
CS269I: Incentives in Computer Science
Lecture #2: Stable Matching∗

Tim Roughgarden†

September 28, 2016

1 Stable Matching and the Deferred Acceptance Algo-

rithm

Last lecture, we turned a critical eye to the way college admissions are run in the U.S. Could
the system be improved? For example, could there be a sensible centralized clearinghouse,
like a two-sided analog of the Draw? If so, what would it look like? For inspiration, we are
looking at the National Resident Matching Program (NRMP), who had to solve a similar
problem to assign newly minted medical school graduates to residency programs. We ex-
plained the history of the NRMP last time, where in 1952 a committee of medical school
students, as an act of protest, proposed a matching procedure to replace the one the was
being considered. Their alternative procedure was indeed adopted, and to a large extent
survives to this day.1 This algorithm and its properties are the subject of this lecture.

1.1 The Model

Consider a set S of students and a set H of hospitals. Each student has a ranked list
of preferences over hospitals, and each hospital a ranked list over students. Each hospital
h ∈ H has a “capacity” ch, indicating the number of positions that it has available. S and
H constitute the two sides of the market; if you like, you can think of them as the two vertex
sets of a bipartite graph. For example, in Figure 1, the students (on the left) have a common
ranking of the hospitals, while the hospitals have very different opinions about the students.

For simplicity, we’ll assume that |S| =
∑

h∈H ch — that the number of positions is exactly
the number of applicants. It’s easy to enforce this condition by adding “fake” students or
hospitals (which are less preferred than any actual students or hospitals).

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Back in 1952, computers barely existed. Initially, the algorithm with implemented using card-sorting

machines!

1

D
E
F

A

B

C

D
E
F

D
E
F

V

A
B
C

D

E

F

B
C
A

C
A
B

W

Figure 1: An instance of stable matching. Each vertex is annotated with its total ordering
over the vertices of the opposite side, with the most preferred vertex on top. All hospitals
have capacity 1.

By a matching, we mean an assignment of each student to exactly one hospital, so that
each hospital h is assigned exactly ch students. Here is the key definition.

Definition 1.1 (Stable Matching [2]) A matching of students to hospitals is stable if
there is no pair s ∈ S and h ∈ H such that all of the following properties hold:

(i) s is not assigned to h;

(ii) s ranks h higher than the hospital she was assigned to;

(iii) h ranks s higher than one the ch students assigned to it.

A student-hospital pair that satisfies (i)–(iii) is called a blocking pair. Thus a matching is
stable if and only if there is no blocking pair. A blocking pair spells trouble, because the pair
may be tempted to secede from the process and match with each other directly. (E.g., if you
get assigned to your third-favorite hospital, it’s not that hard to call your top two choices
to double-check that they don’t prefer you to any of the students they admitted. And if one
of them does, both sides are motivated to work something out. . .)

For example, in Figure 1, consider any matching where A is not assigned to D. By
assumption, (i) holds. Since A ranks D first and vice versa, S must be assigned to a
hospitals she likes less than D (so (ii) holds) and H is assigned a student it likes less than
A (so (iii) holds). Thus (A,D) form a blocking pair whenever A is not assigned to D, and
every stable matching must match A and D.

Stability seems like a nice property — but can it always be achieved? A priori, it is not
obvious that a stable matching is guaranteed to exist (for any preferences of the participants).
In the example in Figure 1, we have already argued that any stable matching must assign

2

A to D. Check that assigning B to E and C to F yields a stable matching. (In fact, the
unique one in this example.) Note that not everyone is happy in a stable matching — in the
example, C is assigned to her least favorite hospital, but unfortunately for C, the other two
hospitals prefer the students they were assigned.

What about in general? We next prove the existence of a stable matching through an
(efficient) algorithm.

1.2 The Deferred Acceptance Algorithm

We next discuss the elegant deferred acceptance algorithm for computing a stable matching.
This algorithm was first published by Gale and Shapley in 1962 [2], although the NRMP
implemented an equivalent algorithm already ten years earlier (see [3]).

Deferred Acceptance Algorithm

while there is at least one unassigned student do
every unassigned student “proposes” to her favorite hospital that
hasn’t rejected her yet

every hospital keeps track of its favorite ch proposals that it ever
receives, and rejects all other proposals2

all unrejected proposals are made final

And that’s it! Note that not too much computation is required; the algorithm is easy to
implement in O(|S| · |H|) time.

Example 1.2 (The Deferred Acceptance Algorithm) Consider the instance in Figure 1.
In the first iteration, all of the students propose to D, who retains its favorite proposal (from
A) and rejects the other two. In the second iteration, students B and C are still unassigned,
and both propose to hospital E, who retains the higher-ranked proposal (from E) and re-
jects F . In the last iteration, C has no choice but to propose to F , and F has no choice but
to accept it. Thus the algorithm terminates with the stable matching identified earlier.

1.3 Computation and Existence of Stable Matchings

We next note several properties of the deferred acceptance algorithm. First, each student
systematically goes through her preference list, from top to bottom. Second, because a
hospital only rejects an applicant in favor of a better one (and students never withdraw),
the students to whom a hospital is tentatively matched only improve over the course of the
algorithm. By the same reasoning, once a hospital becomes full in the algorithm, it remains
full forevermore. Third, at all times, each student is matched to at most one hospital and
each hospital h is matched to at most ch students.

2If a student’s proposal is initially tentatively accepted (i.e., not rejected), it still might get rejected in a
later iteration of the algorithm. Can you find an example of this?

3

Stable matchings and the deferred acceptance algorithm have an astonishing number of
remarkable properties.3 Here is the most important one.

Theorem 1.3 ([2]) The deferred acceptance algorithm always terminates with a stable match-
ing.

Proof: For starters, we claim that the deferred acceptance algorithm always terminates with
every student matched to some hospital and ch students matched to each hospital h ∈ H.
For if not, some student must have been rejected by all of the hospitals. A student is only
rejected by a hospital h in favor of being matched to ch better students, and once a hospital is
full (i.e., tentatively assigned ch students), it remains so for the remainder of the algorithm.
Thus, all hospitals are full at the end of the algorithm. But since |S| =

∑
h∈G ch, this implies

that all of the students are also matched at the end of the algorithm, a contradiction.
To prove the stability of the final matching, consider a student s and hospital h that are

not matched to each other. This can occur for two different reasons. In the first case, s
never proposed to h. Since s worked her way down her preference list starting from the top,
she ends up matched to a hospital she prefers to h. If s proposed to h at some point in the
algorithm, it must be that h rejected s in favor of ch students that it preferred (either at the
time that s proposed, or subsequently). Since the group of students assigned to a hospital
only improves over the course of the algorithm, hospital h ends up matched to ch students
it prefers to s. �

In particular, a stable matching always exists (which is not obvious a priori!). For exam-
ple, there are some simple variants of the stable matching problem for which a solution is
not guaranteed.

1.4 Why Stability?

Stability is an intuitively appealing property, but is it really that important? One approach
to answering this question is with theoretical justifications. For example, stability implies
Pareto optimality (Exercise Set #1). It is also equivalent to the seemingly more general
property that no group (of an arbitrary number of participants) can secede from the algo-
rithm and match among themselves in a better way (with no one in the group worse off and
at least one person better off).

Perhaps more compelling is the convincing empirical support for stability presented by
Roth [4].4 In the United Kingdom, back in the 1960s, residency programs decided to move
from a decentralized system to centralized clearinghouses. (This was roughly 15 years after
the U.S. made a similar switch.) Interestingly, the details of the implementation were left
up to the individual regions, and different regions implemented different algorithms. Some

3Shapley shared the 2012 Nobel Prize in Economics, in part for this work. Had Gale still been alive, he
surely would have also been a co-winner.

4Roth, a faculty member in the economics department here at Stanford, was the other co-winner of the
2012 Nobel Prize in Economics.

4

C
D A

B D
C

V

B
A C

D A
B

W

Figure 2: There can be multiple stable matchings.

of the regions implemented algorithms that guaranteed stability, while others did not. So
the regions were inadvertently running a natural experiment on the importance of stability!

So what happened? Roth looked at 7 regions where detailed computer codes were avail-
able. Two of the regions copied the U.S. algorithm (i.e., deferred acceptance), and their
clearinghouses remain in use today. The other five regions implemented algorithms that did
not guarantee a stable matching. Three of them were quickly abandoned, after suffering
from poor participation and lots of negotiations outside the system. Two remained in use.
The speculation here is that these systems persist due to low-level coercion—they were the
smallest regions, where everybody knew everybody, and there was a stigma around trying to
circumvent the centralized clearinghouse. It is also natural to speculate that these systems
suffer from participants misrepresenting their preferences and non-Pareto-optimal outcomes.

The upshot is that stability does appear to be an important property for having a func-
tional two-sided market.

2 Student-Optimality and Strategyproofness

2.1 Multiple Stable Matchings

Next we cover your instructor’s favorite property of stable matchings. First, we need to
observe that the unique stable matching in the example in Figure 1 is not representative—
there can be multiple (even an exponential number) of stable matchings. For example, in
Figure 2, the students and the hospitals both disagree on the rankings of the others. In
the matching computed by the deferred acceptance algorithm, both students get their first
choice, with A and B matched to C and D, respectively. Giving the hospitals their first
choices yields a different stable matching (neither hospital could be in any blocking pair).

When there are multiple stable matchings, how should we pick one? And can we say
anything about the stable matching selected by the deferred acceptance algorithm?

5

2.2 Selecting a Stable Matching

To answer this question, let h(s) denote the highest-ranked hospital (in s’s preference list) to
which s is matched in any stable matching. This is, h(s) is s’s best-case scenario, given that
a stable matching will be implemented. The proof of the following result is in Appendix A.

Theorem 2.1 (Student-Optimality [2]) The stable matching computed by the deferred
acceptance algorithm matches every student s ∈ S to h(s).

Theorem 2.1 implies the existence of a “student-optimal” stable matching, where every
student simultaneously attains her best-case scenario. A priori, there is no reason to expect
that such a matching exists.

Analogously, the matching computed by the deferred acceptance algorithm is simulta-
neously the worst-case scenario for all of the hospitals, with each getting the lowest-ranked
students that it gets in any stable matching.

These two properties can be flipped by reversing the roles played by the students and the
hospitals in the algorithm, with hospitals proposing to their favorite students, and students
entertaining only their favorite offer received so far. This version of the algorithm computes
a “hospital-optimal” stable matching, with every hospital h getting the best ch students that
it gets in any stable matching.

2.3 Strategyproof Considerations

Do participants in the deferred acceptance algorithm ever have an incentive to misreport
their preferences? As you might have guessed, it depends on which side of the market you’re
on. For the usual (student-optimal) version of the deferred acceptance algorithm, honesty is
always the policy for students. (While intuitive, this is surprisingly annoying to prove—see
e.g. [6, Theorem 10.6.18].) Hospitals can sometimes be better off by submitting a preference
list other than the honest one (this is not hard, see Exercise Set #1).

2.4 NRMP Revisited

Curiously, the original 1952 implementation of the deferred acceptance algorithm in the
National Resident Matching Program was the hospital-optimal version of the algorithm.
(Don’t forget that the algorithm was proposed by a committee of medical school students!)
The algorithm was re-implemented in the 1990s [5]. The primary motivation for the new
implementation was to give couples the option of trying to get placed in geographically nearby
residency programs. But in addition the algorithm was changed to favor the applicants,
rather than the programs. It made a small difference but not much: empirically, each year
maybe a couple percent of the students are better off than they would have been under the
original algorithm. Switching from hospital-optimal to student-optimal also switches which
side of the market might have opportunities for manipulating the mechanism with untruthful
preference lists. But empirically, at least for the data sets arising in the NRMP, there seemed
to be little incentive to be dishonest. Even assuming complete knowledge of everyone else’s

6

preference lists, less than 1% of the hospitals could have benefited by misrepresenting their
preferences (or their capacity).

2.5 Key Take-Away

Here’s the key take-away from this section: when choosing a stable matching in a two-sided
market, you have to make a trade-off between the two sides of the market. For example,
in Figure 2, you have to decide between giving the students their top choices, or giving the
hospitals their top choices. But Theorem 2.1 means that: once you’ve decided which side of
the market to favor, no further trade-offs are necessary. For example, if you want to favor
the students, there’s no need to trade off between different students—all of them agree on
the best stable matching to pick.

3 Epilogue: College Admissions Revisited

Why were we talking about stable matching again? Oh right, we were thinking about
college admissions, and what an alternative system might look like. The deferred acceptance
algorithm gives a proposed design for a centralized clearinghouse for two-sided markets like
college admissions. The NRMP shows that such clearinghouses can really work in practice,
at least in some cases. Could you imagine using an analogous clearinghouse to implement
college admissions in the U.S.? Is this crazy talk? Why or why not?

Before you dismiss the idea out of hand, it’s worth noting that in several other countries,
college admissions are indeed decided by a centralized clearinghouse. This is particularly
easy in countries that have a national entrance exam. In this case, all colleges are effectively
defined to have identical preferences (with students ranked according to entrance scores).
This problem is easy to solve using a serial dictatorship (as in the Draw, see Lecture #1),
with the students ordered according to exam score.

Hungary is an interesting case study (see [1]). There, you apply for a program (roughly
equivalent to a major), not just a college. As you can imagine, different programs (e.g.,
technical vs. non-technical) want to give their own entrance exams, resulting in programs
with different preferences. Thus in Hungary college admissions really is a full-blown two-
sided market. And they essentially use the deferred acceptance algorithm to do admissions!5

We may never see centralized college admissions in the U.S. (who would spearhead the
effort)? But if we did, it would have a good chance of working well, and might reduce some
of the inefficiencies and strategizing that are inevitable with the current system. Zooming
out, this whole exercise was designed to fire up your imagination. Rather than accepting a
long-running institution as inevitable, ask the question:

Could there be a better system?

5Financial aid offers are included in the stated preferences, just as room types are explicitly listed in the
Draw. That is, each entry of the preference list specifies a given program at a given financial aid level.

7

References

[1] P. Biró. Student admissions in Hungary as Gale and Shapley envisaged. Technical Report
TR-2008-291, Department of Computing Science, University of Glasgow, 2008.

[2] D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

[3] A. E. Roth. The evolution of the labor market for medical interns and residents: A case
study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

[4] A. E. Roth. A natural experiment in the organization of entry-level labor markets:
regional markets for new physicians and surgeons in the United Kingdom. American
Economic Review, 81(3):415–440, 1991.

[5] A. E. Roth and E. Peranson. The redesign of the matching market for American
physicians: Some engineering aspects of economic design. American Economic Review,
89(4):748–780, 1999.

[6] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations. Cambridge University Press, 2009.

A Proof of Theorem 2.1

As optional material, we conclude with the neat proof of Theorem 2.1.

Proof of Theorem 2.1: Let R denote the set of pairs (s, h) such that h rejected s at some
point. Since each student systematically works her way down her preference list, if s is
matched to h at the conclusion of the algorithm, then (s, h′) ∈ R for every h′ that s prefers
to h. Thus, the following claim would imply the theorem: for every (s, h) ∈ R, no stable
matching pairs up s and h.

Let Ri denote the first i proposals (s, h) that get rejected. (For proposals rejected at
the same time, order them arbitrarily.) We prove by induction on i that no pair in Ri is
matched in any stable matching. Initially, R0 = ∅ and there is nothing to prove. For the
inductive step, suppose that the ith rejected proposal is of s by h, in favor of s′. At the time
of rejection, at least one of s, s′ was proposing to h.

Since s′ systematically worked her way down her preference list, for every h′ that s′

prefers to h, (s′, h′) ∈ Ri−1. By the inductive hypothesis, no stable matching pairs up s′

with a hospital she prefers to h—in every stable matching, s′ is paired with h or a less
preferred hospital. Since h prefers s′ to s, and s′ prefers h to any other hospital she might
be matched to in a stable matching, there is no stable matching that pairs s with h (since
s′, h would form a blocking pair). �

8

