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1 First-Price Auction

Last lecture we ran an experiment demonstrating that first-price auctions are not so easy
to reason about. (In a first-price single-item auction, the highest bidder wins and pays her
bid.) Does theory give us any useful advice about how to bid?

1.1 The Two-Bidder Case

To begin, let’s consider the case of n = 2 bidders, with private valuations v1, v2 drawn
independently and uniformly from [0, 1].1

We claim that if your opponent always bids half her valuation—that is, uses the bidding
strategy b2(v2) = v2/2—then your best response is to bid half your value. Thus the bidding
strategies bi(vi) = vi/2 for i = 1, 2 constitute an equilibrium.2,3

To prove the claim, fix an arbitrary valuation v1 ∈ [0, 1]. Since v2 is always at most
1, b2(v2) is always at most 1

2
, and there is no reason to bid higher than 1

2
(recall this is a

first-price auction, where you have to pay your bid). The expected utility of a bid b1 ∈ [0, 1
2
]

is
(v1 − b1)︸ ︷︷ ︸

utility of winning

·Pr[win with bid b1] . (1)

Note that the probability is over the randomness in v2. Raising one’s bid decreases the first
term (utility of winning) but increases the second term (likelihood of winning). So what’s
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1The valuations in last lecture’s experiment weren’t exactly uniformly distributed, but they were pretty

close.
2In this context, called a Bayes-Nash equilibrium.
3It turns out to be the unique equilibrium, but we won’t prove uniqueness.

1



the sweet spot? With the bid b1 ∈ [0, 1
2
] still fixed, we have

Pr[win] = Pr[b1 ≥ b2] = Pr[b1 ≥ v2/2] = Pr[2b1 ≥ v2] = 2b1, (2)

where the final equation follows from the fact that v2 is distributed uniformly in [0, 1]. Thus
the expected utility of the bid b1 is

(v1 − b1)2b1 = 2b1v1 − 2b21.

This is a strictly concave function of b1 (the second derivative is negative) and so it has
a unique maximizer, which we can identify by taking the derivative, setting it to zero and
solving. This results in b1 = v1/2. So as claimed, the best response is to bid half your
valuation.

Does this mean that you should have bid half your valuation in the experiment? Not
immediately, since the claim above only specifies your best response when your opponent is
bidding half her value. But actually, if your opponent is using any scaling strategy of the
form b2(v2) = αv2, then your best response is to bid half your value (modulo some details,
see Exercise Set #7). So yes, you probably should have bid around half your valuation in
the experiment. Only a couple students did this; most shaded their bid by only 25%-35%.
This is consistent with other first-price auction experiments, where most bidders bid much
more aggressively than in an equilibrium.

It’s worth noting that, at equilibrium, the bidder with the highest bid is also the bidder
with the highest valuation (since everyone scales their valuations by the same factor). This
means that, at equilibrium, the first-price auction is welfare maximizing—the item is always
awarded to the bidder with the highest valuation (like in a Vickrey auction).

1.2 The Three-Bidder Case

What about with n = 3 bidders, again with valuations drawn independently and uniformly
from [0, 1]? Here, we claim that the bidding strategies bi(vi) = 2

3
vi constitute an equilibrium

(which is again unique). To see this, adopt bidder 1’s perspective and assume that the other
two bidders are bidding as above. The expected utility of a bid b1 is again the expression
in (1). But the probability of winning (2) needs to be replaced by the derivation

Pr[win] = Pr[b1 ≥ b2 ∧ b1 ≥ b3] = Pr[b1 ≥ b2]·Pr[b1 ≥ b3] = Pr
[
3
2
b1 ≥ v2

]
·Pr
[
3
2
b1 ≥ v3

]
=

(
3

2
b1

)2

.

Thus the winning probability is now a quadratic function of the bid, rather than a linear
function. This changes the best response: the expected utility of bid b1 is 9

4
(v1−b1)b21; taking

the derivative, setting it to zero, and solving shows that the expression is maximized when
b1 = 2

3
v1, as claimed.4

4In the experiment, there was roughly a 50/50 split between students who used the same bid in both the
2-person and 3-person auctions and those who used different bids. Of those who used different bids, most
(but not all) of them bid more aggressively in the 3-bidder case than in the 2-bidder case.

2



1.3 Generalizations

You can probably guess the pattern for the equilibrium when there are n bidders, all with
independent and uniform valuations: bi(vi) = n−1

n
vi for each i. Thus, the more competition

in the auction, the more aggressively you should bid.
Even more generally, suppose there are n bidders with valuations drawn i.i.d. from some

distribution D (not necessarily uniform). Then we still have a clean understanding of the
equilibrium: bi(vi) equals the expected value of the second-highest valuation, conditioned on
the event that vi is the highest valuation. (You can check that this gives the n−1

n
vi formula

for the uniform case.) Even at this level of generality, it remains true the first-price auction
is welfare maximizing at equilibrium.

If different bidders have valuations drawn from different distributions, then first-price
auctions are a mess to analyze.5 They are also no longer welfare maximizing—at equilibrium,
there can be cases where the highest bidder (i.e., the winner) does not have the highest
valuation.

1.4 Revenue Equivalence

We won’t really think about the revenue of auctions until Lecture #16. But while we’re
talking about first- and second-price auctions, it’s worth noting an interesting fact that is a
special case of a much more general phenomenon.

Let’s go back to the case of two bidders with independent and uniformly distributed
valuations. Which earns more expected revenue, a first- or second-price auction? (The
expectation is over the random choice of the valuations v1, v2.) In a second-price auction,
where bidders bid truthfully, the selling price is the second-highest (i.e., the smaller) bid,
which equals the smaller valuation. So the expected revenue of the second-price auction
(assuming truthful bidding) is

Ev1,v2 [min{v1, v2}] . (3)

In a first-price auction, there are two differences: first, the selling price is the higher bid, not
the lower one; second, bidders bid half their valuations, not their true valuations. Thus the
expected revenue of a first-price auction (assuming equilibrium bidding) is

Ev1,v2

[
max{v1

2
, v2

2
}
]

= 1
2
· Ev1,v2 [max{v1, v2}] . (4)

So which expression is bigger, (3) or (4)? It turns out that the order statistics of i.i.d. samples
from a uniform distribution have some interesting properties. Of course, the expected value
of a single draw from U [0, 1] is 1

2
—that is, this expectation splits the unit interval into 2

equal-length pieces (Figure 1). It turns out that the same thing is true for any number of
samples: the expected order statistics of k samples from U [0, 1] (the expected highest, the
expected second-highest, etc.) split the unit interval into k+1 equal-sized pieces (Figure 1).6

5In Vickrey’s original paper [6] he asked the seemingly innocuous question about what the equilibrium
looks like with two bidders with valuations drawn from different uniform distributions (i.e., uniform on
different supports). The answer came only a half-century later [4]!

6Nothing deep here, just some calculus.
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In particular, E[min{v1, v2}] = 1
3

while E[max{v1, v2}] = 2
3
. Thus (3) and (4) are both 1

3
,

and the first- and second-price auctions have the same expected revenue! You might have
expected the first-price auction to earn more revenue—for each fixed bid vector b, it charges
more—but at equilibrium the bidders shade their bids just enough to counteract the higher
prices.7

0 1
1

k+1
2

k+1
k−1
k+1

k
k+1

Figure 1: The expected order statistics of k samples split the unit interval into k + 1 equal-
sized pieces.

This turns out to be a special case of a result known as revenue equivalence. Revenue
equivalence says that whenever two auctions always select the same winner (at equilibrium),
then they must have equal expected revenue. For example, we already saw that both the
first- and second-price auctions always give the item to the bidder with the highest valuation
(at equilibrium), and we verified directly their revenue equivalence.

2 The VCG Auction for Sponsored Search

2.1 Recap

Recall the sponsored search setting introduced last lecture. The goods for sale are the
k “slots” for sponsored links on a search results page. The bidders are the advertisers
who have a standing bid on the keyword that was searched on; bidder i has a private
valuation vi for each click its link receives. Each slot j has a click-through-rate (CTR) αj,
representing the probability that the end user clicks on this slot. We order the slots so that
α1 > α2 > · · · > αk. We also assume that the CTR of a slot is independent of its occupant,
but this is easy to relax (see Exercise Set #7). The expected value of an impression (i.e., of
being displayed) in slot j for bidder i is then viαj.

We saw last lecture that, assuming truthful bids, a simply greedy algorithm maximizes
the social welfare

∑n
i=1 viαs(i), where s(i) denotes the slot assigned to bidder i (if there is

no such slot, interpret αs(i) as 0.) Namely, assign the ith highest bidder to the ith slot.
This is the analog of the Vickrey auction’s decision to always award the item to the highest
bidder. But what’s the analog of the Vickrey auction’s rule that the selling price is the
second-highest bid?

Last lecture, we tried the most natural extension, where the occupant of slot i pays
(per-click) the next-highest bid. (So the first bidder pays the second bid, the second bidder
the third bid, and so on.) This is called the Generalized Second Price (GSP) auction, and

7Never forget: when you change a system with self-interested users, the response of the users will also
change!
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we saw that it is not truthful, because bidders sometimes have an incentive to underbid to
receive slightly fewer clicks at a deep discount.

2.2 Externalities

There is a truthful sponsored search auction. To derive it, we need to think about the
Vickrey auction’s payment rule in a different way. So here’s a thought experiment: consider
a single-item auction, and relabel the bidders so that v1 > v2 > · · · > vn.8 First question: in
the outcome of the Vickrey auction, what is the total welfare enjoyed by bidders 2, 3, . . . , n?
First answer: Zero—all of them lose the item to the highest bidder. Second question: what
if we removed bidder #1 and reran the Vickrey auction? Now how much welfare is enjoyed
by bidders 2, 3, . . . , n? Second answer: v2, since the item now goes to the highest bidder
remaining (bidder 2) and she gets welfare v2 from it. The difference between the social welfare
of the others without and with bidder 1 (v2 − 0 = v2) is called the externality imposed by
bidder 1 on the others.9 Note that the winner’s payment in the Vickrey auction is exactly
the externality she imposes (v2). Intuitively, charging a bidder her externality forces her to
care about others’ welfare and aligns her individual objective (quasilinear utility) with the
collective objective (social welfare).

The idea of “charging bidders their externalities” is defined much more generally than
just in single-item auctions. Let’s go through exactly the same thought experiment with
sponsored search. Consider again n bidders, labeled so that v1 > v2 > · · · > vn. Suppose
we make the usual greedy assignment, with the ith highest bidder assigned to the ith best
slot (i = 1, 2, . . . , k). What’s the total welfare of bidders 2, 3, . . . , n? Well, each bidder j =
2, 3, . . . , k get assigned slot j and hence obtains welfare vjαj, for a total of

k∑
j=2

vjαj. (5)

Now suppose we remove bidder 1 and rerun the algorithm that assigns bidders to slot. Now
bidder 2 will move up to the first slot, the third bidder to the second slot, and so on, with
bidder k + 1 now getting the last slot. The welfare earned by bidders 2, 3, . . . , n in this case
is

k+1∑
j=2

vjαj−1. (6)

8We’ll assume no ties for the rest of the lecture, for simplicity.
9In general, an “externality” refers to a cost or benefit of an action that is borne by others, rather than

by the decision-maker. Like network effects (Lecture #6), externalities can be positive or negative. For
example, in selfish routing (Lecture #7), the externalities are negative—when you travel on a route, you
also add to the travel time of everyone else on the route. In a public good, like Wikipedia (Lecture #6),
the externalities are positive—when you contribute to the public good (e.g., writing an article), most of the
benefit is to others.
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Subtracting (5) from (6), we get the externality imposed by bidder 1 on the others:

k+1∑
j=2

vj(αj−1 − αj), (7)

where we’re interpreting αk+1 as 0. This expression makes sense: bidder 1 deprives bidder 2 of
an additional α1−α2 clicks, bidder 3 of an additional α2−α3 clicks, . . . , and finally bidder k+1
of αk clicks. The CTR differences get multiplied by the valuation of the bidder being thus
deprived. Note that this externality is per-impression (with all vj’s getting multiplied by the
appropriate CTR), not per-click.

2.3 The VCG Auction

This brings us to the VCG auction, which charges each bidder the externality it imposes.10

The VCG Auction (Sponsored Search)

1. Accept a bid from each bidder. Relabel the bidders so that b1 ≥ b2 ≥
· · · ≥ bn.

2. For i = 1, 2, . . . , k, assign the ith bidder to the ith slot.

3. For i = 1, 2, . . . , k, charge bidder i

1

αi

k+1∑
j=i+1

bj(αj−1 − αj) (8)

per click. (With αk+1 interpreted as 0.)

There are two differences between the payment (8) in the VCG auction and the exter-
nality (7). First, each valuation vj has been replaced by the corresponding bid bj. This is
necessary for the payment to typecheck—the mechanism doesn’t know bidders’ valuations,
only their bids. (Of course if bidders are truthful, then these will be the same.) Second,
recall that the externality (7) is per impression, while in a sponsored search auction we can
only charge a bidder for a click. Since only an αi fraction of impressions lead to a click
for bidder i, the per-click payment is 1

αi
times the per-impression externality. Thus, with

truthful bids, the expected payment per impression is exactly the bidder’s externality (7),
as desired.

The payment (8) probably looks pretty opaque. But notice that

k+1∑
j=i+1

αj−1 − αj
αi

=
αi − αk+1

αi
= 1,

10“VCG” here is for Vickrey [6], Clarke [1], and Groves [3].
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and thus bidder i’s payment-per-click is a weighted average of lower bids, with the weights
given by the relevant CTRs. We can immediately conclude that, for a fixed bid vector,
payments in the VCG auction are no more than in the GSP auction (the latter uses only the
biggest of the lower bids). It also follows that a bidder is never charged more than her bid
for each click, and so truthful bidding guarantees nonnegative utility (“individual rationality
(IR)”).

Let’s revisit the example from the end of last lecture, with two slots and three bidders,
and with α1 = .1, α2 = .05, v1 = 10, v2 = 9, and v3 = 6. The VCG auction assigns the
first and second bidders to the first and second slots, respectively. For the second slot, the
payment is 1

α2
·α2 · v3, which is 6 (just as it would be in the GSP auction). The payment for

slot 1 is the externality imposed by bidder 1, who deprives the second bidder of (.1 − .05)
clicks and the third bidder of (.05− 0) clicks. This yields a payment of

.05 · 9 + .05 · 6
.1

= 7.5.

This is lower than the payment in the GSP auction (which would be 9), reflecting the
opportunities available to the bidder to drop to a lower slot. In the GSP auction, the first
bidder had an incentive to drop to the second slot (to get utility .05(10−6) = .2 rather than
.1(10−9) = .1), while in the VCG auction, the bidder receives utility .1(10−7.5) = .25 from
truthful bidding and hence has no incentive to deviate.

In general, the VCG auction has all of the nice properties of the Vickrey auction.

Theorem 2.1 The VCG auction is truthful, individually rational, and welfare maximizing.

We already mentioned individual rationality. The auction is welfare maximizing (assuming
truthful bids) because we assign the bidder with the ith highest valuation to the ith best slot
(recall the correctness of the greedy algorithm from last lecture). The proof of truthfulness
is not too difficult, but it makes sense to do it in a more general setting next lecture. So
we’ll take the truthfulness of the VCG auction on faith for this lecture.

3 GSP vs. VCG

Theorem 2.1 crowns the VCG auction as the rightful heir to the Vickrey auction’s throne.
But last lecture we said that the Generalized Second Price (GSP) auction has been the
dominant paradigm in practice. How can we explain the use of the GSP auction over the
VCG auction?

When GSP was originally designed by engineers in 2001, Google did not yet employ any
economists, and computer scientists hadn’t really studied up on auctions yet. So GSP was
developed independently of traditional auction theory. Not long after (in 2002), Google en-
gineers rediscovered the VCG auction and also Google hired its first economist (Hal Varian),
who knew all about the VCG auction. So why not switch at that point from GSP to VCG?

The first reason is inertia. GSP was getting pretty great results right out of the gate,
so it was hard to justify a major change to it (“don’t fix what ain’t broke”). Second, the
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GSP auction is arguably easier to explain to advertisers than the VCG auction.11 Third,
switching from the GSP auction to the VCG auction would likely result in some revenue loss
in the short term. Remember that VCG prices are only lower than GSP prices (for fixed
bids), and that bidders potentially shade their bids in the GSP auction (and such shading
is indeed observed in practice). Most bidders would learn over time to bid truthfully in the
VCG auction eventually, but in the meantime the VCG auction would generate less revenue.
It is conceivable that this effect would be large enough to affect a quarterly earnings report,
for example. Finally, even the long-term gain of switching to the VCG auction is unclear. It
would be simpler for bidders, sure, but it’s less clear that there would be any gain in social
welfare or revenue. The following result (proved next lecture) makes this last point precise.12

Theorem 3.1 ([2, 5]) For any valuations and click-through rates, the GSP auction has an
equilibrium equivalent to the truthful outcome of the VCG auction.

By “equivalent,” we mean that the assignment of the bidders to slots is the same, and the
payments charged are the same.

Theorem 3.1 does not assert that the equilibrium is unique, nor does it assert that all
equilibria are equivalent to the truthful VCG outcome. Our final two examples show that
the revenue of the GSP auction at an arbitrary equilibrium can be strictly higher or strictly
smaller than that of the truthful VCG outcome.13

We continue with our running example with three bidders and two slots, with α1 = .1,
α2 = .05, v1 = 10, v2 = 9, and v3 = 6. Recall that the VCG prices for the two slots are
7.5 and 6, respectively. Suppose in the GSP auction, the bidders bid b1 = 10, b2 = 7.5, and
b3 = 6. Then, the assignment of bidders to slots and the payments made by the bidders
match those in the VCG auction. Moreover, these bids constitute an equilibrium. It’s easy
to see that the second and third bidders have no profitable unilateral deviations; the only
thing to check is that the first bidder doesn’t want to drop down to the second slot. Since
her current utility is .1(10 − 7.5) = .25 and deviating to the second slot would give her
utility .05(10 − 6) = .2, there is no incentive to switch.14 The revenue of this equilibrium
(.1 · 7.5 + .05 · 6 = 1.05) is the same as in the truthful VCG outcome.

On the other hand, suppose the third bidder only bids 5 instead of 6. The result is still
an equilibrium; the only change is that when the first bidder drops to the second slot her
utility would be .05(10 − 6) = .2, the same as her utility in the equilibrium. But the price
of the second slot drops from 6 to 5, and the revenue from 1.05 to 1.

Yet another equilibrium has b1 = 10, b2 = 8, and b3 = 6. The first bidder is again
indifferent between the first and second slots (both would give utility .2). Because of the

11This reason is no longer very compelling, since GSP auctions evolved into a deliberately opaque auction
design, for example with “ad quality” factors computed without much transparency.

12Despite all of these obstacles to the VCG auction, over the past few years there has been movement
from GSP to VCG, primarily due to the latter’s flexibility. For example, Facebook’s advertising system is
based on VCG auctions (more on this next lecture).

13The GSP auction can even have equilibria with suboptimal social welfare, where the bidders are not
assigned to slots in order of valuation (exercise).

14The proof of Theorem 3.1 in Lecture #15 shows how to construct such GSP equilibria in general.
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increased price of the first slot, the revenue goes up from 1.05 to 1.1.
The point of these examples is to show that no sweeping revenue comparison of the VCG

and GSP auctions is possible. But both theory (in the form of Theorem 3.1) and practice
suggest that the GSP auction does pretty well from both the social welfare and revenue
standpoints.
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