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1 Utility Theory and Behavioral Economics

In almost all of the models that we’ve studied in this course, we formally defined the prefer-
ences of the players. To predict how someone acts (e.g., their “best response”), we need to
specify what they want. This generally involved specifying utilities or payoffs for the players,
and assuming that each player acts to maximize her own utility.1 (If there is uncertainty,
then she maximizes her expected utility with respect to an appropriate distribution.) This
is the approach of classical utility theory.

Even the purest of utility theorists don’t believe that a typical individual could artic-
ulate her entire utility function (and possibly prior distribution) on demand. Rather, the
assumption is that players behave as if they were maximizing utility, whatever the internal
decision-making mechanism might be. How could we test this hypothesis?

When a player really is maximizing some utility function, several properties of their
behavior follow. For instance:

1. Transitivity. If a player prefers action A to action B, and action B to action C, then
she also prefers action A to action C.

2. Monotonicity. If we give a player additional actions, she can only be better off. (She
could always ignore the new options and do the same thing as before, if desired.)

These are properties that can be tested. And it turns out that, across a range of different
experiments, the behavior of people consistently fails these tests. Such empirical findings
motivate a reconsideration of the classical utility model.
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Behavioral economics, which has been increasingly in vogue in this century, proposes
models of behavior to explain systematic deviations from the predictions of classical utility
theory. It is then interesting to ask about the implications of these models for policy, system
design, and so on. Prospect theory, developed by Kahneman and Tversky [3, 7], is a major
part of behavioral economics.2 The theory includes several parts, including the assumption
that people tend to overestimate small probabilities, and “loss aversion,” meaning that people
tend to value losses (relative to some reference point) more than the analogous gains.

In this lecture we’ll focus on a different systematic deviation from classical utility theory:
time-inconsistency.

2 A Model of Time-Inconsistent Planning

2.1 Procrastination

We next outline a “theory of procrastination.” It’s easiest to start with an example, so we’ll
recount an autobiographical story by Akerlof [1]. He was spending a year in India, and he
had an errand to do—shipping a friend’s box back to the States. This was not a trivial thing
to do (long lines at the post office, etc.), but he had to do it. Every morning when he woke
up, he had every intent of shipping the box tomorrow. Then tomorrow would come, and the
logic would repeat itself. The result was months of delays before Akerlof shipped the box.

Here’s a simple model that can explain what happened. Suppose the cost of delaying
shipping was 1 unit per day of delay. Suppose the cost of shipping the box was c > 1. What’s
the optimal (minimum-cost) thing to do? The optimization problem is to choose the delay
t ≥ 0 to minimize t + c. (Not exactly a hard optimization problem—just set t = 0.) But
somehow Akerlof did not choose this optimal solution, and instead incurred cost linear in
the time horizon.

The key assumption for today’s lecture is present bias: the cost incurred on the same day
of a decision is perceived as b times as large as its actual cost, where b > 1 is the degree of
present bias. This model explains Akerlof’s behavior: at a given day t ≥ 0, the incremental
cost of shipping on that day would be perceived as b ·c, while the incremental cost of delaying
one day and shipping the next day is b · 1 + c = b + c, which is less for many choices of b, c
(e.g., b = 2 and c = 3). Note that in the second case, the cost of shipping (tomorrow) is
just c, and not b · c—the player really does consider the current day as special, and naively
assumes that in the future she will be perfectly rational.

For computer scientists, it’s natural to illustrate Akerlof’s story using a graph. (For
example, in AI, planning problems are often modeled as graph search.) In Figure 1, each
vertex represents a current state, and each edge an action. The edges around the boundary
of the “fan” correspond to delaying for a day, and each edge to t corresponds to shipping the
box. Edges are labeled with their (actual) costs. When the player is at a given vertex v, she
computes a shortest path to t, but with a twist: edges going out of v are scaled up by a factor

2Balaji Prabhakar mentioned this in his guest lecture (Lecture #11), and the “nudges” in his mechanisms
for social good are based in part on insights from prospect theory.
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of b before the computation. If the resulting shortest path P has (v, w) as its first edge, then
the player moves to w and does the same computation anew. Akerlof’s example shows that
the player might change her mind about which path to take after traversing the first hop
(e.g., delaying again tomorrow, rather than shipping tomorrow as originally planned). This
never happens with conventional shortest-path computations (subpaths of shortest paths are
again shortest paths).
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Figure 1: Graph model of Akerlof’s story.

2.2 The Model

Here’s the general model [4]:

• There is a directed acyclic graph G, with a unique source vertex s and a unique sink
vertex t.

• Each edge e of G has a nonnegative cost ce.

• At each vertex v, the player chooses the v-t path P that minimizes

b · (cost of next hop) + (cost of all subsequent hops),

and then traverses the first hop of P (and then repeats the same computation).

A related concept in behavioral economics is “hyperbolic discounting,” which combines
present bias with exponential discounting. For simplicity, we assume no discounting in
this lecture (just present bias), but the lessons learned extend also to models of hyperbolic
discounting.

2.3 Choice Reduction

Next we use the model to show how choice reduction can be beneficial to a player. Consider
the graph in Figure 2. The story is: you’re taking a three-week course, and you need to
complete two projects by the end of the course. Each “column” of the graph corresponds to

3



a week of the course, and each “row” indicates the number of projects finished to-date. The
cost of doing zero projects in a given week is 1; the cost of doing one project is 4; and the
cost of doing both projects in the same week is 9. The minimum cost of a path is 9 (doing
one project in each of two of the weeks). What will a player with present bias b = 2 do?
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Figure 2: Graph model of a three-week course with two projects.

The first week, it would clearly be crazy to do both projects (the perceived cost would
be 20). Doing one project now and one project later has perceived cost 2 · 4 + 4 + 1 = 13.
Since doing nothing now and one project in each of the second and third weeks has perceived
cost 2·1+4+4 = 10, the player will not do any projects in the first week. In the second week,
it is again crazy to contemplate doing both projects. Doing one project now and the other
project next week seems reasonable, with perceived cost 2 · 4 + 4 = 12. But procrastinating
again (and doing both projects in the last week) has perceived cost only 2 · 1 + 9 = 11, so
this is what the player will do.

The instructor of the course has an easy option to prevent such procrastination: just
require that at least one of the projects be completed by the end of the second week. This
has the effect of removing the upper-right vertex from the graph in Figure 2. Now, the player
will again procrastinate during the first week, but will follow a shortest path, completing
one project in each of the second and third weeks. Such beneficial choice reduction cannot
arise with a classical utility-maximizing player.

2.4 Task Abandonment

For our next example, we extend the basic model to include a nonnegative reward at the
sink t. (One could also allow intermediate rewards, if desired.) The player is no longer
forced to take a path all the way to t; she does so only if the consequent reward outweighs
her perceived cost. The player can stop at any time to avoid incurring any further costs.

Consider the example in Figure 3, and again assume that b = 2. Think of the first edge
as the decision of whether or not to join a gym, and the second edge as whether or not to
actually go to the gym. At the beginning, because the player gets a great deal on a gym
membership, the perceived cost of going to t is 6, less than the reward of 7 of getting into
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sick shape. After the player gets to v, however, the reality of actually going to the gym sets
in, and the perceived cost of 8 of going outweighs the reward, and the player stops at v.
Again, such task abandonment (even as the underlying cost and reward structure remains
the same) cannot arise with a classical utility-maximizing player.

s v t
1 4

reward = 7

Figure 3: Present bias can lead to task abandonment.

3 The Cost of Present Bias

In all of our examples, present bias leads a player to traverse a path more costly than the
optimal path. In this section we focus on the question: how much worse can the chosen path
be, compared to a shortest path? This question is reminiscent of our work on the price of
anarchy (Lecture #7), where we studied how bad the outcome of selfish behavior (by many
players) can be, relative to the cost of a socially optimal outcome.

3.1 The Weakly Monotone Case

Define the cost ratio of a planning instance as the ratio between the cost of the path traversed
by an agent with present bias and that of the shortest path. In Akerlof’s original example
(Figure 1), the cost of a shortest path is c, while the cost of the path chosen by a present-
biased agent grows linearly with the number n of vertices (as roughly n + c). Can the cost
ratio be worse than this?

We next identify a condition under which the cost ratio is also upper bounded by the
number of vertices in the graph.

Definition 3.1 A planning instance G is weakly monotone if

d(v, t) ≤ d(s, t) (1)

for all v ∈ V , where d(v, t) denotes the length of a shortest path from v to t.

We emphasize that the shortest path distances in (1) are with respect to the true costs (not
perceived costs). Weak monotonicity does not imply that you can’t go backward (i.e., find
yourself further from t after traversing an edge), just that you can’t ever be further from t
than where you started. For example, imagine training for a marathon: if you skip some
training sessions you will regress, but not beyond the point you were at when you hadn’t
done any training at all.

All of the examples we’ve considered thus far are weakly monotone (check this for the
example in Figure 2). And weakly monotone instances cannot have a superlinear cost ratio.
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Proposition 3.2 ([2]) In every weakly monotone planning instance, for any present bias
b ≥ 1, the cost ratio is at most the number of vertices n.

Proof: Fix such an instance and let P be the path chosen by the player. Since P has at most
n (really, n− 1) edges, it is enough to show that each edge of P has cost at most d(s, t). To
see why this is true, fix an edge e = (v, w) ∈ P . When the player is at the vertex v, the
perceived cost of the shortest v-t path (where by “shortest” we mean w.r.t. the true edge
costs) is at most b · d(v, t), with the worst case occurring when only the first edge of the
shortest v-t path has a nonzero cost. On the other hand, the perceived cost of following the
path P from v to t is at least that of the first hop, namely b · ce. Since the agent chose to
follow the path P instead of the shortest v-t path,

b · ce ≤ b · d(v, t).

Hence ce ≤ d(v, t) and, by weak monotonicity, ce ≤ d(s, t), as desired. �

3.2 Lower Bound for the General Case

Is every graph weakly monotone? No, and in general the cost ratio can be much worse than
in Akerlof’s procrastination example. To see this, consider the example shown in Figure 4.
Like in Akerlof’s example, every day the player plans to procrastinate for one day and then
go to t tomorrow. Unlike Akerlof’s example, the cost of going to t escalates by a b factor
every time the player procrastinates. The cost of a shortest path in this graph is c, while
the player chooses a path with cost bnc, and so the cost ratio is exponential in the number
of vertices.
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Figure 4: Present bias can lead to an exponential cost ratio.

Several of the other engaging tales spun in Akerlof [1] match up pretty well with the
terrifying example in Figure 4, with the running theme being how passivity, complacency,
or undue obedience can lead to an escalating crisis and a very costly endgame. He discusses
drug addition (with the difficulty of quitting increasing over time), the sociology of LBJ’s
war room during the escalation of violence in the Vietnam War, the recruitment and control
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of members in cults like the Moonies and Synanon, and Stalin’s takeover of the Bolshevik
party.3

In light of this example with an exponential cost ratio, what kind of positive news could
we hope for? The next result provides at least some consolation: the only way that a planning
problem can have an exponential cost ratio is if it includes the example in Figure 4. In the
(semi-)formal statement, we use “Fk” to refer to the graph in Figure 4, where k denotes the
number of non-sink vertices.4

Theorem 3.3 ([4]) If a graph G has an exponential cost ratio, then the graph Fk is “em-
bedded” in it, where k = Ω(n).

Note that there’s no hope of saying that G must be precisely Fk for some k, since one
can add spurious vertices and edges to Fk to get further instances that have an exponential
cost ratio. The formal term for “embedded in” is “is a graph minor of,” but we’ll skip the
formal definition, which should be intuitively clear from the proof.

Proof of Theorem 3.3: Consider an instance with n vertices and an exponential cost ratio,
meaning cost ratio αn for some constant α > 1. Our task is to exhibit structure analogous
to the graph Fk in Figure 4, with k at least a constant fraction of n.5

Let P be the path chosen by the player. The first order of business is to show that P
must be a long path (i.e., with lots of edges); the path can then play the role of the outer
boundary of Fk. We’ll do this by first arguing that P contains a vertex that is very far from t
(in terms of true shortest-path distance), and then by showing that as the player traverses P ,
her distance to t can only go up at a bounded rate.

Since the cost of P is at least αn, there is some edge e = (x, y) ∈ P with ce ≥ αn/n.
(Just because P has at most n, or really n− 1, edges.) Since the 1

n
factor is annoying, let’s

assume that n is sufficiently large and lower bound αn/n by βn for some constant β ∈ (1, α).
When the player traverses the edge e, the perceived cost of e is bβn; since she chose e over
the shortest x-t path, the shortest-path distance d(x, t) must be at least βn (as its perceived
cost is at most b times this). This is a pretty massive violation of the weakly monotone
property that we studied in the preceding section.

Next, we claim that traversing an edge of P can only lead the player a b factor away
from t. That is, if (u, v) ∈ P , then

d(v, t) ≤ b · d(u, t). (2)

The proof is similar to that of Proposition 3.2. At u, the player perceives the cost of the
shortest u-t path as at most b · d(u, t). The u-t path chosen by the player, comprising (u, v)
and some path from v to t, has perceived cost at least d(v, t). Since the player chose the
latter over the former, inequality (2) holds.

3Sample quote: “by acquiescing step-by-step to the crescendo of Stalin’s actions, [the remaining party
members] were committing themselves to altered standards of behavior” [1, page 15].

4See [6] for a quantitatively stronger version of this result.
5This bears some resemblance to an argument that we did in Lecture #8, about BGP routing, where we

proved that BGP failed to have nice properties only in graphs with a “dispute wheel.”
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Combining (2) with the fact that the vertex x (identified above) satisfies d(x, t) ≥
βnd(s, t), we can conclude that P must be long, with at least k := logb β

n = Ω(n) ver-
tices.6 More generally, for i = 0, 1, 2, . . . , k, it makes sense to define vi as the last vertex w
along P that satisfies d(w, t) ≤ bid(s, t). (Inequality (2) and the fact that d(x, t) ≥ βnd(s, t)
imply that there is at least one such vertex for each such i.)

Our ingredients for the Fk structure are (Figure 5):

• The vertices v0, . . . , vk, and t.

• The vi-vi+1 subpaths Qi of P (for i = 0, 1, . . . , k − 1).

• The shortest paths P0, . . . , Pk between the vi’s and t (with respect to the true edge
costs).

Our choice of the vi’s means that the Qi’s are disjoint paths (except that the endpoint of Qi

equals the starting point of Qi+1). While the Pi’s need not be disjoint from each other, we
claim that they must be disjoint from the Qi’s (except that the starting point of Pi is the
same as the ending point of Qi−1 and the starting point of Qi). The path Pi cannot intersect
the path P before vi, because this would imply a cycle (while the graph G is a DAG). The
path Pi also cannot intersect P after vi: since Pi is a shortest path, the value of d(w, t) only
decreases along Pi, but vi was chosen as the last vertex of P for which d(w, t) ≤ bid(s, t).

v0 t vn
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Q0

Q1

Q2

S0
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s

Figure 5: The Fk structure. .

We can now see the sense in which Fk is “embedded” in G: if we contract the edges of
each path Qi to a single edge (between vi and vi+1), and we contract all of the edges of each
Pi except for the first hop, then the result is exactly the graph Fk in Figure 4. �

4 Sophisticated Players

Thus far we have considered players who are naive, meaning not only are they present-biased,
but they don’t even realize that they are present-biased. (Recall in Akerlof’s example, every

6The asymptotic notation suppresses a factor of logb β, which is some constant (i.e., independent of n)
depending on b and β.
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morning the plan was to ship the box tomorrow, as if somehow the perceived cost tomorrow
would be less than it is today.) Next we consider sophisticated players, who are present-biased
but know that they are present-biased and act accordingly. (E.g., whenever you set fictitious
intermediate deadlines for yourself, you are being sophisticated and recognizing the future
temptation you will have to procrastinate.) Both naive and sophisticated present-biased
behavior are common in experiments (and in the real world).

To see the difference between naive and sophisticated players, consider the example in
Figure 6, where b is in between c and c2. Think of the edges (v0, t), (v1, t), and (v2, t) as
representing doing your homework Thursday, Friday, or Saturday. We already know what
a naive agent will do: since this example is a special case of that in Figure 4, she will
procrastinate and do her homework only on Saturday, for the worst-possible cost of c2. The
sophisticated agent does a cost-benefit analysis between doing her homework on Thursday
or delaying until Friday, effectively delegating future decisions to her “Friday self.” Doing
her homework now has perceived cost b. (Remember, while sophisticated, she is still present-
biased.) If she delays, she asks: “what will my Friday self do?” Since her Friday self would
be choosing between doing her homework (at perceived cost b ·c) and delaying until Saturday
(with perceived cost c2), she will procrastinate (since b > c). This means that on Thursday,
the perceived cost of delaying until Friday (and knowing the her Friday self will delay again)
is b ·0 + 0 + c2 = c2. Since c2 > b, the sophisticated agent will do her homework on Thursday
to deprive her future self of the option of further procrastination.

v0 t v2

v1

1 c2

c
0 0

Figure 6: An example that shows the difference between naive and sophisticated players.

The formal model is as you would expect: at a given vertex v, the player chooses the
next hop e = (v, w) to minimize

b · ce + (cost of what future self will do from w).

This definition is not circular, because G is a DAG. The player’s action at every vertex can
be determined by working backward from the sink t (along some topological ordering of G’s
vertices). For example, in Akerlof’s original example (Figure 1), a sophisticated player will
ship the box immediately, provided the time horizon T is large enough (e.g., at least b · c).

We’ve seen in two examples that sophisticated players make much better decisions than
naive ones. Sophisticated players are not perfect, however: if we delete the vertex v2 from the
graph in Figure 6, so that there is only one decision to make, then the player procrastinates
(provided c < b), and so the cost ratio can be arbitrarily close to the present bias b. It turns
out there is no worse example.
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Theorem 4.1 ([5]) For every planning instance, the cost ratio of a sophisticated player is
at most her present bias b.

Proof: We’ll show the stronger statement that, for every vertex v of G, the future cost
incurred by a sophisticated player starting at v is at most b ·d(v, t). We proceed by induction
on the vertices of G, starting at the sink t and working backward (along a topological ordering
of the vertices). The base case of v = t is trivial. Fix some vertex v 6= t, and suppose that
the first hop of a shortest v-t path is (v, w). By the inductive hypothesis, the cost the player
will incur from w onward is at most b · d(w, t). Thus the perceived cost of choosing the edge
(v, w) is at most b · cvw + b · d(w, t) = b · d(v, t). The perceived cost of the path chosen by
the player can only be less than this, and the actual cost of this path still less (since b ≥ 1).
Thus the cost incurred from v onward is at most b · d(v, t), completing the inductive step
and the proof. �

Theorem 4.1 is good news—the worst-case case ratio with a sophisticated player (b, inde-
pendent of n) is far less than that with a naive player (exponential in n). Thus sophisticated
players do better than naive players in the worst case—is this true in every case? Surpris-
ingly, not only can the path chosen by a sophisticated player be arbitrarily close to b times
that of a shortest path, it can even be arbitrarily close to a b factor larger than the path
chosen by a naive player.

Consider the problem shown in Figure 7, where x is a large number and ε is close to 0. A
naive player takes the path s→ u→ v → t (why?), for a cost of x+ b− ε. A sophisticated
player knows that, if she reaches u, then she will procrastinate and take the path u→ v → t
instead of u → t. Thus from s, the perceived cost of taking the edge (s, u) is bx + b − ε.
This leads the sophisticated player to instead take the edge (s, w), in order to traverse a
path with perceived (and actual) cost bx + b − 2ε. As x → ∞ and ε → 0, the cost of the
sophisticated player’s path approaches b times that chosen by the naive player.

s u t

w

v

x 1

c
0 bx+ b− 2ε

0
b− ε

Figure 7: An example where a naive player outperforms a sophisticated player.
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