
CS264: Beyond Worst-Case Analysis
Lecture #11: LP Decoding∗

Tim Roughgarden†

October 29, 2014

1 Preamble

This lecture covers our final subtopic within the “exact and approximate recovery” part of
the course. The problem we study concerns error-correcting codes, which solve the problem
of encoding information to be robust to errors (i.e., bit flips). We consider only binary codes,
so the objects of study are n-bit vectors. Recall that a code is simply a subset of {0, 1}n;
elements of this subset are codewords. Recall that the Hamming distance dH(x, y) between
two vectors is the number of coordinates in which they differ, and that the distance of a code
is the minimum Hamming distance between two different codewords.

For example, consider the code {x ∈ {0, 1}n : x has even parity}, where the codewords
are vectors that have an even number of 1s. One way to think about this code is as the set
of all (n − 1)-bit vectors, with an extra “parity bit” appended at the end. The distance of
the code is exactly 2. If an odd number of bit flips is suffered during transmission, the error
can be detected, and the receiver can request a retransmission from the sender. If an even
number of bit flips occurs, then the receiver gets a codeword different from the one intended
by the sender.

For a code with distance d, up to d− 1 adversarial errors can be detected. If the number
of errors is less than d/2, then no retransmission is required: there is a unique codeword
closest (in Hamming distance) to the transmission, and it is the message originally sent by
the receiver. That is, the corrupted transmission can be decoded by the receiver.

This lecture studies the computational problem of decoding a corrupted codeword, and
conditions under which the problem can be solved efficiently using linear programming. This
approach works well for a useful family of codes, described next.

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

..
.

Figure 1: Bipartite graph for expressing parity check codes. The n coordinates of V represent
the code word, and each element of C represents a parity check.

2 LDPC Codes: From Graphs to Codes

Graphs are very useful for expressing codes and some of their properties. Consider a bi-
partite graph G = (V,C,E); see Figure 1. The left-hand side nodes V correspond to the
n coordinates or variables of a code word. Every right-hand node j ∈ C corresponds to a
“parity check.” More formally, a vector x ∈ {0, 1}n satisfies the parity check j ∈ C if xN(j)

has even parity, where N(j) ⊆ V denotes the neighbors of node j in G and xI denotes the
vector x projected onto the coordinates of the set I. The code corresponding to G is, by
definition, the vectors x ∈ {0, 1}n that satisfy every parity check of C. For instance, the
example code of the previous section corresponds to the graph in which C is a single node,
connected to all of the variables. For today’s lecture, you might want to think of each parity
check as containing 20 or so variables, with each variable in 10 or so different parity checks.
(With these parameters, C is be roughly half the size of V .) These parity check codes are
also known as binary linear codes (see Homework #6).

Every bipartite graph defines a code, but some graphs/codes are better than others.
The goal of this lecture is to identify conditions on the graph G so that it is possible to
correct many errors (a constant fraction, even), and moreover in polynomial time (using
linear programming).

Following [2], we propose the following conditions.

(C1) Every left-hand side node i ∈ V has exactly d neighbors, where d is a constant (like
10).

(C2) Every right-hand side node j ∈ C has at most a constant (like 20) number of neighbors.

(C3) [Expansion condition] There is a constant δ > 0, independent of n, such that for all
subsets S ⊆ V with size |S| at most δn,

|N(S)| ≥ 3

4
d|S|, (1)

where N(S) ⊆ C denotes the nodes (parity checks) of C that have at least one neighbor
in S. Intuitively, this expansion condition implies that a bunch of errors (represented

2

Figure 2: The expansion condition (C3). Every small enough subset S ⊂ V must have lots
of distinct neighbors in C.

by S) must be reflected in tons of different parity checks (corresponding to N(S)). See
Figure 2.

In the inequality (1), we use N(S) to denote the vertices of C that have at least one
neighbor in S. Observe that by (C1), the number of edges sticking out of S is only d|S|,
so |N(S)| is certainly at most d|S|. The condition (1) asserts that the number of distinct
neighbors of S is almost as large as the trivial upper bound, and moreover this holds for
every one of the exponentially many choices for S. This sounds like a strong property, so
you would be right to question if there really exist any graphs that satisfy (C3). It turns
out that almost all graphs satisfy the condition — with high probability (approaching 1 as
n → ∞), a random graph that satisfies (C1) and (C2) also satisfies (C3). (See Homework
#6 for details.) Conditions (C1)–(C3) more or less define the codes known as low-density
parity check (LDPC) codes.

Our interest is computationally efficient decoding algorithms; as a prerequisite, we estab-
lish next the fact that LDPC codes have large distance (linear in n). The proof also develops
intuition for why the expansion condition (C3) leads to good codes.

Proposition 2.1 A code satisfying conditions (C1)–(C3) has distance at least δn, where
δ > 0 is the same constant as in condition (C3).

Proof: Let x be a code word, and let z ∈ {0, 1}n be a vector with dH(x, z) < δn. We need
to show that z is not a code word.

Let S denote the dH(x, z) coordinates in which x and z differ. We claim that there exists
a parity check j ∈ C that involves exactly one coordinate of S. Observe that this claim
implies the proposition: since x is a code word, it satisfies j, and since exactly one of the
coordinates of j is flipped in z, relative to x, z does not satisfy the parity check j. Hence z
is not a code word.

To prove the claim, note that condition (C1) implies that there are precisely d|S| edges
sticking out of the vertices of G that correspond to S. Since |S| < δn, condition (C3) implies
that |N(S)| ≥ 3

4
d|S|. That is, at least 75% of the edges sticking out of S go to distinct

3

vertices of C. This leaves at most 25% of the edges with the capability of donating a second
neighbor of S to a parity check in N(S). It follows that at least(

3

4
− 1

4

)
d|S|

vertices of N(S) have a unique neighbor in S, which completes the claim and the proof. �

3 LP Decoding

We now know the it is possible in principle to decode LDPC codes up to a constant fraction
of errors. But can we do it efficiently?

3.1 Integer Programming Formulation

We begin with an integer programming formulation of the decoding problem. Given a
corrupted code word z, we want to solve the optimization problem

min dH(x, z) (2)

subject to
x is a code word. (3)

It is straightforward to express (2) as a linear objective function. Let I, J ⊆ {1, 2, . . . , n}
denote the coordinates for which zi = 0 and zi = 1, respectively. Introduce a binary variable
xi ∈ {0, 1} for i = 1, 2, . . . , n. Then (2) is equivalent to

min
∑
i∈I

xi +
∑
i∈J

(1− xi).

The “1”s in the second sum contribute the constant value |J | to every solution, so the
optimization problem is unchanged if we simplify the objective to

min
∑
i∈I

xi −
∑
i∈J

xi. (4)

Formulating the constraints (3) is trickier. Intuitively, we introduce variables and con-
straints that ensure that each parity check j ∈ C is “locally satisfied,” and also constraints
ensuring that all of the “local solutions” to the parity checks are “globally consistent,” in
the sense that they are all induced by a single vector x. More precisely, define

Aj = {y ∈ {0, 1}N(j) : y has even parity}

as the set of assignments to the variables in the parity check j that satisfy the check. For
each check j ∈ C and satisfying assignment a ∈ Aj, we introduce a new binary decision
variable yj,a with the intended semantics that

yj,a =

{
1 if xN(j) = a
0 otherwise.

(5)

4

Observe that the number of such variables scales with |Aj|, which in turn is exponential in
the number of variables |N(j)| in the parity check. Property (C2) of LDPC codes implies
that |N(j)| = O(1), and hence |Aj| = O(1) for every j ∈ C.

Our first set of constraints asserts that every parity check is satisfied:∑
a∈Aj

yj,a = 1 (6)

for every j ∈ C. These constraints are not enough: we need additional constraints that
relate x to y, as otherwise the optimal solution simply picks independently an assignment
a ∈ Aj for each j ∈ C and then sets x = z to minimize the objective (4).

Our second set of constraints asserts that

xi =
∑

a∈Aj : a(i)=1

yj,a (7)

for every variable-check pair (i, j) ∈ E, where a(i) denotes the value assigned to xi by a.
As intended, xi will be either 0 or 1, depending on the value chosen for the variable by the
local assignment a ∈ Aj for the parity check j ∈ C. For every i ∈ V , this holds for every
local assignment a ∈ Aj in which i participates (i.e., with j ∈ N(i)). The only way for the
constraints (7) to hold for a 0-1 solution is if y is induced by x according to the intended
semantics in (5).

Summarizing, the feasible 0-1 solutions to the constraints (6) and (7) are precisely the
code words, and the feasible solution that optimizes the objective function (4) is the nearest
code word to the received message z.

3.2 Linear Programming Relaxation

Computing the nearest code word is, in general, an NP -hard problem. To obtain a compu-
tationally efficient heuristic, we consider the natural relaxation of the above integer program:
maximize the objective (4) subject to x,y ≥ 0 and the constraints (6) and (7). We denote
this linear program by (LP). It has polynomial size (using (C2)) and hence can be solved in
polynomial time.

3.3 The Main Result

If the optimal solution (LP) happens to be integral, then it must be the code word nearest
to z — every code word is a feasible and integral solution and the objective function is the
Hamming distance. The worry is that the optimal solution to (LP) is fractional, and thus
does not yield a code word. Since computing the nearest code word is an NP -hard problem
in general, we expect this to occur in some instances. Our goal is to identify conditions —
on the code-defining graph G, and the distance between z and the nearest code word —
under which the optimal solution to (LP) is integral. We’ll achieve this goal in the form of
the following theorem.

5

Theorem 3.1 ([1]) If the graph G satisfies conditions (C1) and (C3) and the corrupted
code word z has Hamming distance at most δn/2 from its nearest code word x, then the
unique optimal solution to (LP) is integral (and equal to x).

The constant δ in Theorem 3.1 is the same one as in the expansion condition (C3).

4 Proof of Theorem 3.1

We prove Theorem 3.1 in two parts, which mirror several of our other exact recovery proofs.
Section 4.1 identifies a somewhat technical sufficient condition for the exactness of (LP).
Section 4.2 proves that the hypotheses of Theorem 3.1 imply that this sufficient condition is
met. Before explaining either of these steps, a preliminary observation: by a simple shifting
argument (see Homework #6), Theorem 3.1 reduces to the special case in which the nearest
code word to the input z is the all-zero vector (which is always a code word of a parity check
code). Thus, for the rest of this section, we assume that the nearest code word to z is 0,
and hence z has at most δn/2 non-zero variables.

4.1 A Sufficient Condition for the Exactness of (LP)

Our sufficient condition for the integrality of the optimal solution to (LP) is derived from
weak linear programming duality. No worries if this means nothing to you; we’ll include
a self-contained argument. We alluded to the idea of a “dual certificate” last lecture: we
claimed without proof that the SDP relaxation of the minimum bisection problem has an
integral optimal solution, and that the proof involves “guessing and checking” a suitable
dual solution. This is exactly the approach we execute here, albeit in the simpler setting of
linear (not semidefinite) programs.

The key technical definition is the following.

Definition 4.1 Let G = (V,C,E) be a bipartite graph and z ∈ {0, 1}V . Let I ⊆ V denote
the coordinates with zi = 0, and J the coordinates with zi = 1. The real-valued edge
weights w : E → R are feasible if:

(P1) For every i ∈ I,
∑

j∈N(i)wij < 1.

(P2) For every i ∈ J ,
∑

j∈N(i)wij < −1.

(P3) For every j ∈ C and distinct i, i′ ∈ N(j), wij + wi′j ≥ 0.

Why should you care about this fairly inscrutable definition? Well first of all, existence
of feasible weights is a sufficient condition for the integrality of the linear programming
relaxation.

Lemma 4.2 If G and z admit a set of feasible weights, then x = 0 is the unique optimal
solution to (LP).

6

We prove Lemma 4.2 below. The point of the lemma is that it reduces a difficult-to-
understand property (integrality of a linear program) to a slightly-less-difficult-to-understand
property (existence of feasible weights). For example, suppose J = ∅ — i.e., z = 0. In this
case, it is obvious that x = 0 is the optimal solution to (LP). It is equally obvious that
feasible weights exist — just set wij = 0 for all (i, j) ∈ E. Suppose, on the other hand,
that J is non-empty but very small. Now it is easier to argue about the existence of feasible
weights than to argue directly that the optimal solution to (LP) is integral. For example,
one idea is to set wij ≈ −1

d
whenever i ∈ J and wij ≈ 1

d
whenever i ∈ I. This certainly

satisfies properties (P1) and (P2). It satisfies property (P3) if and only if there is no parity
check j ∈ C that contains two variables of J (why?). This is already slightly non-trivial,
and in Section 4.2 below we give a more general and powerful version of this argument.

Proof of Lemma 4.2: First, observe that x = 0 has objective function value 0. Thus, the
goal is to prove that every other feasible solution to (LP) has a strictly positive objective
function value. The following derivation may look involved, but really, the Definition 4.1
was chosen to make the derivation work (this is the essence of linear programming duality).
All we have to do is follow our nose: at each step, we apply a feasibility condition (of (LP)
or of Definition 4.1) or, if all else fails, reverse a double summation.

Let w denote a set of feasible weights and (x,y) a feasible solution to (LP). First, by
properties (P1) and (P2) of feasible weights and the fact that x ≥ 0, we have

∑
i∈I

xi −
∑
i∈J

xi ≥
∑
i∈I

 ∑
j∈N(i)

wij

xi +
∑
i∈J

 ∑
j∈N(i)

wij

xi, (8)

with equality holding if and only if x = 0. Thus, the proof reduces to showing that the
right-hand side of (8) is nonnegative. Continuing the derivation completes the proof:

∑
i∈I

 ∑
j∈N(i)

wij

xi +
∑
i∈J

 ∑
j∈N(i)

wij

xi =
∑

(i,j)∈E

wijxi (9)

=
∑

(i,j)∈E

wij

 ∑
a∈Aj : a(i)=1

yj,a

 (10)

= =
∑
j∈C

∑
a∈Aj

yj,a
∑

i∈V : a(i)=1

wij︸ ︷︷ ︸
≥0 by (P3)

(11)

≥ 0. (12)

Equation (9) is just writing the sum of wijxi over the edges E in two different ways. Equa-
tion (10) follows from the constraints (7), and equation (11) from a reversal of the summa-
tions. To see why inequality (12) follows from the the final property (P3) of Definition 4.1
(and the fact that y ≥ 0), fix j ∈ C and a ∈ Aj. By the definition of Aj, a assigns a “1”

7

to an even number of the variables V . If this number is 0, then the sum
∑

i∈V : a(i)=1wij
is vacuously 0. If this number is 2, then it is nonnegative by (P3). If it is a bigger even
number, the variables i with a(i) = 1 can be partitioned into pairs (arbitrarily) and (P3)
can be applied to each pair, implying that the sum is nonnegative. �

4.2 Verification of Sufficient Condition

We now prove that, under the hypotheses of Theorem 3.1, there exist feasible weights and
hence (by Lemma 4.2) the unique optimal solution of the linear programming relaxation (LP)
is the nearest code word to the received transmission z (as opposed to a fractional solution).
Recall that we are assuming (without loss of generality) that the nearest code word is the
all-zero word. This means that the indices I (where zi = 0) are precisely the uncorrupted
indices, whereas the indices J (where zi = 1) are precisely the corrupted indices. Thus one
hypothesis of Theorem 3.1 translates to |J | < δn/2, where δ is the constant in the expansion
condition in (C3).

Before proving Lemma 4.2, we developed intuition by proving the existence of feasible
weights in the case where no parity check contains more than one corrupted variable. This
argument is much too weak to prove Theorem 3.1: since we want to tolerate a constant
fraction of errors, and each parity check contains only a constant number of variables, there
might well be checks containing only corrupted variables.

We now exhibit the feasible weights, following an argument in [3]. To define them, we
need to consider three types of variables separately. First, the corrupted variables J . Second,
the “compromised” variables K, defined as uncorrupted variables with lots of corrupted
“friends”:

K = {i ∈ I : at least 50% of the parity checks N(i) contain at least one corrupted variable}.
(13)

The third variable type is the uncorrupted and uncompromised variables V \ (J ∪K).
We first claim that there are fewer than δn corrupted and compromised variables: |J ∪

K| ≤ δn. This is the first but not the last point in the proof where we use the expansion
assumption (C3). For if not, by supplementing J appropriately, we can choose a set S such
that J ⊆ S ⊆ J ∪ K and |S| = δn. Note that the expansion condition (C3) applies to S.
On the other hand, we can write

|N(S)| = |N(J)|︸ ︷︷ ︸
≤ d|J | by (C1)

+ |N(S ∩K) \N(J)|︸ ︷︷ ︸
≤ d

2
|S ∩K| by (13)

.

Since |J | < δn/2 and |J |+ |S ∩K| = |J |+ |S \ J | = |S|, we have

|N(S)| < δn

2
· d+

δn

2
· d

2
=

3

4
d|S|.

This contradicts the hypothesis that the set S satisfies the expansion condition (C3) and
completes the proof of the claim.

8

We now proceed to defining the weights. Eyeballing the requisite properties (P1)–(P3),
the third one seems the hardest to understand. For this reason, we define the weights so
that (P3) obviously holds; we’ll have to do some work to check that the other two properties
hold as well.

The first step is to have each parity check j ∈ C pick a favorite variable i ∈ N(j). We’ll
see below that favorite variables are given negative weights, so in light of property (P2) we
want corrupted variables to be chosen often as favorites. We’ll also see that compromised
variables are vulnerable to accumulating positive weights to compensate for the corrupted
variables in the same parity checks, and to combat this we also want compromised variables to
be chosen often as favorites. You will show on Homework #6 that, because of the expansion
condition (C3) and the fact that |J ∪K| < δn, it is possible to do this in a way that:

(*) each variable i ∈ J ∪K is chosen as the favorite by at least 75% of the parity checks
in which it participates — at least 3

4
d times.

(Since a parity check can only choose one favorite and might have multiple corrupted vari-
ables, it’s impossible for every corrupted variable to always be chosen as the favorite.) The
argument is simply an iterated application of Hall’s theorem.

After favorite variables have been chosen, the weights are defined independently for each
group of edges corresponding to a parity check j. If j’s favorite variable i is corrupted (i.e.,
is in J), then we define wij = − 2

d−ε and wi′j = 2
d−ε for every i′ ∈ N(j) other than i. Here

ε > 0 is a sufficiently small positive number.1 Otherwise, if j’s favorite variable i is merely
compromised, or is neither corrupted nor compromised, then we set wi′j = 0 for all i′ ∈ N(j)
(including for i).

As promised, the weights are defined so that condition (P3) clearly holds. To verify
conditions (P1) and (P2), we treat the variable sets J , K, and V \ (J ∪K) separately. For a
corrupted variable i ∈ J , property (*) implies that wij = − 2

d−ε for at least 75% of the parity

checks j ∈ N(i), and wij ≤ 2
d−ε for the rest. Thus,∑

j∈N(i)

wij ≤
(

3

4
d

)(
− 2

d− ε

)
+

(
1

4
d

)(
2

d− ε

)
=

(
−d

2

)(
2

d− ε

)
< −1,

which verifies (P2). For a compromised variable i ∈ K, property (*) implies that wij = 0 for
at least 75% of the parity checks j ∈ N(i), and wij ≤ 2

d−ε for the rest. Thus,∑
j∈N(i)

wij ≤
(

3

4
d

)
· 0 +

(
1

4
d

)(
2

d− ε

)
=

1

2

d

d− ε
< 1,

provided ε is sufficiently small. This verifies (P1) for variables i ∈ K. Finally, for a variable
i /∈ J ∪K, strictly more than 50% of the parity checks of N(i) contain no corrupted variables

1Recall that in the earlier simplistic argument that worked whenever no parity check had more than one
corrupted variable, we defined wij ≈ − 1

d for the corrupted variable and wi′j ≈ 1
d for the rest. In the present

variant, we use ≈ − 2
d to compensate for the fact that not all parity checks containing a corrupted variable

will be in position to contribute negative weight to that variable.

9

(since i /∈ K). Since wij = 0 for all such parity checks j and wij ≤ 2
d−ε for the rest, we have

∑
j∈N(i)

wij ≤
(

1

2
(d+ 1)

)
· 0 +

(
1

2
(d− 1)

)(
2

d− ε

)
=
d− 1

d− ε
< 1,

provided ε is sufficiently small. This verifies (P1) for the remaining variables, and completes
the proof of Theorem 3.1.

References

[1] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright. LP decod-
ing corrects a constant fraction of errors. IEEE Transactions on Information Theory,
53(1):82–89, 2007.

[2] M. Sipser and D. Spielman. Expander codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996.

[3] M. Viderman. LP decoding of expander codes: a simpler proof. arXiv:1206.2568, 2012.

10

