
CS264: Beyond Worst-Case Analysis
Lecture #14: Smoothed Analysis of Pareto Curves∗

Tim Roughgarden†

November 5, 2014

1 Pareto Curves and a Knapsack Algorithm

Our next application of smoothed analysis is to Pareto curves. We begin by explaining one
of several reasons why you should care about the size of Pareto curves: they govern the
running time of some interesting algorithms.

In the Knapsack problem, the input comprises n items, each with a positive value vi and
a positive weight (or size) wi. Also given is a knapsack capacity W . The goal is choose a
subset S ⊆ {1, 2, . . . , n} of the items that maximizes the total value

∑
i∈S vi, subject to the

chosen items fitting in the knapsack (i.e.,
∑

i∈S wi ≤ W). When you were first introduced
to this problem, you may have been told some hokey story about a burglar trying to escape
with the best loot — but it really is a fundamental problem, relevant whenever you’re trying
to make optimal use of a limited resource.

We say that a subset S ⊆ {1, 2, . . . , n} dominates T ⊆ {1, 2, . . . , n} if: (i) the total value
of S is at least that of T (

∑
i∈S vi ≥

∑
i∈T vi); (ii) the total weight of S is at most that

of T (
∑

i∈S wi ≤
∑

i∈T wi); and (iii) at least one of these two inequalities is strict. If S
dominates T then it renders T moot — the solution T can be safely pruned without regret.

The Pareto curve of a Knapsack instance is the set of all undominated solutions; see
Figure 1. Geometrically, a point is dominated if and only if there is another point “to the
northwest” of it. You’ve seen this concept before, in Lecture #2, when we studied the 2D
Maxima problem. The Pareto curve corresponds, after a reflection about the y-axis, to
the set of maxima of the point set with one point for each subset of {1, 2, . . . , n}, the two
coordinates of a point being the total weight and total value of S.

Here is a Knapsack algorithm that you may not have seen before (due to [5]).

1. Generate the Pareto curve. If multiple solutions have identical total value and total
weight, an arbitrary one of them is retained.

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

Figure 1: The Pareto curve. The red points are dominated, the green points form the Pareto
curve.

2. Among all solutions in the Pareto curve with total weight at most the knapsack ca-
pacity W , return the one with the largest total value.

The first thing to notice about this algorithm is that it does not involve dynamic program-
ming (at least not explicitly). It is clearly correct, since there is no loss of generality in
restricting the search for an optimal solution to the Pareto curve (by the definition of dom-
ination).

A good way to implement the algorithm above is to order the items arbitrarily and
generate a sequence of Pareto curves PC0, PC1, . . . , PCn, where PCi denotes the Pareto
curve for the Knapsack instance induced by the first i items. Provided each Pareto curve is
represented in increasing order of total weight, PCi+1 can be obtained from PCi by merging
two sorted lists (PCi and a “shifted version” of PCi). A suitable implementation of this idea
yields an algorithm running in time O(

∑n
i=0 |PCi|); see Homework #7 for details.

The good news is that the bound O(
∑n

i=0 |PCi|) can be bounded above, even in the worst
case, in three different ways. Certainly |PCi| ≤ 2i for every i, so O(

∑n
i=0 |PCi|) = O(2n).

Next, suppose that all items’ weights are integers between 1 and wmax. No curve PCi
contains more than one solution with the same total weight (all but the highest-value one
are dominated), so in this case |PCi| ≤ nwmax and hence O(

∑n
i=0 |PCi|) = O(n2wmax).

Similarly, if all of the items’ values are integers between 1 and vmax, then O(
∑n

i=0 |PCi|) =
O(n2vmax). Thus, this algorithm not only solves the knapsack problem without explicit
dynamic programming, its running time bound of O(min{2n, nwmax, nvmax}) is at least as
good as both of the dynamic programming algorithms that you may have seen previously
for the problem. One of these classical dynamic programs has a 2-D table indexed by a
number i of items and a budget W ′ ≤ W on weight; the other is indexed by i and a target
value V ≤ nvmax.

The bad news is that the worst-case size of the Pareto curve of a Knapsack instance with
n items can indeed be as large as 2n (see Homework #7).

2

2 Smoothed Analysis of Pareto Curves

One reason to cover the above Knapsack algorithm is that it’s simple, practically useful in
some cases, and underrepresented in undergraduate courses and textbooks. But the main
reason here is because it’s particularly amenable to a smoothed analysis. The main result
in this lecture is the following.

Theorem 2.1 ([1]) In smoothed Knapsack instances (see details below), the expected size
of the Pareto curve is O(n2/σ), where σ is a measure of “perturbation size.”

The bound in Theorem 2.1 is tight; see Homework #7.
Theorem 2.1 and linearity of expectation imply that the Knapsack algorithm in the

previous section has expected running time O(n3/σ), which is polynomial provided σ is
bounded below by an inverse polynomial function of n. This is particularly interesting
in light of the fact that Knapsack is an NP -hard problem! Thus, Theorem 2.1 tells us
something interesting not just about a specific Knapsack algorithm, but more generally
about the (smoothed) complexity of the Knapsack problem. (Next lecture elaborates on
this difference further.) That the Knapsack problem has polynomial smoothed complexity
corroborates well with empirical evidence that it is among the easiest of NP -hard problems.

The perturbation model we use in Theorem 2.1 is essentially the same as last lecture.
We allow the item values vi to be arbitrarily chosen; only the item weights wi are random.1

We assume, without loss of generality, that the values lie in [0, 1]. We assume that each
weight wi is drawn independently according to a density function fi : [0, 1] → [0, 1

σ
] that is

supported on [0, 1] and is “not too spiky,” meaning that the density is never higher than
1/σ. In particular, the support of the distribution has area at least σ, with equality if and
only if fi is uniform over its support. This perturbation model is even simpler than last
lecture, since we’ve moved from two-dimensional to one-dimensional objects (from points in
the plane to item weights). It is very satisfying that Theorem 2.1 makes only the minimal
assumption that the distributions “have enough randomness,” and makes no assumptions
about their specific form. It is easy to believe that “real data” contains “a little randomness,”
even though any specific distributional assumption would be implausible.

3 Proof of Theorem 2.1

Our goal is to upper bound the expected value ofN , the number of Pareto optimal solutions of
a smoothed Knapsack instance. Since N can be exponential in the worst case (see Homework
#7), we need to use the assumption that the item weights are random. It seems difficult
to relate directly this hypothesis to N . For example, consider some subset S of items, say
{4, 7, 10}. We know the total value of this subset (recall values are fixed), say 127. Depending
on the random item weights, S might or might not be Pareto optimal. This event depends
on the random weights of items 4, 7, and 10 — the smaller these are, the more likely S

1Alternatively, one can assume that the weights are arbitrary and that the item values are random.

3

is to be Pareto optimal. It also depends on other item weights, however — the larger the
weights of other items (and hence other solutions), the more likely S is to be Pareto optimal.
To make matters worse, there might be an exponential number of other solutions that are
eligible to dominate S, and it is hard to argue about all of them in a coherent way. Even
if we condition on all item weights except one, it is not clear how to argue directly about
whether or not a given solution S contributes to N .

So our plan is to decompose N into simpler random variables that are easier to relate
to our hypothesis that the item weights are random. To identify a role model, we recall
the high-level idea of last lecture’s analysis, of the 2OPT local search algorithm for TSP
in the plane. We first zoomed in on a specific swap — happily, there were only O(n4)
fundamentally distinct swaps to consider. Such a swap involved 8 numbers, two coordinates
for each of the 4 relevant points. We then zoomed in further on one of the (4!)2 relevant
integer linear combinations of these 8 numbers, which corresponds to a particular relative
ordering of the 4 x-coordinates and of the 4 y-coordinates. After conditioning on all but
one of these numbers, the bad event boiled down simply to whether or not the remaining
number fell into a particular interval. This probability was trivial to upper bound because
of the upper bound on every point’s density function. Returning to the present setting, we
would like to identify analogously simple bad events, ideally corresponding simply to one of
the smoothed random variables (i.e., item weights) falling into a particular interval.

As a first step, imagine plotting the total weight and total value of every subset S ⊆
{1, 2, . . . , n}, in the box [0, n]× [0, n]. For the sake of analysis, we imagine chopping up this
box into n/ε vertical “slices,” each of width ε (see Figure 2). Here ε > 0 is a parameter
internal to our analysis, chosen for convenience (it will not appear in our final bound).
We choose ε so small (e.g., inverse doubly exponential in n) that there is essentially zero
probability that more than one subset S appears in a single slice.2 We are then justified in
redefining N as the number of slices that contain a Pareto optimal solution, rather than as
the number of Pareto optimal solutions.

Here’s an idea that is in the spirit of what we want, but too simple to work. We could
decompose N =

∑
slices tNt, where Nt is an indicator random variable for whether or not

there is a Pareto optimal solution in the slice with left boundary t (and right boundary
t+ ε). Since N ≈

∑
tNt, linearity of expectation reduces our task from upper bounding the

expectation of N to upper bounding the probability of an event {Nt = 1}. This event is still
too complicated to analyze directly, though: there are potentially an exponential number of
item subsets that might land in this slice, even after conditioning on all item weights except
for one. Intuitively, only the subsets with the highest total values are relevant. To tease out
this point, we need to refine our approach and decompose the random variable N further.

We now proceed to the proof of Theorem 2.1, which is extremely clever. There are two
parts, and both are somewhat delicate. The first part shows that a particular decomposition

2In more detail: because all density functions fi are bounded above by 1/σ, the probability that a given
subset S winds up in a given slice is at most ε/σ. (To see this, fix a slice, and condition on all item weights
except for one item in S.) Thus, the probability that some slice contains two or more points can be bounded
above by n

ε · (
ε
σ)2, which goes to 0 as ε→ 0. We can also assume that no solutions lands squarely on a slice

boundary, since this is a probability 0 event.

4

... ...

Figure 2: Slices, Pareto optimal solutions, and the slice boundary t.

of N as the sum of indicator random variables is valid, in that the latter only overestimates
N . The second part uses the smoothed instance hypothesis to upper bound the probabilities
of the indicator variables. The definitions for the first part will seem obscure, but as we’ll
see, they are carefully crafted to facilitate the second part.

To define the indicator random variables, fix a slice boundary t and an item i ∈ {1, 2, . . . , n}.
Ultimately, we want to “charge” each Pareto optimal solution S to the slice boundary im-
mediately to its left and to an item i in S that is responsible for its high value. Formally,
we define four random variables.

Pit ⊆ {1, 2, . . . , n} is the solution that maximizes total value subject to two constraints:
(i) the total weight of Pit is at most t; and (ii) Pit does not include item i.

Note that Pit is a random variable, since a given subset might or might not have weight at
most t, depending on the item weights’ coin flips. Also note that Pit might be the same as
the maximum-value solution with weight at most t (if the latter happens to exclude item i),
or not (otherwise). Similarly, Pit might or might not be a Pareto optimal point.

Vit is the total value of Pit.

Sit is the solution that minimizes the total weight subject to two constraints: (i) the
total value of Sit is more than Vit; and (ii) Sit includes item i.

Note that the total weight of Sit could be more or less than that of Pit.

Nit is 1 if the total weight of Sit lies in the interval (t, t + ε), and 0 if Sit lies in some
other slice.

5

The Nit’s are, finally, random variables that we can analyze directly. Before we do this,
however, we need to argue that the Nit’s cover all the Pareto optimal solutions.

Lemma 3.1 With probability 1, ∑
slices t

∑
items i

Nit ≥ N.

Proof: We need to show that for every contribution to the right-hand side — every Pareto
optimal solution S ⊆ {1, 2, . . . , n} — there is a corresponding contribution to the left-hand
side. So, for each Pareto optimal solution we exhibit a distinct item-boundary pair (i, t)
with Nit = 1 — this is the “charging argument” alluded to above.

Condition on all of the items’ weights and fix a Pareto optimal solution S. Define t as the
slice boundary immediately to the left of S. Thus, the total weight of S lies in the interval
(t, t+ ε). Let P denote the maximum-value solution with weight at most t, and call its total
value V . Since S is Pareto optimal and P has strictly less weight than S, it must be that S
has total value strictly larger than V (otherwise P would dominate it). This can only occur
when there is at least one item in S that is not also in P ; let i denote an arbitrary item of
S \ P .

Now let’s trace through the definition of all the random variables — eventually, we will
conclude that Nit = 1. We begin with Pit, defined as the maximum-value solution with
weight at most t that excludes item i. Since the maximum-value solution with weight at
most t, namely P , happens to exclude item i, it must be that P = Pit. Thus, by the
definitions, V = Vit. Next, recall that Sit is defined as the minimum weight solution with
value strictly larger than Vit (equivalently, strictly larger than V) that excludes item i. By
the definition of P and V , every solution with total value strictly greater than V has total
weight strictly greater than t. Since S happens to include item i and also happens to have
total weight in the earliest possible slice (total weight in (t, t + ε)), it must be that Sit = S
and Nit = 1.

Finally, since we chose ε small enough that distinct Pareto optimal solutions have distinct
left boundaries t, every Pareto optimal solution is “charged” (i.e., implies that Nit = 1) to
distinct (i, t) pairs. This completes the proof. �

Lemma 3.1 reduces the task of bounding N to that of bounding the probability that a
given Nit equals 1.

Lemma 3.2 For every i and t, E[Nit] ≤ ε
σ
.

Proof: The lemma is equivalent to proving that, for every i and t, the probability that the
set Sit has total weight in (t, t + ε) is at most ε

σ
. Recall that Sit is the minimum-weight

solution with value greater than Vit that includes item i, where Vit is the maximum value of
a solution that excludes item i and has total weight at most t.

So, fix i and t. The dominoes start falling as soon as we condition on all of the random
item weights except for that of item i.

6

1. The total weight and total value of every set that excludes item i is now fixed. (We’ve
conditioned on all weights other than that of item i, and values have been fixed all
along.) This means that Pit and hence Vit are now fixed.

2. The total weight of every subset S that includes item i is a fixed amount WS (namely,∑
j∈S\{i}wj) plus the random weight wi of item i. This implies that the relative ordering

by total weight of all subsets including i is now fixed — it is the same as the relative
ordering by the WS’s. The total values of all of these sets are also fixed (since the vi’s
were never random).

3. Since Sit is the minimum-weight subset that includes item i and has value at least Vit,
Vit is fixed, the subsets with value at least Vit are fixed, and the relative order by total
weight of the sets including i are fixed, the set Sit is fixed.

Summarizing, all that remains random is the actual weight of the (fixed) set Sit, which has
the form W + wi for a fixed number W . Thus, the bad event that Sit has total weight in
the interval (t, t+ ε) translates to the still-random weight wi taking on a value in an interval
that has length less than ε. Since the density function of wi is bounded above by 1/σ, this
probability is at most ε/σ. Since this inequality holds conditioned on arbitrary weights for
the items other than i, the unconditional inequality of the lemma follows. �

Using that there are n · n
ε

choices for i and t, combining Lemmas 3.1 and 3.2 with linearity
of expectation implies that

E[N] ≤ E

[∑
i,t

Nit

]
≤ n2

ε
·max

i,t
Pr[Nit = 1] ≤ n2

σ
.

This completes the proof of Theorem 2.1.

Remark 3.3 Over the past few years there has been much progress in extending Theo-
rem 2.1 to a smoothed analysis of higher-dimensional Pareto curves. (In d dimensions, there
are d linear objective functions, one point dominates another if and only if it is at least as
good in every coordinate, and the Pareto curve contains all undominated points.) The right
answer is somewhere between nd/σd and n2d/σd; see [4, 2, 3] for more details.

References

[1] R. Beier and B. Vöcking. Typical properties of winners and losers in discrete optimization.
SIAM Journal on Computing, 35(4):855–881, 2006.

[2] T. Brunsch, N. Goyal, L. Rademacher, and H. Röglin. Lower bounds for the average and
smoothed number of Pareto-optima. Theory of Computing, 10(10):237–256, 2014.

7

[3] T. Brunsch and H. Röglin. Improved smoothed analysis of multiobjective optimization.
In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC),
pages 407–426, 2012.

[4] A. Moitra and R. O’Donnell. Pareto optimal solutions for smoothed analysts. SIAM
Journal on Computing, 41(5):1266–1284, 2012.

[5] G. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital allocation.
Management Science, 15(9):494–505, 1969.

8

