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1 Peer-to-Peer Networks: Some History

Ten years ago, the design of peer-to-peer networks was one of the hottest topics in systems
research. Less so these days, but peer-to-peer networks remain practically relevant and also
provide an intriguing case study of how a system evolves in response to incentive issues.

The story begins in 1999, with Napster. The primary purpose of Napster was to provide
a centralized and searchable directory listing which users have copies of various files (e.g.,
mp3s). Prior to this, Internet users exchanged files in a more ad hoc fashion, for example via
newsgroups. Napster’s role was that of a match-maker: it matched up people who wanted a
file with people who already have it. The file transfer itself was then done directly between
the matched users. Note that a user generally acts as a server for some file transfers, and as
a client for others (in contrast to the traditional client-server model).

In 2000, lawsuits against Napster started rolling in (for copyright infringement). Most
famously by the RIAA, but also directly by artists, including Metallica (pissing off all their
fans) and Dr. Dre. After Napster failed to comply with requests to block access to copyrighted
material, they were shut down in 2001.

Napster’s spectacular rise (up to around 25M users) clearly demonstrated the demand
for peer-to-peer networks. Its shutdown by the government highlighted the vulnerabilities of
a centralized system (like Napster’s directory), so the next step was to develop completely
decentralized peer-to-peer networks. In the new systems, each user maintains connections
to a group of peers, and searching for a file now involves searching through the network of
connections (by breadth-first search, in effect). Once a user with the desired file is located,
the file transfer is done directly between the two users. There were several such systems;
a major one was Gnutella, which debuted in 2000.1 The fully decentralized nature of this
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second generation of peer-to-peer networks made them basically impossible to shut down.
Gnutella already highlights the kind of incentive issues that plague peer-to-peer networks.

The functionality of Gnutella rests on (at least some) users conforming to the following
intended behavior: upon receiving a file request, either upload the file to the requester (if
the user has the file) or forward the request onward to peers (if not). But users were given
no incentives to actually behave in this way.

Adar and Huberman [1], in the paper “Free Riding on Gnutella,” showed that the incen-
tive issues in Gnutella were real.

Vocabulary Lesson

free rider (n.): someone who enjoys a costly good or service without paying
for it.

In the context of Gnutella, a free rider is a user who downloads but never uploads. The study
in [1] showed that free riding was the dominant behavior in Gnutella, with over two-thirds
of the users free riding, and with 37% of the uploads performed by only 1% of the users.
These findings do not suggest a very functional or sustainable system—at some point, the
uploaders will get fed up with all the free riders and find something better to do with their
time and upload capacity. Indeed, in a 2005 follow-up study [4], the free-riding rate had
climbed to 85%. In the subsequent years, Gnutella faded to black (so to speak).

2 The Prisoner’s Dilemma

We next digress into some basic game theory, to explain a clean and famous way to think
about incentives issues like free riding in Gnutella.2 Game theory will teach us some lessons
in a simple model, and then we’ll return to peer-to-peer networks to apply these lessons.

Consider the following file transfer game. There are two “players,” Alice and Bob. Alice
possesses a file requested by Bob, and vice versa. Alice and Bob simultaneously decide
whether or not to upload the requested file. (Each makes their own independent decision.)
For each player, the benefit of receiving the desired file is 3, and the cost of uploading the
requested file is 1 (due to bandwidth charges or opportunity costs).

There are four possible outcomes of the file transfer game, and these can be neatly
summarized via the following “payoff matrix.”

Upload Don’t Upload
Upload 2, 2 −1, 3

Don’t Upload 3,−1 0, 0

In each entry of the matrix, the first number is the payoff to the “row player” (here, Alice),
and the second the payoff to the “column player” (Bob). Naturally, players want to maximize
their payoffs. So is it better for the players to upload, or not?

2In this course, we’ll draw on game theory largely through examples. Game theory is famous for examples
that fit on a cocktail napkin and yet accurately capture the essence of incentive issues that are ubiquitous
in the real world.

2



The answer depends on whether we consider what’s good for the individual, versus what’s
good for the collective. From an individual’s perspective, it’s a no-brainer to not upload—
you receive a higher payoff than if you do upload, no matter what the other player does.
The technical term for this is a dominant strategy.

Vocabulary Lesson

dominant strategy (n.): a strategy that always maximizes a player’s payoffs,
no matter what other players do.

When the players choose their dominant strategies, neither one uploads and both receive
a payoff of 0.3 This outcome is not Pareto optimal—if both players upload, then both are
strictly better off (with a payoff of 2).

The file transfer game is a rephrasing of a game known as the Prisoner’s Dilemma. The
usual story is: two people are corralled by the police and accused of a crime. The police
interrogate the two suspects separately, and try to get each suspect to rat out the other
one. If each prisoner accuses the other, then both receive a lengthy sentence. If neither
prisoner accuses the other, they receive only a light sentence for a lesser charge. If only one
prisoner accuses the other, then the turncoat is set free and the accused is locked up for
life. The structure of these payoffs is the same as in the file transfer game. In the Prisoner’s
Dilemma, the strategies are usually called “cooperate” (corresponding to uploading) and
“defect” (don’t upload).

The Prisoner’s Dilemma isolates the essential conflict that can arise between incentives
for an individual and for a collective. It shows up all the time in real life, and it’s useful to
be able to recognize it. We’ve already seen that free riding in Gnutella can be interpreted in
terms of the Prisoner’s Dilemma. The unraveling of two-sided markets, with firms making
ever-earlier offers (Lecture #2), stems from the same kind of problem. What other real-life
examples can you think of?4

3 The Repeated Prisoner’s Dilemma

Free riding in Gnutella shows that the incentive issues highlighted by the Prisoner’s Dilemma
are real, and that the individual incentive to defect can be powerful. On the other hand, it’s
easy to think of real-world examples of the Prisoner’s Dilemma where the players seem to
cooperate. For example, two competing companies deciding whether or not to spend massive
amounts of money on advertising can be thought of as a Prisoner’s Dilemma-type situation,
and yet in many cases we do not see overly costly advertising wars (DraftKings vs. FanDuel
notwithstanding). For another example, there are some two-sided markets that seem to
resist unraveling (like most graduate school admissions processes). How can we explain this?

3This outcome is a special case of a Nash equilibrium, which is an outcome in which each player plays a
best response to the other player. That is, neither player can increase their payoff by unilaterally switching
strategies.

4Student suggestions in lecture included doping in sports, and peacocks competing to grow ever-more-
cumbersome tails to attract the best mates.
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3.1 Models of Repeated Play

One intuition is that, in many real-world settings, the short-term gain from defecting is
outweighed by its long-term costs. Capturing this intuition with a mathematical model is
subtle.

Repeated Prisoner’s Dilemma (Model #1)

• Alice and Bob play the Prisoner’s Dilemma games n times, for some
known n ≥ 1.

• The overall payoff to a player is the sum of his or her payoffs across the
n games.

• The action chosen by a player in a stage i can depend on the past history
(who played what in the first i− 1 stages).

One might hope that as n grows large, cooperation would emerge. But if we apply cold,
clinical logic to this model, we’ll see that this is not the case.

First, think about the last stage, stage n. At this stage, there is no future, and hence
no future consequences of a defection. So just like in the one-shot Prisoner’s Dilemma,
it is a dominant strategy for each player to defect in stage n (no matter what happened
previously). Rewinding to stage n− 1, we see that the action played at this stage will have
no effect on the future (at stage n, both players will defect anyways). So again, given what’s
going to happen in the future, in stage n − 1 it’s a dominant strategy for each player to
defect. Continuing backward, we find that the only justifiable behavior in this model is for
both players to always defect.5

The take-away of this exercise is not that cooperation in real-world settings is somehow
“irrational.” Rather, it points out that we need a mathematical model different from the
most obvious one. In effect, we’re taking as “ground truth” that cooperation can be sensible
in repeated Prisoner’s Dilemma-type settings, and trying to reverse engineer a mathematical
model consistent with this belief.

The key idea for our second model is to have a random number of stages.

Repeated Prisoner’s Dilemma (Model #2)

1. Alice and Bob play the Prisoner’s Dilemma.

2. With probability p, the game stops. With probability 1 − p, return to
step 1 and play another stage.

Payoffs are again added across however many stage games are played, and the action chosen
by a player at some stage can again depend on the past. We assume that a player wants to
maximize his or her expected payoffs (where the expectation is over the randomness in when
the repeated game stops).

5This type of argument is sometimes called backward induction.
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3.2 The Emergence of Cooperation

We claim that if p is sufficiently small, then cooperation makes sense. (Note that if p = 1,
then we’re just back to the single-shot Prisoner’s Dilemma.) For example, suppose Alice
plays the “grim trigger” strategy.

Grim Trigger Strategy

• if Bob ever defected in the past, then defect;

• otherwise, cooperate.

Thus if Bob ever defects, Alice punishes him forevermore.
What is Bob’s best strategy? If Bob ever defected in the past, then Alice’s future behavior

is fixed so Bob may as well defect forevermore. So the interesting case is where Bob has
already cooperated in the first i − 1 stages (i ≥ 1)—should he continue to cooperate in
stage i? Here’s the cost-benefit analysis:

stage i later stages
cooperate 2 ≥ (1− p)2

defect 3 ≤ 0

To explain, note that Alice will cooperate in stage i (since Bob never defected in the past).
Thus at stage i, Bob will get payoff 2 for cooperating and 3 for defecting. If Bob defects at
stage i, then Alice will defect at all future stages and the best expected payoff Bob can get
from these stages is 0 (if he also always defects from now on). Suppose Bob cooperates at
stage i. There will be a stage i+1 with probability 1−p, and if there is one, Bob will receive
a payoff of at least 2 at that stage (because Alice will cooperate in that stage). Thus the
expected payoff from future stages is at least (1 − p)2. The expected payoff of cooperating
exceeds that of defecting provided play continues with more than 50% probability (i.e.,
p < 1

2
).

The grim trigger strategy is pretty extreme, what with holding a grudge in perpetuity
for a single infraction by the other player. The next strategy involves not only punishment,
but forgiveness.

Tit-for-Tat Strategy

• in stage 1, cooperate;

• in stage i, do whatever the other player did in stage i− 1.

The Tit-for-Tat strategy starts optimistically, punishes immediately, and forgives quickly.
This turns out to be a good strategy for playing the repeated Prisoner’s Dilemma (and
perhaps life?).

For example, if both players use the Tit-for-Tat strategy, then both players always coop-
erate. Note that the initialization is crucial: if both players use a strategy that differs only
in defecting in the first stage by default, then the result is mutual defection at every stage.
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Just as with the grim trigger strategy, if Alice plays Tit-for-Tat, and p < 1
2
, then the

best response for Bob is to cooperate at every stage. The short-term gain of defection (1) is
outweighed by the expected cost at the next stage (2(1− p)).

Our mathematical story for why cooperation appears in the repeated Prisoner’s Dilemma
is now reasonably satisfying: in real life, the number of repetitions is usually unknown
(random, in effect) rather than known; and the Tit-for-Tat strategy resembles plausible
real-life behavior in such situations.

3.3 The Axelrod Tournaments

The Tit-for-Tat strategy plays a starring role also in experiments on the repeated Prisoner’s
Dilemma. Around 1980, Robert Axelrod invited friends and colleagues to enter into a tour-
nament for computer programs playing the repeated Prisoner’s Dilemma [2]. There were
15 contestants, and each program played the other 14 programs in a repeated Prisoner’s
Dilemma game with 200 stages (so, a round-robin tournament). The payoff of a program
was averaged over all 200 stages of all 14 matches. The winning entry (submitted by Anatol
Rapoport) was—you guessed it—Tit-for-Tat. Tit-for-Tat was also the shortest entry, and
many of the other programs were (trying to be) sophisticated. What makes this all the
more remarkable is that Tit-for-Tat cannot win a head-to-head match with any opponent
(Exercise Set #3)! But it scored highly against everybody.

Axelrod circulated the results of the first tournament and solicited entries for a second
tournament with the same rules. This time, there were 62 entries. Rapoport re-submitted
Tit-for-Tat, completely unchanged, and won again! Even though other programs were ex-
plicitly tailored to exploit Tit-for-Tat, they imploded when pitted against each other.6

3.4 Lessons Learned

Summarizing, the Prisoner’s Dilemma starkly illustrates an essential conflict between in-
dividual incentives and the collective good. Many real-world settings are plagued by this
conflict. Without long-term interactions between players, the incentive to defect is powerful
and real, with free-riding on Gnutella being just one example. With repeated play, however,
the long-term benefits of cooperation often outweigh the short-term benefits of defection.
The Tit-for-Tat strategy appears particularly good for the repeated play of the Prisoner’s
Dilemma.

How can we apply these lessons to the design of peer-to-peer networks?

6Apparently no one submitted the program that can only improve over Tit-for-Tat (against every possible
opponent): play Tit-for-Tat, except at stage 200 always defect.
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4 BitTorrent

4.1 The Protocol

The BitTorrent protocol is currently the dominant paradigm in peer-to-peer file distribution.
In 2013, BitTorrent was responsible for around 80% of the total peer-to-peer traffic (see [6,
Chapter 5] for references). For example, you might have used it to download the latest
version of Linux.

The BitTorrent protocol is designed to solve the problem of distributing a large file (a
movie, an OS, a big software patch, etc.) to many users. Some BitTorrent terminology:
a swarm is a group of users who have or want the same file (or pieces of it, see below).
A tracker keeps track of the currently active users in a swarm. Trackers were originally
implemented in a centralized way. Mindful of the dangers of centralization (recall Napster),
tracking is now often done in a decentralized way (using a “distributed hash table (DHT),”
for example). A user contacts the tracker when it wants to join a swarm, and can request
from the tracker a list of a random subset of other users (perhaps 50 of them) in the swarm.
The tracker serves only to coordinate; data transfers are done directly between users.

A file is broken into pieces, and users do transfers at the granularity of pieces (not of
the entire file). Numbers vary, but a representative example would be a 10 GB file, broken
into a thousand 10 MB pieces. There are a number of motivations for breaking a file into
pieces and transferring only one piece at a time, such as the more efficient use of network
capacity. But the most interesting justification is to shift the incentive structure in the file
transfer game from that of the single-shot Prisoner’s Dilemma (at the level of files, as in
Gnutella) to that of the repeated Prisoner’s Dilemma, with stages roughly corresponding to
pieces. Downloads can often require tens of minutes or even hours, and involve hundreds
or thousands of pieces. Thus, users have the opportunity to monitor the behavior of other
users, and act accordingly.

4.2 Default Settings

Next we describe the reference client for BitTorrent; its implementation can be regarded as
the intended behavior by users, according to the creators of the BitTorrent protocol. Key
points of this implementation include:

1. A user re-announces itself to the swarm’s tracker every 15–30 minutes, requesting a
new subset of users each time. This generally results in the number of peers of a user
growing over time.

2. Peers regularly exchange information about who has which pieces of the file.

3. A user attempts to download simultaneously from all of its relevant peers, where “rel-
evant” means that the peer has at least one piece of the file that the user doesn’t
have.
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4. For a parameter s, a user uploads to s of its peers, allocating a 1/s fraction of its
upload capacity to each. A typical choice for s is 4, though larger values (10, 25, etc.)
are also often used. A user is sometimes said to have s slots.

5. The lucky s peers to upload to are chosen using a variation of the Tit-for-Tat strategy.7

Precisely, the user uploads to the s peers from whom it downloaded the most data in
the past time period (e.g., 15 seconds). That is, if a peer was especially nice to the
user in the previous stage, then the user will reciprocate.

6. When uploading to a peer that wants several of a user’s pieces, priority is given to the
rarest piece in the user’s neighborhood (i.e., the piece possessed by the fewest number
of the user’s peers).8

Actually, this description isn’t quite accurate. Maybe you already spotted the bug (hint:
it has nothing to do with incentives). The issue is that there’s no way for a new user to
get started. What happens if you’re new to a swarm? You presumably have no pieces
whatsoever of the file. Thus, you are not a “relevant peer” for any other user, and no one
will ever upload to you, and your plight will be neverending.

For this reason, the actual reference client includes “optimistic unchoking.” (A peer that
a user is uploading to has been unchoked; the rest are choked.) While the user reserves s− 1
slots to be allocated using the above Tit-for-Tat strategy, it uses its sth slot to upload to a
random neighbor (which is re-chosen regularly, such as every 45 seconds). This can function
as a “pity upload” to a user who doesn’t have much of the file yet. Once a user gets lucky
and is optimistically unchoked a few times, it will have enough pieces to contribute usefully
to the swarm.9

4.3 BitThief

Users are free to use a BitTorrent client other than the reference one. Can you think of any
incentive issues in the reference client? Are there clever ways for a user to deviate from the
default settings that lead to better results for the user?

The goal of the unapologetically named BitThief client [5] is to complete a download
without ever uploading anything, just like the free riders on Gnutella. (Perhaps to avoid
legal consequences, or to save money, etc.) If all other users are using the reference client,
then the only way to do this is to get the entire file via optimistic unchokes. To grow its
neighborhood and hence get optimistic unchokes as quickly as possible, the BitThief client
pesters the tracker incessantly, asking it for more users much more frequently than the default
of every 15–30 minutes. Downloads with BitThief were slower than with the reference client,
but not unusably so (5x slower was typical).

7This is not just a metaphor; Bram Cohen, the creator of the BitTorrent protocol and its reference client,
really was inspired by the repeated Prisoner’s Dilemma and the Tit-for-Tat strategy [3].

8Rare pieces are potential bottlenecks to a user completing its download in a reasonable amount of time.
This is a heuristic to hasten downloads.

9In typical downloads using BitTorrent, progress is quite slow at the beginning.

8



There is a pretty easy way to mitigate the “incentive attack” of BitThief: just implement
the tracker so that it ignores repeated requests from the same IP address in a 30-minute
sliding window.

4.4 BitTyrant

The point of the BitTyrant client [7] is to be smarter than the reference client when it comes
to allocating its upload capacity. The motivation is again to improve performance for the
user, but unlike in BitThief, here it is not obvious whether or not the deviation causes harm
to the rest of the system. (E.g., if all users used BitThief, no data would ever be transferred!)

The key idea in BitTyrant is to have each user i maintain an estimate dij for the download
capacity it would get from a peer j if j unchoked i, and also an estimate uij for the amount of
upload capacity i would need to spend to get j to unchoke it. If j has unchoked i in the past,
then dij and uij can be derived from past interactions. Otherwise, some ingenuity is required.
One way to estimate dij is for i is to first estimate j’s total download capacity using the rate
at which it acquires new pieces (recall peers keep each other informed about their inventories
of pieces), then assume that j’s upload capacity is the same as its download capacity, and
then make an assumption about the number s of slots that j is using (e.g., s = 4). One
way to estimate uij is to keep uploading more and more data to j (e.g., increasing by a
multiplicative factor of 1 + α each time period, for small α > 0) until j unchokes i.

Given its current estimates dij and uij for all peers j, user i allocates its upload capacity
in a natural greedy way (like in the knapsack problem). Specifically, peers are sorted in
nondecreasing order of “return on investment” dij/uij, and upload capacity is awarded to
peers in this order (until the capacity is used up), with uij capacity being awarded to peer j.
Note that the number of slots used by i is not fixed a priori, and different peers might get
different amounts of upload capacity (unlike in the reference client). Also note that there
are still incentive issues with BitTyrant—how would you game the system if you knew that
everyone else was using BitTyrant?

Do you have any ideas for building a still better BitTorrent client?
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