N: Beyond Worst-Case Analysis

Lecture #4: Probabilistic and Semirandom Models for

Clustering and Graph Partitioning∗

Tim Roughgarden†

April 25, 2010

1 Learning Mixtures of Gaussians

This lecture continues last week’s theme of somewhat specific data models to inform the
analysis of clustering and graph partitioning heuristics. We begin with the classical notion
of a mixture model.

1.1 Learning Mixtures of Gaussians

We consider k distributions D1, D2, . . . , Dk on Rn. Suppose that Di has a mixing weight wi,
where the mixing weights are nonnegative and sum to 1. We consider the following 2-stage
sampling procedure (see Figure 1): first, we pick a distribution Di randomly according to
the mixing weights; then we pick a random point x ∈ Rn according to Di.

To illustrate the flavor of this line of research, we focus on the relatively easy case in
which each Di is a spherical Gaussian. In other words, each Di is characterized by a mean
µi ∈ Rn and a common standard deviation σi ∈ R in every direction. (So the covariance
matrix is σi times the identity.) Precisely, the distribution of such a spherical Gaussian Di

is given by the density function

n∏

j=1

[
1√
2πσi

e−(xj−µij)
2/2σ2

i

]

,

where xj denotes the jth coordinate of the sample point and µij denotes the jth coordinate
of the mean µi of Di.

∗ c©2009–2010, Tim Roughgarden. Thanks to Ankur Moitra and Greg Valiant for helpful comments on
an earlier draft.

†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,
CA 94305. Email: tim@cs.stanford.edu.

1

START
w1 w2

. wk

D1 D2 Dk
.

R
n R

n
R

n.

Figure 1: Sampling from a mixture model via a two-stage procedure.

Our goal is the following: given sufficiently many independent samples from a mixture
of spherical Gaussians, “learn the model” (The Di’s are unknown a priori; we think of k as
known.) Now, “learning the model” can mean several different things. In this lecture, we
strive for the following: with high probability over the sample, we want to label the sample
points so that two points x, y have the same label if and only if they come from the same
distribution Di.

This is a strong goal. In a sense, for almost all samples we are recovering a target
clustering of sorts, where the ith cluster is the sample points that were drawn from Di. If
we can accomplish this goal, then it’s easy to reverse engineer good estimates of all of the
model parameters (the µi’s and the σi’s). For example, our estimate of µi would just be the
center of mass of the samples that we labeled i.1

This strong goal is obviously impossible without further assumptions. For example, if
two of the Di’s are identical, there’s no way to label correctly the sample points that they
generate with high probability. More generally, significant overlap between two distributions
leads to inherent ambiguity and precludes a solution to the labeling problem above. Thus
our goal is: assuming that the distributions Di are sufficiently separated, correctly label a
sufficiently large (but polynomial size) sample with high probability.2

While learning mixture models is an old idea, the version above was only identified 10
years ago by Dasgupta [12]. Our focus will be on a very special case of the subsequent work
by Arora and Kannan [4]. Many other papers on the topic have followed (see Section 1.4 for
some pointers).

1One could try to use maximum likelihood estimation directly on the mixture, rather than solving the
labeling problem as an intermediate step. But unlike estimating one Gaussian (which is easy), it is not clear
how to solve directly for the maximum likelihood mixture of Gaussians.

2Recent work [17] shows how to bypass the labeling step and directly estimate the µi’s and the σi’s,
without any separation assumptions.

2

1.2 Counterintuitive Facts about High-Dimensional Gaussians

The discussion in this section will be heuristic for simplicity, but it can be made rigorous using
elementary (if sometimes tedious) arguments. The Arora-Kannan algorithm is motivated by
some counterintuitive and useful properties of high-dimensional distributions. Basically, the
Law of Large Numbers has some pretty amazing geometric interpretations.

Counterintuitive Fact #1: For a large number n of dimensions, a spherical Gaussian
is essentially the uniform distribution on a sphere of appropriate radius.

For example, consider the case of an n-vector x, where each component is an independent
draw from the standard 1-dimensional Gaussian N (0, 1). By definition E[x2

i] = Var[xi] = 1.
By linearity of expectation, E

[
‖x‖2] = n. (In this lecture, the norm ‖·‖ always denotes the

Euclidean norm.) Moreover, there is sharp concentration around this value for large n —
even better than a Chernoff-type bound would suggest, since Gaussians already have quickly
vanishing tails. Thus x is very likely to have norm very close to

√
n. For a general spherical

Gaussian with mean µ ∈ Rn and directional variance σ2 ∈ R, ‖x − µ‖ is very likely to be
very close to

√
n · σ.

Counterintuitive Fact #2: For a large number n of dimensions, almost all vectors are
orthogonal to each other.

What we really mean is that the Pythagorean theorem approximately holds for two
random vectors x, y from a spherical Gaussian with mean 0, with high probability. To prove
this in the unit-variance case, by spherical symmetry and the first fact we can assume that
y = (1, 1, . . . , 1) is the all ones vector and consider a random x. Recall that

‖x + y‖2 = ‖x‖2

︸︷︷︸

≈n w.h.p.

+ ‖y‖2

︸︷︷︸

=n

+2〈x, y〉.

Since y = (1, 1, . . . , 1),

E[|〈x, y〉|] = E

[∣
∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
∣

]

;

the right-hand side is the standard deviation of a univariate Gaussian with mean 0 and
variance n, also known as

√
n. Again, there is a quite sharp concentration around this value.

In general, if x, y are random vectors from a common spherical Gaussian with mean µ
and directional variance σ2, the above argument implies that

‖x − y‖2 ≈ ‖x − µ‖2

︸ ︷︷ ︸

≈nσ2

+ ‖µ − y‖2

︸ ︷︷ ︸

≈nσ2

+O(
√

nσ2)

with high probability.

3

1.3 The Arora-Kannan Algorithm

The Arora-Kannan algorithm and the separation condition it requires are directly motivated
by the above two facts. First, a thought experiment. Define Ri as

√
nσi, where σ2

i is the
directional variance of the ith Gaussian Di. If x, y ∼ Di are independent and the mean of Di

is µi, then our two counterintuitive facts imply that

‖x − y‖2 ≈ ‖x − µi‖2 + ‖µi − y‖2 ≈ 2R2
i , (1)

up to an error term of O(R2
i /
√

n), with high probability.
On the other hand, if x ∼ Di and y ∼ Dj with i 6= j, then

‖x − y‖2 ≈ ‖x − µi‖2 + ‖µi − µj‖2 + ‖µj − y‖2

≈ R2
i + R2

j + ‖µi − µj‖2, (2)

up to an error term of O((R2
i + R2

j + ‖µi − µj‖2)/
√

n), with high probability.
In words: all sample points from a common Di will be roughly equidistant from each

other, while sample points from different Di’s are at least some distance away. Inequalities (1)
and (2) motivate the AK separation condition.

The Separation Condition. For every distinct i, j,

‖µi − µj‖ ≥ c · max{Ri, Rj}
n1/4

, (3)

where c is a sufficiently large constant.3 To interpret the right-hand side of (3), recall
that most sample points from Di are roughly Ri =

√
nσi distance from the corresponding

mean µi. The gap between the mean of cluster i and those of all other clusters needs to
grow like n1/4σi for the following algorithm to work. Notice that this allows the spheres
corresponding to different Gaussians to overlap. (This does not preclude reverse engineering
labels for all sample points with high probability, because the amount of overlap between
different distributions will be exponentially small.)

To motivate condition (3), consider the Gaussian Di with the smallest radius Ri. Sup-
pose that x, y are sample points from Di and z is a sample point from Dj with j 6= i.
Inequalities (1) and (2) imply that, with high probability, there is a noticeable gap between
the squared distances ‖x − y‖2 and ‖x − z‖2 provided the mean separation ‖µi − µj‖ is
sufficiently large:

‖x − z‖2 − ‖x − y‖2 ≥ ‖µi − µj‖2 + (R2
j − R2

i) + Ω((R2
i + R2

j + ‖µi − µj‖2)/
√

n). (4)

Now, Rj is at least Ri by our choice of i, but for all we know the two radii are equal. To
ensure that (4) is positive and noticeably bounded away from zero we require that

‖µi − µj‖2 = Ω((R2
i + R2

j + ‖µi − µj‖2)/
√

n),

3Actually, this “constant” needs to be logarithmic in the eventual (polynomial) sample size, to achieve
the desired concentration in (1) and (2) for all pairwise distances between the sample points. We ignore
these logarithmic factors in these notes.

4

and the separation condition guarantees precisely this, for a suitably large choice of the
constant c. The Arora-Kannan algorithm is now the natural one (Figure 2).

1. Take enough samples S so that one has at least a few from each distribution Di. (As-
sume that the smallest mixing weight mini wi is known and at least inverse polynomial
in n.)

2. Let x0, y0 be the sample points that minimize ‖y0 − x0‖.

3. Peel off all the sample points in the ball around x0 with radius ‖y0 − x0‖ · (1 + c′√
n
),

where c′ is a suitable constant derived from that in the separation condition (3).

4. Return to step 2 with the remaining sample points.

Figure 2: The Arora-Kannan algorithm.

Thus the Arora-Kannan algorithm uses the approximate identities (1) and (2) to identify
all of the sample points that belong to the Gaussian with the smallest radius, and then
recurses on the remaining points. Correctness follows because (1) implies that the pair x0, y0

will indeed belong to the Gaussian with the smallest radius (or at least almost the smallest),
and also that all other points from this Gaussian have essentially this same distance from
x0; and because the separation condition is chosen large enough that no sample points from
other Gaussians will be equally close to x0.

4

1.4 Extensions

The papers by Dasgupta [12] and Arora and Kannan [4] motivated a lot of followup work;
see [9] for a survey. Some examples include the improvement of the separation condition from
max{Ri, Rj}/n1/4 to max{Ri, Rj}/

√
n, which turns out to be the best possible if one wants

the “no inherent ambiguity” condition that enables the unique recovery of the sample points’
labels [22]; polynomial-time recoverability results for non-spherical Gaussians, logconcave
distributions, and more general distributions [4, 10, 11]; guarantees for spectral algorithms,
which appear more likely to be robust (with good performance even when the data does
not conform well to a mixture model) [1, 7, 18]; and other notions of “learning a mixture of
Gaussians” [14, 17].

4A more reasonable interpretation of Step 3 is that the constant c′ in the algorithm is chosen based on
empirical performance, and this choice restricts the mixture models (according to the induced value of c

in (3)) to which the theoretical analysis applies.

5

2 Probabilistic Planted Models

This section and the next study models of data for graph problems. Thus far, the only such
example we’ve seen is the Bilu-Linial definition of γ-stable Max Cut instances. Here we take
a more general approach.

2.1 Erdös-Renyi Random Graphs

We review Erdös-Renyi random graphs as a starting point. Recall that a random graph from
G(n, p) is a simple undirected graph on n nodes, where each of the

(
n
2

)
possible edges is

present independently with probability p. There are at least two reasons why this model is
usually not very useful for informing the design of graph algorithms. First, as with most
average-case analysis frameworks, the data model is too specific; second, as we show below,
it fails to meaningfully differentiate between different algorithms.

Example 2.1 (Minimum Bisection) The graph bisection problem is the same as the min-
imum cut problem, except that the two sides of the graph are additionally constrained to
have equal size. That is, the input is an undirected graph G = (V, E) with an even number
of vertices and the goal is to identify the cut (S, S̄) with |S| = |S̄| that has the fewest number
of crossing edges.

Assume for simplicity that the edge probability p is a constant. Then for every bisec-
tion (S, S̄) of a set of n nodes, the expected number of crossing edges in a random graph
G ∈ G(n, p) is pn2/4. A straightforward application of the Chernoff bound shows that, with
high probability, the number of edges crossing every bisection is this same quantity, up to a
1 ± o(1) factor. Thus even an algorithm that computes a maximum bisection is an almost
optimal algorithm for computing a minimum bisection!

Example 2.2 (Maximum Clique) In the maximum clique problem, the goal (given an
undirected graph) is to identify the largest subset of vertices that are mutually adjacent. In
a random graph in the G(n, 1

2
) model, the size of the maximum clique is very likely to be

≈ 2 log2 n.5 To see heuristically why this is true, note for an integer k, the expected number
of cliques on k vertices in a random graph of G(n, 1

2
) is exactly

(
n

k

)

2−(k

2
) ≈ nk2−k2/2,

which is 1 precisely when k = 2 log2 n. That is, 2 log2 n is roughly the largest k for which we
expect to see at least one k-clique.

On the other hand, there is no known polynomial-time algorithm that computes, with
high probability, a clique significantly larger than ≈ log2 n in a random graph from G(n, 1

2
).

And trivial heuristics — like starting with an arbitrary vertex and repeatedly adding an

5A canonical application of the “second moment method” [3] shows that this random variable is unbe-
lievably concentrated: there as an integer k ≈ 2 log2 n such that almost every graph has maximum clique
either k or k + 1.

6

arbitrary vertex that is adjacent to everything already chosen — already obtain the log2 n
bound with high probability. (Exercise: prove this.) Thus the Erdös-Renyi model fails to
distinguish between different efficient heuristics for the Maximum Clique problem.6

2.2 Planted Random Graph Models

Recall our motivation for the Bilu-Linial stability definition and the Balcan-Blum-Gupta
isolation definition: we may only be interested in inputs that have an obviously meaningful
solution, which we identify with being “clearly optimal” in some sense. Planted graph models
are a nice family of probabilistic models in which such a “clearly optimal” solution is guar-
anteed to exist (with high probability). We follow the elegant formalism of McSherry [21].

The Model. There are n vertices, partitioned into t clusters S1, . . . , St. For each pair i, j
of clusters (possibly with i = j) there is a parameter pij ∈ (0, 1), with pij = pji for every i, j.
A random graph is sampled by independently including each edge with endpoints in Si, Sj

with probability pij.

The Goal. Given a random graph from the above model, we strive to reverse engineer the
Si’s with high probability. Note that there needs to be nontrivial separation between certain
pij ’s; otherwise this goal is impossible due to inherent ambiguity in the sample.

Our first example is a planted version of the minimum bisection problem (recall Exam-
ple 2.1), and it was originally proposed by Bui et al. [8]. There were several follow-up papers
in the 1980s.

Example 2.3 (Planted Bisection) There are two clusters (t = 2) satisfying |S1| = |S2| =
n/2. The parameters p11, p22 are equal, say to p. The parameter p12, denoted q, is less
than p. The question is then: for how small a gap p − q is polynomial-time recovery of the
planted bisection possible?

We return to the graph bisection problem when we discuss semirandom models below.
Our second example is a planted version of the maximum clique problem (recall Exam-

ple 2.2) and was first suggested by Karp [19].

Example 2.4 (Planted Clique) There are again two clusters, with |S1| = k and |S2| =
n − k. We set p11 = 1 so that S1 is a k-clique. The parameters p12 and p22 are set to a
common value p. The question is then: for a given p (1

2
, say), how big does k need to be

before the planted clique can be recovered in polynomial time?

6The computational complexity of finding a maximum clique in a random graph is highly unclear. Note
that the problem can be solved in quasi-polynomial (i.e., nO(log n)) time by brute-force search, with high
probability. It is conjectured to be a hard problem, however, and there is even a (theoretical) cryptosystem
based on it [16].

7

The planted clique problem is clearly easy when k is really huge, like k = n − O(1).
Kucera [20] observed that it is easy (for p = 1

2
) even when k = Ω(

√
n log n). To see this,

think about generating a random sample of the planted maximum clique problem in the
following way: first take a sample from the usual Erdös-Renyi G(n, p) model; then choose
k vertices at random and “fill them in” to make them a clique. After the first step, the
expected degree of each node is (n − 1)/2, and Chernoff bounds imply sharp concentration:
with high probability, all node degrees are n

2
±c

√
n log n with high probability (for a suitable

constant c). Filling in the k-clique boosts the degree of those k nodes by roughly k/2 each,
without affecting the degrees of nodes outside the clique. Thus if k > 4c

√
n log n, the clique

nodes are the k nodes of the graph with the largest degrees (with high probability); the
clique is then obviously recoverable in linear time.

Alon et al. [2] used sophisticated techniques to achieve a slight improvement: polynomial-
time recovery of a planted clique with p = 1

2
and k = Ω(

√
n). Closing the gap between the

upper bound of k ≈ √
n and the lower bound of k ≈ log n for polynomial-time solvability of

the planted clique problem is a major open question.7

3 Semirandom Models

Semirandom graph modes are a very nice idea of Blum and Spencer [5]; the results we discuss
are from Feige and Kilian [13]. The goal of these models is to have as robust a data model
as possible, subject to preserving the existence of a “planted” or “clearly optimal” solution.
Like upcoming lectures on pseudorandom data and on smoothed analysis, the idea of the
model is to blend together a probabilistic and an adversarial approach.

3.1 Definition and Discussion

We explain the model in particular for the minimum bisection and maximum clique problems.
Nature and an adversary conspire to produce a hard input as follows. First, nature chooses
a random instance from the corresponding planted model (Examples 2.3 and 2.4). Second,
the adversary can make the sparse regions sparser (by removing edges) and the dense regions
denser (by adding edges) in an arbitrary way. So in the minimum bisection problem, the
adversary can delete any edges across the planted bisection and add any edges that do not
cross this bisection. In the maximum clique problem, the adversary can remove any edges
that are not inside the planted clique.

An easy but key observation is that the planted solution survives arbitrary actions of the
adversary. In fact, since the adversary can intuitively only make the planted solution “more
optimal”, one might wonder if the semirandom model is really any harder than the planted
one. There is no known formal equivalence or separation between any planted problem and
its semirandom counterpart. But there are certainly algorithms that work in a planted model

7Progress would have implications for other problems — for example, the hardness’ of finding certain
approximate Nash equilibria in two-player games is currently based on the presumed difficulty of solving the
planted clique problem with k = o(

√
n) [15].

8

but not in the corresponding semirandom one. For example, the “top k degrees” algorithm
above that recovers the planted maximum clique with k = Ω(

√
n log n) fails miserably in

the semirandom model, even when k is linear in n: the adversary can sparsify the edges
between the clique nodes and the other nodes, lowering the degrees of the clique nodes to
right around n/2.

The benefit of the semirandom model over the planted one is that it should encourage
more “robust” solutions — algorithms that are not overfitted to a particular data model.
In the planted model, an algorithm can take advantage of two properties of the input: (i)
there is a clearly optimal solution (a plausible property of many “real instances”); and (ii)
the input shares lots of non-trivial and useful properties with completely random instances,
such as highly predictable node degrees (a questionable property of “real instances”). The
first advantage was the motivating point behind the planted model, while the second was
only a side effect of our modeling choices. The semirandom model offers an algorithm only
the first advantage, and is thus more faithful to our original goals.

3.2 Case Study: Graph Bisection

Recall the planted bisection problem (Example 2.3). Assume that p, q are constants with

p − q ≥ c

√

log n

n
, (5)

where c is a sufficiently large constant. Calculations show that this separation is necessary for
the intended planted bisection (S1, S2) to be the minimum bisection with high probability [8].

Feige and Kilian [13] prove the following cool theorem.

Theorem 3.1 ([13]) Under assumption (5), there is a polynomial-time algorithm that com-
putes the minimum bisection in the semirandom model, with high probability.

Their approach is to use semidefinite programming, which was also mentioned in passing
last lecture. Given a graph G = (V, E), we define a relaxation (i.e., lower bound) of the
minimum bisection problem as follows. We adopt the linear objective function

∑

(i,j)∈E : i<j

1 − xij

2
, (6)

and maximize it subject to the linear constraints

∑

i,j∈V

xij = 0 (7)

and
xii = 1 for all i ∈ V , (8)

9

and also the possibly bizarre-sounding constraint that the V × V matrix X of the xij ’s is
symmetric and positive semidefinite.8 This mathematical program can be solved in polyno-
mial time (up to an arbitrarily small additive error term), using either the ellipsoid method
or modern interior-point techniques. A good first-cut rule of thumb is that minimization
mathematical programs are polynomial-time solvable if and only if both the objective func-
tion and the feasible region are convex. Observe that the set of symmetric and positive
semidefinite matrices is indeed convex, so we should not be surprised that this mathematical
program is tractable.

But what good is it? Let b(G) denote the number of edges crossing the minimum bisection
of G and let h(G) denote the optimal solution to the semidefinite program above. We claim
that h(G) ≤ b(G). To see this, let (S1, S2) be an optimal bisection of G and let s ∈ {±1}V

denote the corresponding characteristic vector. Form the matrix X = ssT , which is clearly
symmetric and positive semidefinite (and rank one, even). The constraint (8) on the diagonal
of X clearly holds. Since |S1| = |S2|, the constraint (7) also holds. Finally, observe that the
objective function value of this X is precisely b(G). The optimal value h(G) can only be less
than this.

Next, we claim that if Ĝ is obtained from G be adding a single edge, then

h(G) ≤ h(Ĝ) ≤ h(G) + 1. (9)

We leave the verification of (9) as an easy exercise; the key point is that constraint (8) and
the positive semidefinite constraint force all xij ’s to have magnitude at most 1.

Since computing a minimum bisection is NP -hard and computing h(G) can be done in
polynomial time, we expect that h(G) < b(G) for many graphs G. The main technical lemma
in Feige and Kilian [13], which is inspired by Boppana [6], is that the relaxation is exact in
the planted model.

Lemma 3.2 For a random graph in the planted (non-semirandom) bisection model, under
assumption (5), h(G) = b(G) with high probability.

The proof of Lemma 3.2 is quite technical and we won’t discuss it. It involves “guessing and
checking” a solution to the dual semidefinite program that has objective function value b(G).

Unlike previous algorithms for planted models, the semidefinite programming approach
extends automatically to the semirandom model (and is therefore a “robust algorithm” in
some sense).

Proof of Theorem 3.1: Begin with a random sample G0 from the planted model. By
Lemma 3.2, h(G0) = b(G0) with high probability. The adversary adds or deletes edges
one at a time, yielding a sequence G0, . . . , Gt. We claim that, by induction, b(Gi) = h(Gi)
for every i.

First, when the adversary adds an edge not in the planted bisection, b(Gi) = b(Gi−1).
By (9), h(Gi) ≥ h(Gi−1) = b(Gi−1) = b(Gi). But since h(G) ≤ b(G) for every graph, we
must have b(Gi) = h(Gi).

8Recall there are many equivalent definitions of such matrices: the (full) set of real eigenvalues are all
nonnegative; the quadratic form yT Xy is nonnegative for all y; or X has a “square root” U with X = UUT .

10

When the adversary removes an edge of the planted bisection, b(Gi) = b(Gi−1) − 1.
By (9), h(Gi) ≥ h(Gi−1)− 1 = b(Gi−1)− 1 = b(Gi). But since h(G) ≤ b(G) for every graph,
we must have b(Gi) = h(Gi). �

The proof above shows how to compute the value b(G) of the minimum bisection in
polynomial time with high probability (by computing h(G) instead). We leave as a non-
trivial exercise the task of using this subroutine to reconstruct the planted bisection itself in
polynomial time.

References

[1] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In
Proceedings of the 18th Annual Conference on Learning Theory (COLT), pages 458–469,
2005.

[2] N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hiddin clique in a random
graph. Random Structures & Algorithms, 13(3-4):457–466, 1998. Preliminary version
in SODA ’98.

[3] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, 2008. Third edition.

[4] S. Arora and R. Kannan. Learning mixtures of separated nonspherical Gaussians. An-
nals of Applied Probability, 15(1A):69–92, 2005. Preliminary version in STOC ’01.

[5] A. Blum and J. H. Spencer. Coloring random and semi-random k-colorable graphs.
Journal of Algorithms, 19(2):204–234, 1995.

[6] R. B. Boppana. Eigenvalues and graph bisection: An average-case analysis. In Pro-
ceedings of the 28th Annual Symposium on Foundations of Computer Science (FOCS),
pages 280–285, 1987.

[7] S. C. Brubaker and S. Vempala. Isotropic PCA and affine-invariant clustering. In Pro-
ceedings of the 49th Annual Symposium on Foundations of Computer Science (FOCS),
pages 551–560, 2008.

[8] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection algorithms with
good average case behavior. Combinatorica, 7(2):171–191, 1987. Preliminary version in
FOCS ’84.

[9] K. Chaudhuri. Learning Mixtures of Distributions. PhD thesis, U.C. Berkeley, 2007.

[10] K. Chaudhuri and S. Rao. Beyond Gaussians: Spectral methods for learning mixtures
of heavy-tailed distributions. In Proceedings of the 21st Annual Conference on Learning
Theory (COLT), pages 21–32, 2008.

11

[11] A. Dasgupta, J. E. Hopcroft, J. M. Kleinberg, and M. Sandler. On learning mixtures of
heavy-tailed distributions. In Proceedings of the 46th Annual Symposium on Foundations
of Computer Science (FOCS), pages 491–500, 2005.

[12] S. Dasgupta. Learning mixtures of Gaussians. In Proceedings of the 40th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 634–644, 1999.

[13] U. Feige and J. Kilian. Heuristics for semirandom graph problems. Journal of Computer
and System Sciences, 63(4):639–671, 2001. Preliminary version in FOCS ’98.

[14] J. Feldman, R. O’Donell, and R. A. Servedio. Learning mixtures of product distri-
butions over discrete domains. SIAM Journal on Computing, 37(5):1536–1564, 2008.
Preliminary version in FOCS ’05.

[15] E. Hazan and R. Krauthgamer. How hard is it to approximate the best Nash equilib-
rium? In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 720–727, 2009.

[16] A. Juels and M. Peinado. Hiding cliques for cryptographic security. Designs, Codes,
and Cryptography, 20(3):269–280, 2000. Preliminary version in SODA ’98.

[17] A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians.
In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing (STOC),
pages ??–??, 2010.

[18] R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture
models. In Proceedings of the 18th Annual Conference on Learning Theory (COLT),
pages 444–457, 2005.

[19] R. M. Karp. The probabilistic analysis of some combinatorial search algorithms. In
J. F. Traub, editor, Algorithms andComplexity: New Directions and Recent Results,
pages 1–19. Academic Press, 1976.

[20] L. Kucera. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2-3):193–212, 1995.

[21] F. McSherry. Spectral partitioning of random graphs. In Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 529–537, 2001.

[22] S. Vempala and G. Wang. A spectral algorithm for learning mixture models. Journal
of Computer and System Sciences, 68(4):841–860, 2004. Preliminary version in FOCS
’02.

12

