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1 Mechanism Design: The Science of Rule-Making

This course is roughly organized into three parts, each with its own overarching goal. Here
is the first.

Course Goal 1 Understand how to design systems with strategic participants that have
good performance guarantees.

We begin with a cautionary tale. In 2012, the Olympics were held in London. One of
the biggest scandals of the event concerned, of all sports, women’s badminton. The scandal
did not involve any failed drug tests, but rather a failed tournament design that did not
carefully consider incentives.

The tournament design that was used is familiar from World Cup soccer. There are
four groups (A,B,C,D) of four teams each. The tournament has two phases. In the first
”round-robin” phase, each team plays the other three teams in its group, and does not play
teams in other groups. The top two teams from each group advance to the second phase,
the bottom two teams from each group are eliminated. In the second phase, the remaining
eight teams play a standard ”knockout” tournament (as in tennis, for example): there are
four quarterfinals (with the losers eliminated), then two semifinals (with the losers playing
an extra match to decide the bronze model), and then the final (the winner gets the gold,
the loser the silver).

The incentives of participants and of the Olympics committee (and fans) are not neces-
sarily aligned in such a tournament. What does a team want? To get as good a medal as
possible, of course. What does the Olympics committee want? They didn’t seem to think
carefully about this question, but in hindsight it’s clear that they want every team to try
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their best to win every match. Why, you ask, would a team ever want to lose a match?
Indeed, in the second ”knockout” phase of the tournament, where losing leads to instant
elimination, it’s obvious that winning is better than losing.

To understand the incentive issues, we need to explain how the eight winners from the
round-robin phase are paired up in the quarterfinals. The team with the best record from
group A plays the second-best team from group C in the first quarterfinal; similarly with the
best team from group C and the second-best time from group A in the third quarterfinal; and
similarly with the top two teams from groups B and D in the second and fourth quarterfinals.
The dominoes started to fall when, on the last day of round-robin competition, there was a
shocking upset: the Danish team of Pedersen and Juhl (PJ) beat the Chinese team of Qing
and Wunlei (QW), and as a result PJ won group D with QW coming in second (so both
teams advanced to the knockout round).

The first controversial match involved another team from China, Xiaoli and Yang (XY),
and the South Korean team of Kyung-eun and Ha-na (KH). Both teams had a 2-0 record
in group A play. Thus, both were headed for the knockout stage, with the winner and
loser of this match the top and second-best team from the group, respectively. Here was the
issue: the group-A winner would meet the fearsome QW team (which came in only second in
group D) in the semifinals of the knockout tournament (where a loss means a bronze medal
at best), while the the second-best team in group-A would not have to face QW until the
final (where a silver medal is guaranteed). Both the XY and KH teams found the difference
between these two scenarios significant enough to try to deliberately lose the match.1 This
unappealing spectacle led to scandal, derision, and, ultimately, the disqualification of the
XY and KH teams, as well as two group C teams (from Indonesia and another team from
South Korea) that used the same strategy, for the same reason.2

The point is that, in systems with strategic participants, the rules matter. Poorly designed
systems suffer from unexpected and undesirable results. The burden lies on the system
designer to anticipate strategic behavior, not on the participants to behave against their
own interests. Can we blame the badminton players for acting to maximize their medal
placement? To quote Hartline and Kleinberg [5]:

”The next time we bemoan people exploiting loopholes to subvert the intent of the
rule makers, instead of asking ’What’s wrong with these people?” let’s instead ask,
’What’s wrong with the rules?’ and then adopt a scientifically principled approach to
fixing them.”

There is a well-developed science of rule-making, the field of mechanism design. The goal
in this field is to design rules so that strategic behavior by participants leads to a desirable
outcome. Killer applications of mechanism design, which we will discuss in detail later,
include Internet search auctions, wireless spectrum auctions, matching medical residents to
hospitals, matching children to schools, and kidney exchange markets.

1That the teams feared the Chinese team QW far more than the Danish team PJ seems justified in
hindsight: PJ were knocked out in the quarterfinals, while QW won the gold medal.

2If you’re having trouble imagining what a badminton match looks like when both teams are trying to
lose, I encourage you to track down the video on YouTube.
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(b) Augmented network

Figure 1: Braess’s Paradox. The addition of an intuitively helpful edge can adversely affect
all of the traffic.

We’ll study some of the basics of the traditional economic approach to mechanism de-
sign, along with several complementary contributions from computer science that focus on
computational efficiency, approximate optimality, and robust guarantees.

2 The Price of Anarchy: When Is Selfish Behavior

Near-Optimal?

Sometimes you don’t have the luxury of designing the rules of a game from scratch, and want
instead to understand a game that occurs “in the wild” — the Internet or a road network,
for example.

Course Goal 2 When is selfish behavior essentially benign?

2.1 Braess’s Paradox

For a motivating example, consider Braess’s Paradox (Figure 1) [1]. There is a suburb s,
a train station t, and a fixed number of drivers who wish to commute from s to t. For the
moment, assume two non-interfering routes from s to t, each comprising one long wide road
(with travel time one hour, no matter how much traffic uses it) and one short narrow road
(with travel time in hours equal to the fraction of traffic using it) as shown in Figure 1(a).
The combined travel time in hours of the two edges on one of these routes is 1 + x, where
x is the fraction of the traffic that uses the route. The routes are therefore identical, and
traffic should split evenly between them. In this case, all drivers arrive at their destination
90 minutes after their departure from s.

Now, suppose we install a teleportation device allowing drivers to travel instantly from v

to w. The new network is shown in Figure 1(b), with the teleporter represented by edge
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(v, w) with constant cost c(x) = 0, independent of the road congestion. How will the drivers
react?

We cannot expect the previous traffic pattern to persist in the new network. The travel
time along the new route s → v → w → t is never worse than that along the two original
paths, and it is strictly less whenever some traffic fails to use it. We therefore expect all
drivers to deviate to the new route. Because of the ensuing heavy congestion on the edges
(s, v) and (w, t), all of these drivers now experience two hours of travel time when driving
from s to t. Braess’s Paradox thus shows that the intuitively helpful action of adding a new
zero-cost link can negatively impact all of the traffic!

Braess’s Paradox shows that selfish routing does not minimize the commute time of the
drivers — in the network with the teleportation device, an altruistic dictator could dictate
routes to traffic in improve everyone’s commute time by 25%. We define the price of anarchy
(POA) to be the ratio between the system performance with strategic players and the best-
possible system performance — for the network in Figure 1(b), the ratio between 2 and 3

2

(i.e., 4

3
).

The POA was first defined and studied by computer scientists. Every economist and
game theorist knows that equilibria are generally inefficient, but until the 21st century there
had been almost no attempts to quantify such inefficiency in different application domains.

In our study of the POA, the overarching goal is to identify application domains and
conditions under which the POA is guaranteed to be close to 1, and thus selfish behavior
leads to a near-optimal outcome. Killer applications include network routing, scheduling, re-
source allocation, and simple auction designs. For example, modest overprovision of network
capacity guarantees that the POA of selfish routing is close to 1 [7].

2.2 Strings and Springs

As a final aside, we note that selfish routing is also relevant in systems that have no explicit
notion of traffic whatsoever. Cohen and Horowitz [3] gave the following analogue of Braess’s
Paradox in a mechanical network of strings and springs.

In the device pictured in Figure 2, one end of a spring is attached to a fixed support,
and the other end to a string. A second identical spring is hung from the free end of the
string and carries a heavy weight. Finally, strings are connected, with some slack, from the
support to the upper end of the second spring and from the lower end of the first spring to
the weight. Assuming that the springs are ideally elastic, the stretched length of a spring
is a linear function of the force applied to it. We can therefore view the network of strings
and springs as a traffic network, where force corresponds to traffic and physical distance
corresponds to cost.

With a suitable choice of string and spring lengths and spring constants, the equilibrium
position of this mechanical network is described by Figure 2(a). Perhaps unbelievably, sev-
ering the taut string causes the weight to rise, as shown in Figure 2(b)! An explanation for
this curiosity is as follows. Initially, the two springs are connected in series, and each bears
the full weight and is stretched out to great length. After cutting the taut string, the two
springs are only connected in parallel. Each spring then carries only half of the weight, and
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(a) Before (b) After

Figure 2: Strings and springs. Severing a taut string lifts a heavy weight.

accordingly is stretched to only half of its previous length. The rise in the weight is the
same as the improvement in the selfish outcome obtained by deleting the zero-cost edge of
Figure 1(b) to obtain the network of Figure 1(a).

This construction is not merely theoretical; on YouTube you can find several physical
demonstrations of Braess’s Paradox that were performed (for extra credit) by past students
of CS364A.

3 Complexity of Equilibria: How Do Strategic Players

Learn?

Some games are easy to play. For example, in the second network of Braess’s Paradox
(Figure 1(b)), using the teleporter is a no-brainer for every individual — it is the best route,
no matter what other drivers do. In many other games, like the first-price auctions mentioned
in the next lecture, it’s much harder to figure out how to play.

Course Goal 3 How do strategic players reach an equilibrium? (Or do they?)

Informally, an equilibrium is a “steady state” of a system where each participant, assum-
ing everything else stays the same, want to remain as-is. Hopefully, you didn’t learn the
definition of a Nash equilibrium from the movie A Beautiful Mind.
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In most games, the best action to play depends on what the other players are doing.
Rock-Paper-Scissors, rendered below in “bimatrix” form, is a canonical example.

Rock Paper Scissors
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

One player chooses a row and the other a column. The numbers in the corresponding
matrix entry are the payoffs for the row and column player, respectively.

There is certainly no “determinstic equilibrium” in the Rock-Paper-Scissors game: what-
ever the current state, at least one player would benefit from a unilateral move.

A crucial idea, developed largely by von Neumann, is to allow randomized (a.k.a. mixed)
strategies. (In a game like Rock-Paper-Scissors, from your perspective, your opponent is
effectively randomizing.) If both players randomize uniformly in Rock-Paper-Scissors, then
neither player can increase their expected payoff via a unilateral deviation — indeed, ev-
ery unilateral deviation yields zero expected payoff to the deviator. A pair of probability
distributions with this property is a (mixed-strategy) Nash equilibrium.

Remarkably, with randomization, every game has at least one Nash equilibrium.

Nash’s Theorem (’51): Every bimatrix game has a Nash equilibrium.

Nash’s theorem holds more generally in games with any finite number of players.
Another piece of good news, that we’ll cover in the course: if a bimatrix game is zero-sum

— meaning that the payoff pair in each entry sums to zero, like in Rock-Paper-Scissors —
then a Nash equilibrium can be computed in polynomial time. This can be done via linear
programming or, if a small amount of error can be tolerated, via simple iterative learning
algorithms. There algorithmic results give credence to the Nash equilibrium concept as a
good prediction of behavior in zero-sum games.

Far more recently (mid-last decade), computer science contributed an important negative
result: under suitable complexity assumptions, there is no polynomial-time for computing
a Nash equilibrium in general (non-zero-sum) games [2, 4]. While the problem is not NP -
hard (unless NP = coNP ), it is something called “PPAD-hard”, which we will explain and
interpret in due course.

This hardness result is interesting for at least two different reasons. On a technical
level, it shows that computing Nash equilibria is a fundamental computational problem of
“intermediate” difficulty (like factoring and graph isomorphism) — unlikely to be in P or
NP -complete. On a conceptual level, many interpretations of an equilibrium concept involve
someone — the participants or a designer — determining an equilibrium. For example, the
idea that markets implicitly compute a solution to a significant computational problem goes
back at least to Adam Smith’s notion of the invisible hand [8]. If all parties are boundedly
rational, then an equilibrium can be interpreted as a credible prediction only if it can be
computed with reasonable effort. Rigorous intractability results thus cast doubt on the
predictive power of equilibrium concepts (a critique that dates back at least to Rabin [6]).
While intractability is certainly not the first stone thrown at the Nash equilibrium concept, it
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is one that theoretical computer science is ideally situated to make precise. This perspective
also provides novel motivation for our study of “easier” equilibrium concepts, like correlated
equilibria and coarse correlated equilibria.

4 What Computer Science Brings to the Table

There is, of course, a very rich literature on mechanism design and equilibria in economics. In
this course, we’ll see how computer scientists have complemented this literature in a number
of novel ways. The traditional economics approach to the topics we study tends to focus on
“Bayesian” (i.e., average-case) analyses; emphasizes exact solutions and characterizations;
and usually ignores computational issues. Computer science has offered a focus on and a
language to discuss computational complexity; popularized the widespread use of approxi-
mation bounds to reason about models where exact solutions are unrealistic or unknowable;
and encouraged more robust performance guarantees.

5 Target Audience

These notes assume a background in undergraduate theoretical computer science — basic
algorithms and NP-completeness. They do not assume any background in game theory
or economics. (Conversely, this course is no substitute for a traditional game theory or
microeconomics economics.) The level is meant to be accessible to a Masters or 1st-year
PhD student with an affinity for theory.
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