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1 Cake Cutting

1.1 Properties of the Cut and Choose Protocol

For our last lecture we embark on a nostalgia trip, and continue the theme of the course’s
first week, where we revisit familiar procedures and study their incentive properties. (In
the first week, we talked about the Draw and serial dictatorship mechanisms, and college
admissions and the Gale-Shapley deferred acceptance algorithm.) Unlike the examples in
the first week, we focus primarily on fairness properties. (In the first week we focused on
strategyproofness and Pareto optimality, neither of which says anything about the “fairness”
of the solution.)

Suppose two people need to split a heterogeneous and divisible good. The usual eu-
phemism in the fair division literature is that of cutting a cake. More practically, the good
could be an estate (e.g., in a divorce settlement) or processing time on a computer cluster
(perhaps with some times of the day more valuable than others).

Why not just split the good 50/50? This makes sense when the good is homogeneous,
but its not clear what this means with a heterogeneous good. A player may value a part of
the good much more than another, and different players can have different opinions about
which parts are the most valuable.

We all know a reasonable protocol for two-person cake-cutting—it is mentioned already
in the Bible, and is reinvented every year by siblings around the world.
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The Cut and Choose Protocol

1. Player 1 splits the good into two pieces A and B, such that the player’s
value for each is exactly half that of the entire good.

2. Player 2 picks whichever of A,B she likes better.

The description above is the intended behavior of the players in the protocol—we’ll talk
shortly about whether or not they are incentivized to follow this behavior. We’ve been led
all our lives to believe that this is a “fair” protocol. But is it? How would we formally argue
one way or the other?

Here’s the formal model. The good, or “cake,” is the unit interval [0, 1]. (Yes, it’s a
weird-looking cake.) Each player i has a valuation function vi, which specifies the value
vi(S) to i of a given subset S of the cake. We’ll make the following two assumptions about
each valuation function vi:

1

1. vi is normalized, with vi([0, 1]) = 1. This is more or less without loss of generality, by
scaling.

2. vi is additive on disjoint subsets. That is, if A,B ⊆ [0, 1] are disjoint, then

vi(A) + vi(B) = vi(A ∪B).

First question: is the cut and choose protocol strategyproof? Let’s start with the second
player. Since she can’t affect the split of the cake into A and B, and is supposed to choose
the piece she likes better, she has no incentive to deviate. But if the first player knows
something about the second player’s valuation function, she might want to deviate from the
protocol. For example, suppose the good is a hot fudge sundae, the first player likes all
parts of the sundae equally, while the second player likes ice cream but really cares about
the cherry. The first player could split the sundae into the cherry and the rest, knowing that
the second player would take the cherry, leaving a very valuable piece for the first player.
If the first player doesn’t know anything about what the second player wants, and assumes
that the second player will always leave the piece that is worse for the first player, then the
first player is incentivized to follow the protocol (to guarantee herself a piece with value 1

2
).

In any case, the cut and choose protocol is not strategyproof in the same sense as the Draw
(where you should always follow the protocol, no matter what other people want and are
doing).

Second question: is the cut and choose protocol guaranteed to produce a Pareto optimal
solution (assuming both players behave as intended)? A little thought shows that the answer
is again “no.” Consider the cake in Figure 1, where the first player only wants the first and
third quarters of the cake, while the second player only wants the second and fourth quarters

1Actually, we also need a “continuity” assumption for everything to make sense—e.g., in the cut and
choose protocol, it’s important that there exists a cut that makes player 1 indifferent between the two pieces.
We omit further discussion of this assumption.
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Figure 1: The solution produced by the cut and choose protocol may not be Pareto Optimal.

of the cake. One way the first player might split the cake would be into its first and second
halves, resulting in both players getting a piece valued at 1

2
. But allocating each piece of

cake to the only player who wants it results in both players having value 1.
Maybe these problems are not specific to the cut and choose protocol, and there is a

fundamental impossibility result? Not if we consider only strategyproofness and Pareto op-
timality: for example, always giving the entire cake to the first player is clearly strategyproof
and (under weak assumptions on the vi’s) Pareto optimal. So hopefully the cut and choose
protocol has some other nice property, to compensate for not being strategyproof or Pareto
optimal.

What about “fairness?” One possible definition of fairness would be that both players
wind up equally happy. But this property is also not satisfied by the cut and choose protocol:
the first player is guaranteed to get a piece that she values at 1

2
, while the second player

might well end up with a piece that she values at greater than 1
2
.

One definition of “fairness” is that each player receives at least her fair share, at least
from her perspective.

Definition 1.1 An allocation A1, A2, . . . , An of cake to n players is proportional if

vi(Ai) ≥
1

n

for every player i.

The cut and choose protocol satisfies proportionality—the first player gets a piece that
she values at 1

2
and the second player does at least as well. Obviously, the dictator protocol

does not satisfy proportionality.
A second definition is that no player wants to trade places with any other player.

Definition 1.2 An allocation A1, A2, . . . , An of cake to n players is envy-free if

vi(Ai) ≥ vi(Aj)

for every pair i, j of players.

This means that while player j might like her piece more than i likes her own, to player i’s
own tastes, her piece is better than that of player j’s.
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The second definition is more stringent than the first. To see this, note that for every i,∑n
j=1 vi(Aj) = v([0, 1]) = 1 (by our assumptions on the vi’s). So if player i likes Ai better

than every other piece (as dictated by envy-freeness), it must be that vi(Ai) ≥ 1
n
.

The converse also holds for the special case of n = 2 (if you get a piece of cake that
you value at least 1

2
, then swapping would net you a piece that you value at most 1

2
). In

particular, the cut and choose protocol is envy-free. (This is also easy to see directly: the
first player is indifferent between the two pieces, while the second player gets her favorite
one.) For n ≥ 3, there can be proportional allocations that are not envy-free (exercise).

1.2 Beyond Two Players

The obvious next question is to ask about analogs of the cut and choose protocol—meaning
envy-free protocols—that work with 3 or more players. This turns out to be a tricky question,
and there is now a small cottage industry around envy-free protocols. And the biggest
breakthrough in decades occurred just earlier this year! We focus on envy-freeness and
ignore strategyproofness issues.

First, let’s consider the case of 3 players. Selfridge and Conway (around 1960) indepen-
dently designed the same envy-free protocol for this case. (Neither saw fit to publish it, so it
came to light only a few years later.) One good exposition is [5]; here’s the rough idea. In the
first step, the third player cuts the cake into three pieces such that she has value 1

3
for each

of them. The first and second players then select their favorite pieces. If they select different
pieces, then we are done (why?). So the interesting case is when the first and second players
both prefer, say, the first piece. Then, the second player is asked to trim off a subpiece of
the first piece such that she is indifferent between the trimmed piece and her second-favorite
of the original three pieces. The protocol then recurses on the trimmings with the roles
of the players swapped (with the second player cutting the trimmings into three pieces of
equal value to her). The protocol does not need to recurse further, because of the special
structure of the recursively defined subproblem. In the worst case, the Selfridge-Conway
protocol makes 5 cuts (the first two cuts by the third player, the trim by the second player,
and two more cuts in the recursive call).

The problem of coming up with an envy-free protocol for four or more players was open
for decades. The next breakthrough came in 1995, by Brams and Taylor [3], who gave a
finite protocol for computing an envy-free allocation with any number of players. The only
drawback is that the protocol is unbounded: while for any fixed valuation functions v1, . . . , vn
it halts in a finite number of steps, for every n ≥ 4 and T , there is a choice of v1, . . . , vn such
that the protocol requires more than T steps to terminate.

The obvious next goal was to come up with a bounded envy-free protocol, where the
maximum number f(n) of steps can depend on the number of players n (by necessity) but
not on the vi’s. This was a big open question for a couple of decades, and many experts
believed that no such protocol existed. But earlier this year, Aziz and Mackenzie [2] gave a
four-player protocol that is guaranteed to produce an envy-free allocation after at most 203
cuts. (So as you can imagine, the protocol is pretty complicated.) Aziz and Mackenzie [1]
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followed up with a paper, published less than two months ago, that extends the result to
the general n-player case. The bound on the number of cuts? Currently, it’s a tower of 6

n’s, meaning nnnnnn

.2 As for lower bounds, n − 1 is obvious (why?) and the best known is
Ω(n2) [6]. Now there’s a gap that’s in need of narrowing! In particular, is a bound polynomial
in n possible?

2 Rent Division: Fair Division in Practice

One place where fair division protocols are used in practice is on spliddit.org, which has
been used by tens of thousands of people. One of the problems that spliddit solves is the
rent division problem, where there are n people, n rooms, and a rent of R. The goal is to
assign people and rents to rooms, with one person per room and with the sum of rents equal
to R, in the “best” way possible.

We assume that each person i has a value vij for each room j, and normalize these values
so that

∑
j vij = R. (In effect, we force each player to acknowledge the constraint that the

entire rent must get paid.) We use a quasi-linear utility function (like in our lectures on
auctions), meaning that we assume that each player i wants to maximize vij minus the rent
paid for her room j. This is a more specific assumption than we made for the abstract cake
cutting problem, but it enables envy-free solutions and is reasonable in this context.3

A solution to a rent division problem is envy-free if

vif(i) − rf(i) ≥ vif(j) − rf(j) (1)

for every pair i, j of players, where f(i) denotes the room to which i is assigned and rj
denotes the rent assigned to the room j. That is, no one wants to trade places with anyone
else (where trading places means swapping both rooms and rents).

The good news is that an envy-free solution is guaranteed to exist, and that one can be
computed efficiently.4 The bad news is that there can be many envy-free solutions, and not
all of them are reasonable. For example, suppose there are two players and two rooms, that
the total rent R is 1000 (so clearly not in the Bay Area. . . ), and that the first player only
wants the first room (v11 = 1000 and v12 = 0) while the second player only wants the second
room (v21 = 0 and v22 = 1000). The only reasonable room assignment is to give each person
the room that they want. Intuitively, by symmetry, each person should pay 500 in rent. But
every division of the rent is envy-free! Even if you make the first person pay almost 1000 for
her room, she still doesn’t want to swap with the other person.

The upshot is that we need a method for selecting one out of the many envy-free solutions.
One can imagine several ways of doing this; here’s what happens on spliddit (given vij’s and
R):

1. Choose the room assignment f to maximize
∑

i vif(i).

2I’m not kidding. Hey, at least it’s not a tower of n n’s!
3Rent division isn’t really a special case of cake cutting, since the rooms are indivisible.
4Both these facts follow from the theory of maximum-weight bipartite matchings, as studied in CS261.
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2. Set the room rents so that envy-freeness (1) holds, and subject to this, maximize the
minimum utility:

max
r

(
n

min
i=1

(vif(i) − rf(i))

)
.

Algorithmically, the first step can be done by computing a maximum-weight bipartite match-
ing and the second step is easily encoded as a linear program, for which good off-the-shelf
solvers exist (see CS261). One could imagine selecting an envy-free solution in a different
way, for example by optimizing a different objective, but the method above seems successful
empirically, according to user studies. See [4] for further details.
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