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1 Voting in Computer Science

This lecture is all about voting. Voting provides us with another example of a familiar system
where it’s interesting to think about incentives. But also, these days voting is naturally
coming up in several computer science contexts.

1. Rank aggregation. Here, voters correspond to different ranking algorithms. Consider a
prediction problem where the goal is to come up with a ranked list, such as the Web
pages most relevant to a search query. Imagine you have several different heuristics for
producing such ranked lists. Maybe one heuristic is based on anchor text, another on
link structure, and another on the page content.1 It’s natural to try to combine these
different and likely conflicting rankings into a “consensus ranking.” This is exactly a
voting problem. The hope is that the consensus ranking is somehow “better” or “more
accurate” than the individual rankings. For example, maybe the best pages are high
on all of the lists, whereas a spam page is high on only a subset of the lists, and hence
is ranked low in the consensus ranking.

2. Crowdsourcing. Here, voters correspond to “workers” (in crowdsourcing terminology).
For example, the voters could be workers on Mechanical Turk, or peer graders in a
MOOC. Suppose each worker produces a ranking — maybe you showed them three
different candidate user interfaces and asked about their most and least favorite options.
A natural goal is to summarize the workers’ results with a single ranking. Again, this
is exactly a voting problem.

3. Participatory democracy. Here, voters are, um, voters. The goal in participatory
democracy is to get more people involved in government decisions, especially at the
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local level.2 Work-to-date has focused mostly on budgeting decisions, like which capital
expenditures to prioritize. For example, residents might be asked whether they’d rather
see money spent on improving parks, schools, or public housing. This forces voters to
grapple with the types of trade-offs faced by the government. Participatory budgeting
is getting increasingly popular—currently, 31 of New York City’s 51 local districts use
it every year.

Technology plays at least two important roles in enabling participatory democracy. The
more obvious one is in making voting easy (e.g., voting on your smartphone rather than
at a polling place).

More interestingly, technology also enables new types of voting. The systems currently
in place typically use “k-approval voting” — each voter is told the overall budget (e.g.,
$1 million) and a list of project descriptions with costs, and the voter picks their k
(e.g., 5) favorite projects, with no ordering between them. Projects are then sorted
in decreasing order of the number of votes received, and funded in this order until
the budget runs out. A drawback with this system is that voters need not take into
account projects’ costs (e.g., the k projects’ combined costs are allowed to exceed the
budget), which results in more expensive projects being overrepresented. One current
prototype for a replacement is “knapsack voting,” where a voter is allowed to approve
any number of projects, as long as their total cost is at most the budget. This forces
voters to account for project costs, in that voting for more expensive projects decreases
the number of projects that you can vote for. It’s hard to imagine implementing
knapsack voting with a paper ballot at a polling station — a computerized platform
for large-scale voting is essential for its viability.

2 Examples of Voting Rules

2.1 Formalism

The point of a voting mechanism is to make a decision as a function of what people want
(i.e., their preferences). So we need a model of people’s preferences (this will be a recurring
theme in the course), and we’ll use the same model of ranked lists that we were working
with last week.

Precisely, let A denote a set of alternatives (different user interfaces, or Web pages, or
candidates in a political election). Each voter i has her own ranked list over the alternatives
in A, and declares some ranked list Li to a voting mechanism. (Li may or may not be
voter i’s true preferences—the mechanism has no way of knowing.)

A voting rule can then have two different forms, depending on whether its output is a
full ranked list or just a single alternative (the “winner”). So it’s either a map of the form

L1, L2, . . . , Ln 7→ L∗,

2For cool work being done by Ashish Goel’s group here at Stanford, check out http://pbstanford.org.
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where L∗ is a ranking of A, or a map

L1, L2, . . . , Ln 7→ a∗,

where a∗ ∈ A.3 The former type of map is what you want in the rank aggregation application,
and perhaps also in the crowdsourcing application. The latter map suffices for political
elections (of a single candidate).

Last week’s discussion of the Draw and of stable matching also involved participants with
ranked lists over the possible outcomes. How is the voting problem different? The voting
formalism is general enough to capture the applications last week as special cases, with the
set A of alternatives corresponding to all possible assignments (of students to rooms, or
residents to hospitals). But there was additional structure to everyone’s preferences in the
Draw and stable matching, namely that every participant only cared about what their own
allocation was, and not those of the other participants. In an election, the outcome of the
voting rule can affect everybody.

2.2 Majority Rule

Suppose there are only two alternatives (|A| = 2). One obvious voting rule is majority vote:
elect that alternative that appears first in the largest number of voters’ lists. (If there is an
even number of voters and a tie, break the tie in some canonical way, perhaps randomly.)
It’s hard to think of any other voting rule that you might plausibly use when there are two
alternatives.

Observe that the majority vote rule is strategyproof. If you submit a false list (i.e.,
reverse the order of the two alternatives), the only possible effect is to flip the winner from
the alternative that you prefer to the other alternative. So maybe designing voting rules
isn’t all that difficult?

2.3 Plurality Rule

Suppose now that |A| ≥ 3, as is the case in many applications. What would be the analog of
the majority rule? (Suppose we only care about electing a single winner.) If some candidate
appears first in more than 50% of the voters’ ballots, then it’s intuitively clear that she
should be the winner. But in many real elections with 3 or more candidates, this does not
happen. (E.g., with 3 candidates, you might have a 40/35/25 split.) So then what?

In most countries (including the U.S.), the most common solution is the plurality rule,
which elects the candidate with the most first-place votes. (With this result, a voter does not
need to submit her full ranked list; just her top choice suffices.) Is this rule strategyproof?

You don’t have to look that far back in history to understand the incentive issues with
the plurality rule. In the 2000 U.S. presidential election, the outcome of the election came

3Some voting theory jargon: the former type of map is called a social welfare rule, the latter a social
choice rule.
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down to the state of Florida.4 Here were the final vote tallies in Florida:

Candidate Party Vote Total
Bush Republican 2,912,790
Gore Democrat 2,912,253
Nader Green 97,488

There were additional candidates, but the fourth-place finisher was well behind Nader. This
was obviously a very close election—there was about a 500-vote difference between Bush and
Gore, a margin of less than .01%.

It is generally assumed that most voters who viewed Nader as their first choice also
viewed Gore as their second choice. (Nader’s political stance was substantially closer to that
of Gore than that of Bush.) Thus Nader was a “spoiler” candidate, in the sense that his
presence flipped the election’s outcome (from Gore to Bush), despite the fact that he was
nowhere close to winning the election.

This example also shows why the plurality rule is not strategyproof. If your true prefer-
ences were to rank Nader over Gore over Bush, and if you knew that Nader had no chance
of winning, then it makes sense to vote for Gore instead of Nader—this could cause your
second-favorite candidate to get elected over your third-favorite candidate.5

More generally, the plurality rule tends to be biased toward “extreme” candidates. To
make the point clear, imagine there there are 10 “mainstream” candidates, all very similar
to each other, and 1 “extreme” candidate. Imagine that 90% of the population prefers any
of the mainstream candidates to the extreme, with the other 10% preferring the extreme
candidate. If the mainstream candidates manage to split the 90% of the vote equally, then
each mainstream candidate receives only 9% of the first-place votes, and the extreme can-
didate winds up being the winner. This is one of the reasons why voting theorists tend to
have a dim view of the plurality rule (despite its prevalence in practice).

2.4 Ranked-Choice Voting

We’ve seen that the plurality rule has some serious issues. So what else could you do?
Another rule you hear about frequently in the news is ranked-choice voting, also known
as single transferable vote (STV) or instant-runoff voting. For example, not too long ago
Oakland switched their local elections from plurality vote to ranked-choice voting.

For ranked-choice voting, voters submit a full ranked list (not just their first choice).
First, if there is some alternative a∗ that receives more than 50% of the first-choice votes,
then a∗ is the winner. Otherwise, the alternative with the fewest first-choice votes is deleted
and the winner is computed recursively on the remaining alternatives. Eventually, there will
be only two alternatives remaining at which point the rule is the same as the majority rule.

4Let’s leave aside incentive issues stemming from the idiosyncratic electoral college—that would make for
a whole other lecture.

5Such voting is sometimes deemed “dishonest”—but can you really blame a voter who understands the
incentive issues for acting according to her preferences?
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Note that in the example at the end of the previous section, ranked-choice voting will elect
one of the mainstream candidates.

For example, consider the following five votes over the set of alternatives A = {a, b, c, d}:

Voters #1,2 Voters #3,4 Voter #5
1st Choice a b c
2nd choice d a d
3rd choice c d b
4th choice b c a

Each of a, b, c has at least one first-choice vote, while d does not have any. So we eliminate
d and recurse on the remaining alternatives, leaving us with:

Voters #1,2 Voters #3,4 Voter #5
1st Choice a b c
2nd choice c a b
3rd choice b c a

Since a, b have two first-choice votes each, while c only has one, we eliminate c and repeat:

Voters #1,2 Voters #3,4,5
1st Choice a b
2nd choice b a

In the last round we apply the majority rule, so b wins.
Should we be happy with this outcome? Not necessarily. For example, looking back at

the original preferences, note that a majority of the voters prefer c to b, and also a majority
prefer d to b. So voters might well wonder how b got elected over both c and d.

Ranked-choice voting is not strategyproof (see Exercise Set #2). The intuition is that
there can be an incentive to influence who gets eliminated early on, so that your preferred
candidate gets more favored matchups in later rounds. Compared to the plurality rule,
however, it seems trickier for a voter to reason about how to game the system in ranked-
choice voting.6 This is one of the reasons why most voting theorists prefer ranked-choice
voting to plurality voting.

For a given set of voter preferences, changing the voting system can change the election
outcome. This fact tends to politicize debates over which system should be used. For
example, in 2011 the U.K. held a referendum on whether or not to switch from plurality
voting to ranked-choice voting. The proposal was soundly defeated, and it seems that one
reason was a belief that a switch would increase the probability of the re-election of a
specific candidate who was strongly disliked in certain circles. It’s important to remember,
however, that no voting system is intrinsically more “left-wing” or “right-wing” than another;
differences between voting systems become a political issue only once you have specific
candidates and voter preferences in mind.

6For example, even if you know everyone else’s votes, the problem of checking for a profitable manipulation
is NP -hard (in the worst case, as the number of alternatives grows large) [2].
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2.5 The Borda Count

Another well-known voting rule is the Borda count, which uses a point system. Voters submit
their full ranked lists. An alternative gets |A| points for each first-choice vote, |A|− 1 points
for each second-choice vote, and so on, with 1 point for each last-choice vote. For example,
with voter preferences as in Section 2.4, the point totals would be 15 for a, 12 for b, 10 for
c, and 13 for d. Thus the Borda count would elect a (in contrast to the outcome of ranked-
choice voting). The Borda count has been used many times—often in sports, for example.
The Eurovision contest also uses a rule similar to the Borda count.

More generally, one can use a different choice of how many points gets accrued per jth-
choice vote. Voting rules based on such point systems are called positional or scoring rules.
For example, plurality is a scoring rule, with 1 point per first-choice vote and 0 points for
all other votes. Is ranked-choice voting a scoring rule?

The Borda count rule also fails to be strategyproof. For example, you might want to
rank the closest competitor to your preferred alternative last.

3 The Gibbard-Satterthwaite and Arrow Impossibility

Theorems

All of the voting rules we’ve looked at (save majority, in the |A| = 2 case) have failed to be
strategyproof. Are we just not being smart enough, or is there a more fundamental issue?

The Gibbard-Satterthwaite theorem states that it’s not our fault that we haven’t thought
of any strategyproof voting rules with three or more alternatives—non-trivial such voting
rules simply do not exist.

To make a precise statement, we need to define a “non-trivial voting rule.” Here are two
“trivial” rules:

• Dictator: a dictator rule has a dictator voter i, and always elects i’s first choice.

• Duple: a duple rule chooses a pair a, b ∈ A of alternatives (independent of voters’
preferences), and runs majority vote between a and b.

Theorem 3.1 (Gibbard-Satterthwaite Theorem [4, 8]) Every strategyproof voting rule
that can produce at least three different outcomes is a dictator.

Ouch! So the Gibbard-Satterthwaite theorem basically says that strategyproofness is hope-
less in general for voting.7

The Gibbard-Satterthwaite theorem is closely related to, and can be derived from, an
even more famous impossibility result: Arrow’s impossibility theorem.8 We state the theorem
and then provide the missing definitions.

7The Gibbard-Satterthwaite theorem is about deterministic voting rules, but there are analogous impos-
sibility results also for randomized voting rules [5].

8Arrow received one of the earliest Nobel Prizes in economics (in 1972), in part for this result. He has
been a professor at Stanford for many years.
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Theorem 3.2 (Arrow’s Impossibility Theorem [1]) With three or more alternatives,
no voting rule satisfies the following three properties:

1. Non-dictatorship.

2. Unanimity.

3. Independent of irrelevant alternatives (IIA).

Non-dictatorship just means that there is no dictator (a voter i such that the output of the
voting rule is always the same as i’s ranked list). Unanimity means that if every voter ranks
a over b, then the voting rule should also rank a over b. IIA means that, for every pair
a, b of alternatives, the relative order of a, b in the produced ranking should be a function
only of the relative order of a, b in each voter’s list, and not depend on the position of any
“irrelevant” alternative c in anyone’s preferences. Most natural voting rules satisfy the first
two conditions; IIA is the one that does most of the work (and is the most debatable as a
desirable property).

For example, the plurality rule does not satisfy IIA; the outcome of the 2000 U.S. Presi-
dential Election was certainly not independent of the position of Nader in voters’ preference
lists. More generally, a voting rule that allows spoiler candidates cannot satisfy IIA.

Many proofs of Theorems 3.1 and 3.2 are known (e.g. [3, 9]). If you’re mathematically
inclined, you’re encouraged to check them out—the proofs are accessible, if a little tedious
at points.9

4 A Tractable Special Case: Single-Peaked Preferences

The Gibbard-Satterthwaite theorem dashes any hopes of having a general and useful strate-
gyproof voting rule. So should we give up? Well, that’s not exactly an option—elections with
three or more candidates aren’t going away, and some voting rule must be chosen. So just
as computational intractability results (like NP -hardness results) forces us to compromise
our goals (resorting to approximation algorithms, restricting to computationally tractable
special cases, etc.), impossibility theorems in voting theory imply that compromises must be
made. For example, one can relax the strategyproof condition in various ways. We conclude
this lecture with a different type of result, which identifies an interesting restricted class of
preferences that admits a natural strategyproof voting rule [6].

Suppose the set of alternatives is the unit interval [0, 1]. For example, the interval could
represent the political spectrum (from radical to reactionary). A voter i has single-peaked

9One can also deduce the Gibbard-Satterthwaite theorem from Arrow’s theorem, using a type of “reduc-
tion.” That is, given an allegedly non-trivial and strategyproof voting rule, one can extract a voting rule that
satisfies the three conditions in Arrow’s theorem. Put differently, failures of IIA give rise to opportunities
for strategic manipulation. Most of the details of the reduction resolve the “typechecking error” between
the two theorems—Arrow’s theorem is a result about social welfare functions (voting rules that produce a
full ranked list) while the Gibbard-Satterthwaite theorem holds even for social choice functions (voting rules
that merely elect a winner). See e.g. [7] for more details.
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preferences if there is a “peak” pi ∈ [0, 1] such that whenever z is farther from pi than y
(meaning z < y < pi or z > y > pi), the voter prefers y to z. See Figure 1.

Figure 1: Single-peaked preference. Voter i has peak pi; since y is closer to pi than z, the
voter prefers y to z.

One can imagine scenarios where single-peaked preferences are a reasonable first-cut
approximation of voters’ preferences (electing a politician, locating a school, etc.).

Suppose each voter votes by providing a reported peak xi ∈ [0, 1]. Which alternative
should we choose? One idea is to choose the average, 1

n

∑n
i=1 xi. But note that this is

not strategyproof: a voter might be able to pull the chosen outcome closer to her peak by
reporting an overly extreme peak. Can you think of real-life examples of this phenomenon?

A second and better idea is to choose the median of the reported peaks. (For simplicity,
assume there is an odd number of voters.) The median voting rule is strategyproof. The
only way a voter can manipulate the median is to report a peak on the opposite side of the
median from her true peak (Figure 2). But this can only pull the median farther away from
her true peak, a worse outcome for her.

Figure 2: Median m of reported peaks (with n = 7). A voter i with peak pi cannot change
the median unless she overshoots to the other side by misreporting p′i; this would move the
median m′ even further from i’s true preference pi.
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