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1 Preamble

Lectures #6–8 proposed several different “stability conditions” on problem instances, of var-
ious NP -hard clustering and graph partitioning problems, under which the exact recovery
of the optimal solution is possible in polynomial time. These stability conditions were rea-
sonably natural, in that there was a plausible narrative about why “real-world” instances
might tend to satisfy them (at least approximately).1

Last lecture (Lecture #9), we gave a sufficient condition for the computationally efficient
recovery of sparse solutions to underdetermined linear systems. The condition was techni-
cal — that the kernel of the constraint matrix A is an almost Euclidean subspace — but
was justified by the (omitted) proof that random matrices satisfy the condition with high
probability (for many different distributions on matrices).

Today we continue our ongoing study of the polynomial-time exact recovery of “planted”
or “ground truth” solutions. We’ll study randomized models (i.e., input distributions) that
share some spirit with the stability conditions of Lectures #6–8, in that the optimal solution
tends to “stick out.” The goals are to design and analyze polynomial-time algorithms that
recover the optimal solution with high probability (over the input distribution), and to
understand how far the optimal solution to an NP -hard problem has to stick out before
exact recovery is possible in polynomial time.
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1There has not been much empirical work on the extent to which these conditions hold in practice,

however.
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2 Probabilistic Planted Models

2.1 Erdös-Renyi Random Graphs

We review Erdös-Renyi random graphs as a starting point. Recall that a random graph from
G(n, p) is a simple undirected graph on n nodes, where each of the

(
n
2

)
possible edges is present

independently with probability p. The special case of p = 1
2

is the uniform distribution over
all n-vertex graphs. There are at least two reasons why the G(n, p) model is typically not
very useful for informing the design of graph algorithms. First, as with most pure average-
case analysis frameworks, the data model is too specific; second, as we show below in two
different examples, it fails to meaningfully differentiate between different algorithms.

Example 2.1 (Minimum Bisection) The graph bisection problem is the same as the min-
imum cut problem, except that the two sides of the graph are additionally constrained to
have equal size. That is, the input is an undirected graph G = (V, E) with an even number
of vertices and the goal is to identify the cut (S, S̄) with |S| = |S̄| that has the fewest number
of crossing edges.

Assume for simplicity that the edge probability p is a constant. Then for every bisec-
tion (S, S̄) of a set of n nodes, the expected number of crossing edges in a random graph
G ∈ G(n, p) is pn2/4. A straightforward application of the Chernoff bound (see Exercise
#37) shows that, with high probability, the number of edges crossing every bisection is this
same quantity, up to a 1± o(1) factor. Thus even an algorithm that computes a maximum
bisection is an almost optimal algorithm for computing a minimum bisection!

Example 2.2 (Maximum Clique) In the maximum clique problem, the goal (given an
undirected graph) is to identify the largest subset of vertices that are mutually adjacent. In
a random graph in the G(n, 1

2
) model, the size of the maximum clique is very likely to be

≈ 2 log2 n.2 To see heuristically why this is true, note that for an integer k, the expected
number of cliques on k vertices in a random graph of G(n, 1

2
) is exactly(

n

k

)
2−(k

2) ≈ nk2−k2/2,

which is 1 precisely when k = 2 log2 n. That is, 2 log2 n is roughly the largest k for which we
expect to see at least one k-clique.

On the other hand, there is no known polynomial-time algorithm that computes, with
high probability, a clique significantly larger than ≈ log2 n in a random graph from G(n, 1

2
).

And trivial heuristics — like starting with an arbitrary vertex and repeatedly adding an arbi-
trary vertex that is adjacent to everything already chosen — already obtain the log2 n bound
with high probability (see Problem #19). Thus the Erdös-Renyi model fails to distinguish
between different efficient heuristics for the Maximum Clique problem.3

2A canonical application of the “second moment method” [2] shows that this random variable is unbe-
lievably concentrated: there as an integer k ≈ 2 log2 n such that almost every graph has maximum clique
size either k or k + 1.

3The computational complexity of finding a maximum clique in a random graph is highly unclear. Note
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2.2 Planted Random Graph Models

Recall our primary motivation for our stability and sparsity conditions in Lectures #6–9:
we are often only interested in inputs that have an obviously meaningful solution, which
we identify with being “clearly optimal” in some sense. Planted graph models are a nice
family of probabilistic models in which such a “clearly optimal” solution exists with high
probability. Such models can be viewed as a randomized analog of the stability conditions
studied in Lectures #6–8. We follow the elegant formalism of McSherry [15]; see also the
“stochastic block model” [8].

The Model. There are n vertices, partitioned into t clusters S1, . . . , St. For each pair i, j
of clusters (possibly with i = j) there is a parameter pij ∈ (0, 1), with pij = pji for every i, j.
A random graph is sampled by independently including each edge with endpoints in Si, Sj

with probability pij.

The Goal. Given a random graph from the above model, we strive to reverse engineer the
Si’s with high probability. Note that there needs to be nontrivial separation between certain
pij’s; otherwise this goal is impossible due to inherent ambiguity in the sample.

Our first example is a planted version of the minimum bisection problem (recall Exam-
ple 2.1), and it was originally proposed by Bui et al. [5].4 There were several follow-up papers
in the 1980s.

Example 2.3 (Planted Bisection) There are two clusters (t = 2) satisfying |S1| = |S2| =
n/2. The parameters p11, p22 are equal, say to p. The parameter p12, denoted q, is less
than p. Intuitively, the problem gets easier as p− q grows larger. The question is then: for
how small a gap p− q is polynomial-time recovery of the planted bisection possible?

We return to the graph bisection problem when we discuss semirandom models below.
Our second example is a planted version of the maximum clique problem (recall Exam-

ple 2.2) and was first suggested by Karp [10].

Example 2.4 (Planted Clique) There are again two clusters, with |S1| = k and |S2| =
n − k. We set p11 = 1 so that S1 is a k-clique. The parameters p12 and p22 are set to a
common value p. The question is then: for a given p (1

2
, say), how big does k need to be

before the planted clique can be recovered in polynomial time?

The planted clique problem is clearly easy when k is really huge, like k = n − O(1).
Kucera [11] observed that it is easy (for p = 1

2
) even when k = Ω(

√
n log n). To see this, think

about generating a random sample of the planted maximum clique problem in the following
way: first take a sample from the usual Erdös-Renyi G(n, 1

2
) model; then choose k vertices at

that the problem can be solved in quasi-polynomial (i.e., nO(log n)) time by brute-force search, with high
probability. It is conjectured to be a hard problem.

4Strictly speaking, the model in [5] is slightly different from the one considered here: it considers a random
graph with a given number of edges and a given minimum bisection size.
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Figure 1: Degree distribution for G(n, 1/2), before planting the clique. A Chebyshev and
union bound argument shows that the spread is O(

√
n lg n) with high probability. If k ==

Ω(
√

n lg n) then the planted clique will consist of the k nodes with the highest degrees.

random and “fill them in” to make them a clique. After the first step, the expected degree
of each node is (n−1)/2, and Chebyshev’s inequality implies sharp concentration: with high
probability, all node degrees are n

2
± c
√

n log n for a suitable constant c (Figure 1). Filling in
the k-clique boosts the degree of those k nodes by roughly k/2 each, without affecting the
degrees of nodes outside the clique — in Figure 1, the cliques nodes all jump k/2 positions
to the right. Thus, if k > 4c

√
n log n, the clique nodes are the k nodes of the graph with

the largest degrees (with high probability); the clique is then obviously recoverable in linear
time.

Alon et al. [1] used more sophisticated techniques to achieve a slight improvement:
polynomial-time recovery of a planted clique with p = 1

2
and k = Ω(

√
n). Closing the gap be-

tween the upper bound of k ≈
√

n and the lower bound of k ≈ log n for the polynomial-time
solvability of the planted clique problem is a major open question.5

3 Semirandom Models

Semirandom graph modes are a very nice idea of Blum and Spencer [3]; the results we discuss
are from Feige and Kilian [6]. The goal of these models is to have as robust a data model
as possible, subject to preserving the existence of a “planted” or “clearly optimal” solution.
Like upcoming lectures on pseudorandom data and smoothed analysis, this is a “hybrid
model” that blends together the probabilistic and adversarial approaches.

3.1 Definition and Discussion

We explain the model in particular for the minimum bisection and maximum clique problems.
Nature and an adversary conspire to produce a hard input as follows. First, nature chooses
a random instance from the corresponding planted model (Examples 2.3 and 2.4). Second,

5Intractability of the planted clique problem with k = o(
√

n) is increasingly being used as a novel hardness
assumption. There is even a (theoretical) cryptosystem based on it [9]. For example, the problem is used
in [7] to identify a barrier to finding certain approximate Nash equilibria in two-player games.
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the adversary can make the sparse regions sparser (by removing edges) and the dense regions
denser (by adding edges) in an arbitrary way. So in the minimum bisection problem, the
adversary can delete any edges across the planted bisection and add any edges that do not
cross this bisection. In the maximum clique problem, the adversary can remove any edges
that are not inside the planted clique.6

An easy but key observation is that the planted solution survives arbitrary actions of the
adversary. In fact, since the adversary can intuitively only make the planted solution “more
optimal,” one might wonder if the semirandom model is really any harder than the planted
one. There is no known formal equivalence or separation between any planted problem and
its semirandom counterpart. But there are certainly algorithms that work in a planted model
but not in the corresponding semirandom one. For example, the “top k degrees” algorithm
above that recovers the planted maximum clique with k = Ω(

√
n log n) fails miserably in

the semirandom model, even when k is linear in n: the adversary can sparsify the edges
between the clique nodes and the other nodes, lowering the degrees of the clique nodes to
right around n/2 (Exercise #38).

The benefit of the semirandom model over the planted one is that it encourages more
“robust” solutions — algorithms that are not overfitted to a particular data model. In the
planted model, an algorithm can take advantage of two properties of the input: (i) there
is a clearly optimal solution (a plausible property of many “real instances”); and (ii) the
input shares lots of non-trivial and useful properties with completely random instances, such
as highly predictable node degrees (a questionable property of “real instances”). The first
advantage was the motivating point behind the planted model, while the second was only a
side effect of our modeling choices. The semirandom model offers an algorithm only the first
advantage, and is thus more faithful to our original goals.

3.2 Case Study: Graph Bisection

Recall the planted bisection problem (Example 2.3). Assume that p, q are constants with

p− q ≥ c

√
log n

n
, (1)

where c is a sufficiently large constant. Calculations show that this separation is necessary
for the intended planted bisection (S1, S2) to be the minimum bisection with high probabil-
ity [5].7

Feige and Kilian [6] prove the following cool theorem.

Theorem 3.1 ([6]) Under assumption (1), there is a polynomial-time algorithm that com-
putes the minimum bisection in the semirandom model, with high probability.

6See [12, 13] for recent proposals of semi-random graph models with an even stronger adversary.
7The results of this section continue to hold for p, q as small as Θ((log n)/n). For recent results where

p, q are very small (meaning O(1/n)), and only approximate recovery is possible, see [14, 16, 17].

5



Their approach is to use semidefinite programming. Given a graph G = (V, E), we define
a relaxation (i.e., a lower bound) of the minimum bisection problem as follows. We adopt
the linear objective function ∑

(i,j)∈E : i<j

1− xij

2
, (2)

and maximize it subject to the linear constraints∑
i,j∈V

xij = 0 (3)

and
xii = 1 for all i ∈ V , (4)

and also the possibly bizarre-sounding constraint that the V × V matrix X of the xij’s is
symmetric and positive semidefinite.8 This mathematical program can be solved in polyno-
mial time (up to an arbitrarily small additive error term), using either the ellipsoid method
or modern interior-point techniques.9

But what good is it? Let b(G) denote the number of edges crossing the minimum bisection
of G and let h(G) denote the optimal solution to the semidefinite program above. We claim
that h(G) ≤ b(G). To see this, let (S1, S2) be an optimal bisection of G and let s ∈ {±1}V
denote the corresponding characteristic vector. Form the matrix X = ssT , which is clearly
symmetric and positive semidefinite (and rank one, even). The constraint (4) on the diagonal
of X clearly holds. Since |S1| = |S2|, the constraint (3) also holds. Finally, observe that the
objective function value of this X is precisely b(G). The optimal value h(G) can only be less
than this.

Since computing a minimum bisection is NP -hard and computing h(G) can be done in
polynomial time, we expect that h(G) < b(G) for many graphs G. The main technical lemma
in Feige and Kilian [6], which is inspired by Boppana [4], is that the relaxation is exact in
the planted model.

Lemma 3.2 For a random graph in the planted (non-semirandom) bisection model, under
assumption (1), h(G) = b(G) with high probability.

The proof of Lemma 3.2 is quite technical and we won’t discuss it. It involves “guessing and
checking” a solution to the dual semidefinite program that has objective function value b(G).
See next lecture for an analogous (and less technical) “dual certificate” argument in the
context of a linear programming relaxation of a decoding problem; many “exact recovery”
results to-date follow this general paradigm.

8Recall there are many equivalent definitions of such matrices: the (full) set of real eigenvalues are all
nonnegative; the quadratic form yT Xy is nonnegative for all y; or X has a “square root” U with X = UUT .

9A good first-cut rule of thumb is that minimization mathematical programs are polynomial-time solvable
if and only if both the objective function and the feasible region are convex. Observe that the set of symmetric
and positive semidefinite matrices is indeed convex, so we should not be surprised that this mathematical
program is tractable.
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Unlike previous algorithms for planted models, the semidefinite programming approach
extends automatically to the semirandom model (and is therefore a “robust algorithm” in
some sense). The proof of this uses the following claim: if Ĝ is obtained from G be adding
a single edge, then

h(G) ≤ h(Ĝ) ≤ h(G) + 1. (5)

We leave the verification of (5) as an exercise; the key point is that constraint (4) and the
positive semidefinite constraint force all xij’s to have magnitude at most 1 (Exercise #39).

Proof of Theorem 3.1: Begin with a random sample G0 from the planted model. By
Lemma 3.2, h(G0) = b(G0) with high probability. The adversary adds or deletes edges
one at a time, yielding a sequence G0, . . . , Gt. We claim that, by induction, b(Gi) = h(Gi)
for every i.

First, when the adversary adds an edge not in the planted bisection, b(Gi) = b(Gi−1).
By (5), h(Gi) ≥ h(Gi−1) = b(Gi−1) = b(Gi). But since h(G) ≤ b(G) for every graph, we
must have b(Gi) = h(Gi).

When the adversary removes an edge of the planted bisection, b(Gi) = b(Gi−1) − 1.
By (5), h(Gi) ≥ h(Gi−1)− 1 = b(Gi−1)− 1 = b(Gi). But since h(G) ≤ b(G) for every graph,
we must have b(Gi) = h(Gi). �

The proof above shows how to compute the value b(G) of the minimum bisection in
polynomial time with high probability (by computing h(G) instead). We leave as an exercise
the task of using this subroutine to reconstruct the planted bisection itself in polynomial
time (Exercise #40).
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