
CS369N: Beyond Worst-Case Analysis
Lecture #6: Pseudorandom Data and Universal Hashing∗

Tim Roughgarden†

April 14, 2014

1 Motivation: Linear Probing and Universal Hashing

This lecture discusses a very neat paper of Mitzenmacher and Vadhan [8], which proposes a
robust measure of “sufficiently random data” and notes interesting consequences for hashing
and some related applications.

We consider hash functions from N = {0, 1}n to M = {0, 1}m. Canonically, m is much
smaller than n. We abuse notation and use N,M to denote both the sets and the cardinalities
of the sets. Since a hash function h : N → M is effectively compressing a larger set into a
smaller one, collisions (distinct elements x, y ∈ N with h(x) = h(y)) are inevitable. There
are many way of resolving collisions. One that is common in practice is linear probing, where
given a data element x, one starts at the slot h(x), and then proceeds to h(x) + 1, h(x) + 2,
etc. until a suitable slot is found. (Either an empty slot if the goal is to insert x; or a slot
that contains x if the goal is to search for x.) The linear search wraps around the table (from
slot M − 1 back to 0), if needed. Linear probing interacts well with caches and prefetching,
which can be a big win in some application.

Recall that every fixed hash function performs badly on some data set, since by the
Pigeonhole Principle there is a large data set of elements with equal hash values. Thus the
analysis of hashing always involves some kind of randomization, either in the input or in the
hash function. The best-case scenario occurs when the hash function h that you use spreads
out the data set S ⊆ N that you care about as evenly as possible, say as if each hash value
h(x) was an independent and uniform random sample from M . How could this “perfectly
random” scenario arise?

1. A fixed hash function that maps N/M elements to each of the M slots (e.g., using the
low-order bits) and a uniformly random data set S. This is clearly an overly strong
assumption on the data.

∗ c©2009, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

2. An arbitrary (worst-case) data set S and a uniformly random hash function h : N →
M . The problem here is that a uniformly random function is too big to store and too
slow to evaluate to be useful in most applications.

The hope is that there are simple and practical families of hash functions that guarantee that
the “spread” of worst-case data is as good as wih uniformly random hashing. You should
have learned the following definition in an undergraduate data structures and algorithms
class.

Definition 1.1 (Universal Hash Functions) A set H of hash functions from N to M is
(2-)universal if for all distinct x, y ∈ N ,

Prh∈H[h(x) = h(y)] ≤ 1

M
. (1)

Note that uniformly random hashing corresponds to taking H to be the set of all functions,
in which case (1) holds with equality for every pair of distinct x, y ∈ N .

There are many different easy to store and evaluate families of universal hash functions;
see any textbook on data structures and algorithms for some concrete examples. Thus,
it would be very cool if universal hash functions performed as well as perfectly random
functions. For examples, if collisions are resolved by chaining — maintaining a linked list in
each slot m ∈M that contains all elements of the data set S with hash value m — then key
performance metrics like expected search time are as good under universal hashing as under
perfectly random hashing (see e.g. [4]).

The plot is thicker for linear probing, however.

1. Knuth [6] proved that with a perfectly random hash function, the expected insertion
time of the T th element under linear probing is ≈ 1

(1−α)2
, where α = T

m
< 1 is the

load of the hash table. Note that this guarantee depends only on the load α and is
independent of the data set and hash table sizes.1

2. Pagh, Pagh, and Ruzia [9] showed that there exists a sequence of universal hash families
and of data sets of arbitrarily large size T such that the expected insertion time under
linear probing grows like Ω(log T), even though the load α = T

M
remains a fixed

constant.

Note that the first result is far from obvious: even with perfectly random hashing, one might
be worried about linear probing because of “clumps” — several consecutive full slots. Initially
some clumps will arise just by random chance (analogous to the Birthday Paradox), and the
concern is that linear probing exacerbates clump growth (when a new element hashes into a
clump, it is guaranteed to increase the size of that clump). Knuth’s analysis shows that this
problem does occur to some extent but, with perfectly random hashing, the damage can be
controlled by controlling the load. The Pagh et al. [9] result demonstrates that this type of

1See Knuth [6, P.???] for his description of how this analysis of linear probing seduced him into a career
in the design and analysis of algorithms!

2

guarantee does not hold for an arbitrary universal family of hash functions (in contrast to
chaining).

What happens in “real life,” meaning experimentally? The performance of linear probing
with a standard universal hash function typically conforms to Knuth’s idealized analysis.
Apparently, some degree of “randomness in the data” composes with the limited amount of
randomness in the hash function to produce nearly random hash values. It is our duty as
theorists to produce a satisfying and rigorous explanation.

Target Theorem: With a “sufficiently random data set,” universal hashing “performs as
well as” perfectly random hashing.

2 Some Preliminaries

To make the target theorem above a precise mathematical goal, we need to formalize the
two phrases in quotes. We begin with the second phrase, where we use the standard and
strong notion of proximity in statistical distance.

Consider two distributions D1, D2 on a finite set X. The statistical distance is defined as

max
A⊆X
|PrD1 [A]−PrD2 [A]| .

Note that given D1 and D2 it is easy to determine which A maximizes this difference in
probabilities: take A as the set of all x ∈ X for which PrD1 [x] > PrD2 [x]. (Or, the
complement of this set.) This observation implies that the statistical distance between
D1, D2 equals half of the `1 distance ‖D1 −D2‖1, with D1, D2 viewed as vectors indexed
by X. We say that D1, D2 are ε-close if the statistical distance between them is at most ε.
Generally, if two distributions are ε-close for a small value of ε, whatever analysis you do
with respect to one of them (e.g., an idealized distribution) will carry over without much
loss to the other (e.g., a realizable approximation of the idealized one). ε-closeness will be
our precise notion of “performs as well as” in the Target Theorem.

Before defining a “sufficiently random data set”, we focus on a single element. Let X be
a random variable with range N . We define the collision probability cp(X) of X as

cp(X) =
∑
i∈N

Pr[X = i]2 ,

which is the probability that two independent copies of X take on the same value. Intuitively,
a low collision probability would seem to force a random variable to be “pretty spread out”
over its range. Requiring a small collision probability is more permissive than requiring that
restricting every probability Pr[X = i] is small. Mathematically,

cp(X) ≤ max
i∈N

Pr[X = i] ,

since

cp(X) =
∑
i∈N

Pr[X = i]2 ≤
∑
j∈N

Pr[X = j] ·max
i∈N

Pr[X = i] = max
i∈N

Pr[X = i] .

3

As a canonical example, you should think about a random variable X that is uniformly
distributed over a subset T with cardinality much smaller than that of the universe N . In
this case, cp(X) = maxi∈N Pr[X = i] = 1/K. For concreteness, you might want to think
about the case where N is exponential in M , and K is polynomial (cubic, say) in M . If you
could design a hash function h with advance knowledge of the set K, then obtaining perfect
randomness over M would be easy (since the data is perfectly random over K). But what if
you only know that such a set exists, and you have to design a hash function that works well
no matter which set it is? Note that with our example parameters, there is an exponential
number of possible choices for the set K.

Our definition of a “sufficiently random data set” corresponds to a block source [2] in
the derandomization literature. It is a sequence of random variables such that each random
variable always has low collision probability, no matter how the earlier random variables
were instantiated.2

Definition 2.1 (Block Source with Entropy k [2]) A block source with entropy k is a
sequence X1, X2, . . . , XT of random variables on N such that, for every i and conditioned
arbitrarily on X1, X2, . . . , Xi−1,

cp(Xi) ≤
1

2k
.

Requiring an upper bound on the conditional collision probability in Definition 2.1, rather
than merely the unconditional collision probability, is crucial for our applications.3

3 Main Result and Discussion

The main result of this lecture is the following.

Theorem 3.1 Let X1, X2, . . . , XT be a block source with range N and entropy at least k.
Let H be a family of universal hash functions mapping N to M and h a random sample
from H. Then the joint distribution (h, h(X1), . . . , h(XT)) is ε-close to the uniform distribu-
tion on H×MT , where

ε =
T

2

√
M

K

and K = 2k.

The guarantee in Theorem 3.1 is an interesting one. To see this, consider fixing a target ε.
To achieve this desired closeness, one needs

K ≥ MT 2

4ε2
(2)

2Note this is essentially identical to the definition of a diffuse adversary in Lecture #2. The only difference
is that here we require a low collision probability while a diffuse adversary corresponds to the more stringent
condition that maxi∈N Pr[X = i] is small.

3Consider the sequence with X1 uniform at random from N and Xi = X1 for every i > 1. What happens
when you hash this sequence?

4

and hence the entropy k to satisfy

k ≥ log2M + 2 log2 T + 2 log2

1

ε
− 2. (3)

Recall our canonical example of data elements drawn uniformly at random from a small
“secret” set of size K, and with N exponential in M . In the linear probing application, one
would always have T < M , as otherwise the hash table overflows. Thus (2) states that for
every secret set with a size K ≥ cM3 for a sufficiently large constant c > 0, a randomly
chosen universal hash function will “iron out” the distribution so that it’s essentially perfectly
random over the slots.

The guarantee in Theorem 3.1 can be improved, but not by a lot. Passing from a single
random variable to a sequence in a way more sophisticated than a naive induction (see
Theorem 4.1 below) reduces the T 2 factor in (2) to a T [3]. In our canonical example, this
means that universal hash functions iron out all quadratic-size secret sets. If the measure of
“performs as well as” is relaxed from closeness to the uniform distribution to closeness to some
distribution with small collision probability — which might be good enough for most hashing
applications — then the factor of 1

ε2
in (2) can be replaced by 1

ε
[3]. These dependencies

cannot be reduced further [3], although in some cases assuming more than universality (i.e.,
t-wise independence for large enough t) enables improved upper bounds [8].

Finally, it might seem weird to phrase Theorem 3.1 in terms of the joint distribu-
tion (h, h(X1), . . . , h(XT)), rather than the one (h(X1), . . . , h(XT)) that we actually care
about. There are a few reasons for this. First, the guarantee in Theorem 3.1 is stronger,
which is always a plus. (The former implies that the h(Xi)’s are essentially uniform even
after conditioning on the choice of h, while the latter does not.) Second, this stronger type
of guarantee lends itself to induction arguments (see Theorem 4.1 below). Third, the tight
lower bounds in [3] are for this stronger statement. The lower bounds on the data entropy
required for the distribution (h(X1), . . . , h(XT)) to be close to uniform are necessarily weaker
— intuitively, the hash function can loan its randomness out to the data elements — although
the gap is often not too large (see [3]).

4 The Leftover Hash Lemma

The proof of Theorem 3.1 boils down to what is known as the “Leftover Hash Lemma”.

Theorem 4.1 (Leftover Hash Lemma [5]) Let X be a random variable with range N
and collision probability at most 1/K. Let H be a family of universal hash functions that
map N to M and h a random sample from H. Then the joint distribution (h, h(X)) is ε-close
to the uniform distribution on H×M , where

ε =
1

2

√
M

K
.

5

This is the special case of Theorem 3.1 in which T = 1. Induction extends it to the case of
general T (with loss linear in T); we leave the (slightly tricky) details to Homework #3.4

The proof of Theorem 4.1 involves some calculations but overall is quite slick. We first
invoke the two hypotheses to upper bound the collision probability of the random vari-
able (H,H(X)). From this we derive an upper bound on the `2 distance between its distri-
bution and that of the uniform distribution. The desired bound on the statistical distance
then follows easily.

Recall that cp(H,H(X)) is the probability that two independent random samples, (h, h(x))
and (h′, h′(x′)), take on the same value. This happens only when h = h′ and, furthermore,
either x = x′ or x, x′ collide under h. Thus,

cp(H,H(X)) = Prx,x′∈N,h,h′∈H[(h, h(x)) = (h′, h′(x′))]

= Pr[h = h′]︸ ︷︷ ︸
1/|H| since h, h′ u.a.r.

·Pr[h(x) = h′(x′) : h = h′] ;

since

Pr[h(x) = h′(x′) : h = h′] = Pr[x = x′ : h = h′]︸ ︷︷ ︸
=cp(X)≤1/K

+ Pr[h(x) = h′(x′) : h = h′, x 6= x′]︸ ︷︷ ︸
≤1/M by universality

,

we conclude that

cp(H,H(X)) ≤ 1

|H|

(
1

K
+

1

M

)
.

For comparison, the collision probability of the uniform distribution on H ×M would be
1/|H|M .

Next we need to translate this upper bound on collision probability into an upper bound
on distance to the uniform distribution on H × M . We begin with a bound on the `2
distance. Consider first two distributions p, q on an abstract finite set X. We denote by
px, qx the corresponding probability masses on a point x ∈ X. Computing, we have

‖p− q‖22 =
∑
x∈X

(px − qx)2 =
∑
x

p2
x +

∑
x

q2
x − 2

∑
x

pxqx.

Now take q to be uniform on X. Then

‖p− q‖22 =
∑
x

p2
x + |X| · 1

|X|2
− 2

|X|
∑
x

px︸ ︷︷ ︸
=1

= cp(P)− 1

|X|
,

4The original motivation in [5] for the Leftover Hash Lemma came from cryptography. They had in mind
a secret key that has been partially compromised. For example, suppose you have a 64-bit key that was
orginally chosen uniformly at random, and you suspect that 16 of the bits have been leaked to an adversary
(but you don’t know which 16). Can you recover a (shorter) key that inherits the residual randomness in
the partially compromised original key? The Leftover Hash Lemma gives an affirmative answer — just pass
the compromised key through a universal hash function.

6

where P denotes a random variable on X with distribution p. Plugging this bound into
our context, the squared `2 distance between the joint distribution on (H,H(X)) and the
uniform distribution on H×M is at most

1

|H|

(
1

K
+

1

M

)
− 1

|H|M
=

1

|H|K
,

and the `2 distance is the square root of this. Finally, recall that for every vector v ∈ Rd,
the Cauchy-Schwarz inequality implies that‖v‖1 ≤

√
d · ‖v‖2. (The all 1’s vector is a tight

example.) Plugging in d = |H|M and recalling that statistical distance is half of the `1
norm, the statistical distance between the joint distribution on (H,H(X)) and the uniform
distribution on H×M is at most

1

2
·
√
|H|M ·

√
1

|H|K
=

1

2

√
M

K
,

as claimed.

5 Two More Applications

We conclude the lecture with two further applications of pseudorandom data and universal
hashing. These are on topics that every computer scientist should have basic literacy in.

5.1 The Power of Two Choices

A simple but powerful tool for balancing load across resources is randomization. As an
abstraction, think about throwing n balls independently and uniformly at random into n
bins. A bread-and-butter application of the Chernoff bound shows that the expectation of
the maximum number of balls in a single bin is Θ(log n/ log log n) (e.g. [7]). (This statistic
is also clearly relevant for hashing, for example as the expected worst-case search time with
chaining.) This bound is OK, but a little disappointing given that the expected load in any
given bin is only 1.

Consider the following optimization. Throw the balls in sequentially and, for each ball,
randomly probe two different bins and throw the ball into the bin that is currently less popu-
lated (breaking ties at random). Remarkably, this simple augmentation yields an exponential
improvement: the expected maximum population size is now only Θ(log log n) [1, 7].5

The analysis above assumes that each ball is tossed uniformly and independently at
random. What if the distribution on bins is generated instead by a random universal hash
function? (Here, we assume that balls have names and that there are two different hash
functions that each maps names to bins.) It is unknown whether the O(log log n) bound on
the expected maximum population size continues to hold. Theorem 3.1 implies that as long

5One might hope that having three choices would reduce the expected maximum to O(log log log n), but
for d ≥ 2, d choices only reduces the expected maximum population size to Θ(log log n/ log d) [1].

7

as there is sufficient randomness in the ball names, then the analyses for perfectly random
bin choices continue to apply to those induced by universal hash functions. Precisely, the
ball names should be a block source with entropy k satisfying (3), where M is the number
of bins and T is the number of balls (canonically, T = M).

5.2 Bloom Filters

The basic bloom filter is a data structure that supports fast membership queries in applica-
tions that do not require deletions and that are tolerant of false positives. The basic scheme
is to use ` different hash functions, with each hash function mapping the universe N to a set
of M/` slots (each of which contains only a single bit). These ` sets of slots are disjoint, so
there are M slots overall. Initially, all bits are set to 0. When an item x ∈ N is inserted, for
each i = 1, 2, . . . , `, the hi(x)th slot of the ith group has its bit set to 1. (The bit may have
already been set to 1 earlier, of course.) When an item x ∈ N is searched for, the bloom
filter reports a successful search if and only if, for each i = 1, 2, . . . , `, the bit in the hi(x)th
slot of the ith group is set to 1.

Observe that a bloom filter (with no deletions) never has a false negative: if x is inserted
and later searched for, it will be found. There can, however, be false negatives: even if x
was never inserted, other insertions can cause all of the corresponding ` bits to be set to 1,
leading the bloom filter to believe that x was inserted at some point in the past. If we assume
perfectly random hashing, then it’s easy to estimate the probability that a given uninserted
element y will suffer from a false positive after T insertions of other elements:(

1−
(

1− `

M

)T)`

≈
(
1− e`T/M

)`
.

For example, setting ` ≈ M
T

ln 2 guarantees a false positive probability of 2−`.
A true but non-obvious fact is that, assuming only universal hashing, strictly more space

(i.e., a larger `) is needed to guarantee a given false positive probability [8]. Once again,
Theorem 3.1 implies that, provided the data is sufficiently random along the lines of Defi-
nition 2.1 and condition (3), the performance of universal hashing will be as good as that
suggested by the idealized analysis above for perfectly random hashing.

References

[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
SIAM Journal on Computing, 29(1):180–200, 1999.

[2] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

8

[3] Kai-Min Chung and Salil P. Vadhan. Tight bounds for hashing block sources. In Pro-
ceedings of APPROX-RANDOM, pages 357–370, 2008.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2009. Third Edition.

[5] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing (STOC), pages 12–24, 1989.

[6] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison Wesley, 1998. Second Edition.

[7] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

[8] Michael Mitzenmacher and Salil P. Vadhan. Why simple hash functions work: exploiting
the entropy in a data stream. In Proceedings of the 19th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 746–755, 2008.

[9] Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with constant independence.
SIAM Journal on Computing, 39(3):1107–1120, 2009.

9

