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This lecture discusses incentive issues in shortest-delay, or “selfish,” routing. The math-
ematical model was originally proposed for road networks (where drivers constitute the
traffic), but it is also relevant for communication networks (where data packets constitute
the traffic). Shortest-path routing is common in local area networks. Routing in the Internet
(between different local networks) is done a bit differently, as we’ll see in Lecture #8.

1 Braess’s Paradox

The best way to get a feel for selfish routing is through examples. We begin with Braess’s
Paradox (Figure 1) [2]. There is a suburb s, a train station t, and a fixed number of drivers
who wish to commute from s to t. For the moment, assume two non-interfering routes from
s to t, each comprising one long wide road (with travel time one hour, no matter how much
traffic uses it) and one short narrow road (with travel time in hours equal to the fraction
of traffic using it) as shown in Figure 1(a). The combined travel time in hours of the two
edges on one of these routes is 1+x, where x is the fraction of the traffic that uses the route.
The routes are therefore identical, and traffic should split evenly between them. (Otherwise,
traffic on the more heavily loaded route would have an incentive to switch to the other one.)
In this case, all drivers arrive at their destination 90 minutes after their departure from s.

Now, suppose we install a teleportation device allowing drivers to travel instantly from v
to w. The new network is shown in Figure 1(b), with the teleporter represented by edge
(v, w) with constant cost c(x) = 0, independent of the road congestion. How will the drivers
react?

We cannot expect the previous traffic pattern to persist in the new network. The travel
time along the new route s → v → w → t is never worse than that along the two original
paths, and it is strictly less whenever some traffic fails to use it. We therefore expect all
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Figure 1: Braess’s Paradox. The addition of an intuitively helpful edge can adversely affect
all of the traffic.

drivers to deviate to the new route. Because of the ensuing heavy congestion on the edges
(s, v) and (w, t), all of these drivers now experience two hours of travel time when driving
from s to t. Braess’s Paradox thus shows that the intuitively helpful action of adding a new
zero-cost link can negatively impact all of the traffic!1

Braess’s Paradox shows that selfish routing does not minimize the commute time of
the drivers — in the network with the teleportation device, an altruistic dictator could
dictate routes to traffic and improve everyone’s commute time by 25%. We define the price
of anarchy (POA) as the ratio between the average commute times in the “selfish” and
collectively optimal routings. For the network in Figure 1(b), this is the ratio between 2
and 3

2
(i.e., 4

3
).

The POA was first defined and studied by computer scientists. Every economist and
game theorist knows that equilibria are generally inefficient, but until the 21st century there
had been almost no attempts to quantify such inefficiency in different application domains.

Our goal will be to identify conditions under which the POA is guaranteed to be close
to 1, and thus selfish behavior leads to a near-optimal outcome and is essentially benign.
After we answer this question, we tie the lessons learned into practice. In particular, we’ll
see a mathematical explanation for the observed fact that over-provisioning of a network
leads to good network performance.

1.1 Strings and Springs

As an aside, we note that selfish routing is also relevant in systems that have no explicit
notion of traffic whatsoever. Cohen and Horowitz [3] gave the following analogue of Braess’s

1You might be reminded of the Prisoner’s Dilemma; defecting corresponds to taking the zig-zag path,
cooperating to one of the two-hop paths. If you’ve absorbed the Prisoner’s Dilemma, then Braess’s Paradox
is less surprising. After all, if you took away the option of defecting in the Prisoner’s Dilemma (akin to
removing the edge (v, w)), you would obtain the Pareto optimal solution.
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(a) Before (b) After

Figure 2: Strings and springs. Severing a taut string lifts a heavy weight.

Paradox in a mechanical network of strings and springs.
In the device pictured in Figure 2, one end of a spring is attached to a fixed support,

and the other end to a string. A second identical spring is hung from the free end of the
string and carries a heavy weight. Finally, strings are connected, with some slack, from the
support to the upper end of the second spring and from the lower end of the first spring to
the weight. Assuming that the springs are ideally elastic, the stretched length of a spring
is a linear function of the force applied to it. We can therefore view the network of strings
and springs as a traffic network, where force corresponds to traffic and physical distance
corresponds to cost.

With a suitable choice of string and spring lengths and spring constants, the equilibrium
position of this mechanical network is described by Figure 2(a). Perhaps unbelievably, sev-
ering the taut string causes the weight to rise, as shown in Figure 2(b)! An explanation for
this curiosity is as follows. Initially, the two springs are connected in series, and each bears
the full weight and is stretched out to great length. After cutting the taut string, the two
springs are only connected in parallel. Each spring then carries only half of the weight, and
accordingly is stretched to only half of its previous length. The rise in the weight is the
same as the improvement in the selfish outcome obtained by deleting the zero-cost edge of
Figure 1(b) to obtain the network of Figure 1(a).

This construction is not merely theoretical; on YouTube you can find several physical
demonstrations of Braess’s Paradox that were performed (for extra credit) by past students
in the class CS364A.
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Figure 3: Pigou’s example and a nonlinear variant. The cost function c(x) describes the cost
incurred by users of an edge, as a function of the amount of traffic routed on the edge.

2 Pigou’s Example

There is an even simpler selfish routing network in which the POA is 4
3
, first discussed in

1920 by Pigou [6]. In Pigou’s example (Figure 3(a)), every driver has a dominant strategy
to take the lower link — even when congested with all of the traffic, it is no worse than
the alternative. Thus, in equilibrium all drivers use the lower edge and experience travel
time 1. Can we do better? Sure — any other solution is better! An altruistic dictator would
minimize the average travel time by splitting the traffic equally between the two links. This
results in an average travel time of 3

4
, showing that the POA in Pigou’s example is also 4

3
.

2.1 Nonlinear Pigou’s Example

The POA is 4
3

in both Braess’s Paradox and Pigou’s example — not so bad for completely
unregulated behavior. Given what we currently know, the coolest thing that could be true
would be if the POA of selfish routing was always at most 4/3. (A rather bold guess, given
that we’ve only looked at two examples.) The story is not so rosy in all networks, however. In
the nonlinear Pigou’s example (Figure 3(b)), we replace the previous cost function c(x) = x
of the lower edge with the function c(x) = xp, with p large. The lower edge remains a
dominant strategy, and the equilibrium travel time remains 1. What’s changed is that the
optimal solution is now much better. If we again split the traffic equally between the two
links, then the average travel time tends to 1

2
as p → ∞ — traffic on the bottom edge gets

to t nearly instantaneously. We can do even better by routing (1− ε) traffic on the bottom
link, where ε tends to 0 as p tends to infinity — almost all of the traffic gets to t with travel
time (1 − ε)p, which is close to 0 when p is sufficiently large, and the ε fraction of martyrs
on the upper edge contribute little to the average travel time. We conclude that the POA
in the nonlinear Pigou’s example is unbounded as p→∞.
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3 The POA With Linear Cost Functions

Let’s again ask the question, what’s the coolest thing that could be true? We know that the
POA of selfish routing is not always small. Looking back over our three examples, the two
examples with POA 4/3 (Braess’s paradox and Pigou’s example) have different networks
but the same kind of cost functions, while the nonlinear Pigou’s example has a very simple
network but a highly nonlinear cost function. So the coolest thing would be if the POA were
small in all selfish routing networks that look like the first two examples, meaning that every
edge has a linear cost function (of the form c(x) = ax+b, where a, b are nonnegative and can
be different for different edges). This may again sound like a wildly optimistic guess (we’ve
only looked at one two-node and one four-node network), but this is in fact true.

Theorem 3.1 ([9]) In every selfish routing network with linear cost functions, the price of
anarchy is at most 4/3.

Theorem 3.1 applies no matter how complex the network topology is, and also for any traffic
matrix (with possibly many different origins and destinations). We won’t prove Theorem 3.1
here, but the same kinds of arguments are used to prove a different theorem in Appendix A.

4 Network Over-Provisioning

4.1 Motivation

One big advantage in communication networks (compared to transportation networks) is
that it’s often relatively cheap to add additional capacity to a network. Because of this, a
popular strategy to communication network management is to install more capacity than is
needed, meaning that the network will generally not be close to fully utilized (see e.g. [5]).

There are several reasons why network over-provisioning is common in communication
networks. One reason is to anticipate future growth in demand. Beyond this, it has been
observed empirically that networks tend to perform better — for example, suffering fewer
packet drops and delays — when they have extra capacity. Network over-provisioning has
been used as an alternative to directly enforcing “quality-of-service (QoS)” guarantees (e.g.,
delay bounds), for example via an admission control protocol that refuses entry to new traffic
when too much congestion would result [5].

The goal of this section is develop theory to corroborate the empirical observation that
network over-provisioning leads to good performance. Sections 4.2 and 4.3 do this in two
different ways.

4.2 POA Bounds for Over-Provisioned Networks

In this section, we consider a network in which every cost function ce(x) has the form

ce(x) =

{
1

ue−x
if x < ue

+∞ if x ≥ ue.
(1)
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Figure 4: Modest overprovisioning guarantees near-optimal routing. The left-hand figure
displays the per-unit cost c(x) = 1/(u − x) as a function of the load x for an edge with
capacity u = 2. The right-hand figure shows the worst-case price of anarchy as a function
of the fraction of unused network capacity.

The parameter ue should be thought of as the capacity of edge e. A cost function of the
form (1) is the expected delay in an M/M/1 queue, meaning a queue where jobs arrive ac-
cording to a Poisson process with rate x and have independent and exponentially distributed
services times with mean 1/ue. This is generally the first and simplest cost function used to
model delays in communication networks (e.g. [1]). Figure 4(a) displays such a function; it
stays very flat until the traffic load nears the capacity, at which point the cost rapidly tends
to +∞.

We seek a statement of the form “the more over-provisioned a network is, the better its
performance.” For this, we need a quantitative measure of how over-provisioned a network
is. For a parameter β ∈ (0, 1), call a selfish routing network with M/M/1 delay functions
β-over-provisioned if fe ≤ (1 − β)ue for every edge e, where f is an equilibrium flow. That
is, at equilibrium, the maximum link utilization in the network is at most (1 − β) · 100%.
(So β ≈ 0 is not over-provisioned at all, and β ≈ 1 is wildly over-provisioned.)

Figure 4(a) suggests the following intuition: when β is not too close to 0, the equilibrium
flow is not too close to the capacity on any edge, and in this range the edges’ cost functions
behave roughly like a linear cost function (or at least a low-degree polynomial). Theorem 3.1
gives hope that the POA should be small in networks with such cost functions.

So how can we extend Theorem 3.1 to selfish routing networks with “roughly linear” cost
functions? After all, we know that the POA bound of 4/3 is not true in general.

The key idea for a generalization is to rephrase Theorem 3.1 as follows.

Theorem 4.1 Among all selfish routing networks with linear cost functions, the POA is
maximized by Pigou’s example.

Given that Pigou’s example has a POA of 4/3, Theorems 3.1 and 4.1 are equivalent. Unlike
Theorem 3.1, it’s possible to imagine that Theorem 4.1 continues to hold without change for
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nonlinear cost functions, for the suitable analog of Pigou’s example. This is in fact the case.

Theorem 4.2 (Worst-Case Selfish Routing Networks Are Simple) [7, 4]] For any
set C of cost functions, among all selfish routing networks with cost functions in C, the
worst-case POA is realized by a network with two vertices, two parallel edges, with one edge
having a constant cost function.2

For example, taking C as the set of linear functions, Theorem 4.2 implies Theorem 4.1
and hence Theorem 3.1.3 We could instead take C = {c(x) = ax2 + bx+ c : a, b, c,≥} to be
set of quadratic functions with nonnegative coefficients, and we’d find the the worst selfish
routing network is the same as Pigou’s example, except with the cost function c(x) = x
replaced by c(x) = x2.

One consequence of Theorem 4.2 is that, for a given set of cost functions, it is usually
easy to compute the worst POA that can occur with those cost functions. (Just maximize
the POA over all super-simple selfish routing networks.) Carrying out this exercise shows
that the POA is reasonably small for cost functions that are low-degree polynomials with
nonnegative coefficients (see also Exercise Set #4).

Applying this paradigm to cost functions of the form (1) and β-over-provisioned networks,
we can precisely determine the worst-case POA in such networks.

Corollary 4.3 ([8]) In β-over-provisioned networks, the maximum-possible POA is pre-
cisely

1

2

(
1 +

√
1

β

)
.

Unsurprisingly, the bound above tends to 1 as β tends to 1 and to +∞ as β tends to 0;
these are the cases where the cost functions effectively act like constant functions and like
very high-degree polynomials, respectively. What’s interesting to investigate is intermediate
values of β. For example, if β = .1 — meaning the maximum edge utilization is at most 90%
— then the POA is guaranteed to be at most 2.1. In this sense, a little over-provisioning is
sufficient for near-optimal selfish routing, corroborating what has been empirically observed
by Internet Service Providers.

4.3 A Resource Augmentation Bound

Suppose you have a selfish routing network suffering from poor performance (e.g., because
the maximum link utilization at equilibrium is close to 100%). Can we say which of the
following two options is better?:

2The fine print: C should satisfy some mild technical conditions, like being closed under multiplication
by scalars. Also, it’s possible that the worst POA is not achieved in a single network (e.g., if the worst POA
is bounded), and rather is approached by the POA in a sequence of simple networks.

3Technically, for this one needs to show that among all networks with two nodes, two edges, one constant
cost function, and one linear cost function, Pigou’s example is the worst. But this is not difficult.
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(a) Route traffic centrally. (This may require changing the network routing protocol, for
example.)

(b) Upgrade the network, for example by adding additional capacity.

For our last result, we’ll prove a sense in which the second option is always the better one.
Technically, what we’ll prove is a guarantee for selfish routing in arbitrary networks, with
no extra assumptions on the cost functions.4 Given that the worst-case POA is unbounded
(Figure 3(b)), what could such a guarantee look like?

In this section, we compare the performance of selfish routing to a “weaker” optimal
solution that is forced to send extra traffic. For example, in the nonlinear variant of Pigou’s
example (Figure 3(b)), the total commute time in the equilibrium is 1. However an optimal
solution routes two units of traffic through the network, at least one of the edges will have
at least one unit of traffic on it, and the commute times suffered by this traffic is at least
that by all traffic in the equilibrium.

This “unfair” comparison between two flows at different traffic rates has an equivalent and
easier to interpret formulation as a comparison between two solutions that route the same
amount of traffic but in operate in networks with with different cost functions. Intuitively,
instead of forcing the optimal solution to route additional traffic, we allow the equilibrium to
use a “faster” network, with each original cost function ce(x) replaced by the “faster” function
ce(

x
2
)/2.5 This transformation is particularly easy to interpret for M/M/1 delay functions,

since if ce(x) = 1/(ue − x), then the “faster” function is 1/(2ue − x) — an edge with double
the capacity.6 The next theorem, after this reformulation, gives a second justification for
network over-provisioning: a modest technology upgrade improves performance more than
implementing dictatorial control.

Theorem 4.4 ([9]) For every selfish routing network, the total commute time in an equi-
librium with one unit of traffic is at most the total commute time of an optimal routing of
two units of traffic.

Note that this result makes no assumptions about the network topology or about the cost
functions (other than the baseline assumptions). We sketch the proof of Theorem 4.4 in
Appendix A.

4Other than the baseline assumptions that cost functions are continuous, nonnegative, and nonndecreas-
ing.

5The equivalence more or less follows from a change of variable.
6This result does not follow directly from Theorem 4.2 or Corollary 4.3. It is true that if you keep the

routing fixed and double the capacity, then the maximum link utilization is at most 50%. But doubling
the capacity of every edge changes the equilibrium, and it is possible that lots of traffic changes routes and
floods one or more edges (recall Braess’s paradox), resulting in a network that is not β-over-provisioned for
β significantly larger than 0.
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A Proof Sketch of Theorem 4.4 (Optional)

For simplicity, assume that the selfish routing network has one origin s and one destination
t (the same argument works in general). First, as a thought experiment, consider “freezing”
all edge costs at their values at equilibrium. That is, if x̂e units of traffic use e at equilibrium
(with one unit of traffic total), then we’re imagining replacing the original cost function ce(x)
of the edge with the constant cost function that always equals ce(x̂e). For example, in the
nonlinear version of Pigou’s example (Figure 3(b)), both edges have cost 1 at equilibrium.

At an equilibrium, all of the s-t paths in use have the same overall delay, call it L, and all
paths not in use have overall delay at least L. (Any traffic on a path with overall delay more
than L would have an incentive to switch to a faster path.) For example, in the example in
Figure 3(b), L = 1.

Next, with respect to the frozen edge costs, all paths suffer delay at least L (even when
empty), and so the total delay of any routing of two units of traffic suffers total delay at
least 2L (summing the delays of all 2 units of traffic). This sounds even stronger than what
Theorem 4.4 promises—we’ve proved that the optimal way to route 2 units of traffic suffers
total delay at least twice that of the equilibrium. The catch, of course, is that we cheated
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by using the frozen edge costs rather than the actual cost functions. As a result, we may be
overestimating the total delay in the optimal routing of 2 units. Specifically, if the amount
x∗e that the optimal routing sends on edge e is less than the equilibrium amount x̂e, then the
frozen edge cost of ce(x̂e) might be more than the actual delay ce(x

∗
e) suffered by traffic on

this edge in the optimal routing. For example, in Figure 3(b), the frozen (equilibrium) cost
of the lower edge is 1, while the delay suffered by traffic on this edge in the optimal routing
is only (1− ε)d, which is much less.

What remains to show is the following upper bound on the magnitude of this overestimate:

total delay of optimal (frozen costs)︸ ︷︷ ︸
≥2L

−total delay of optimal (true costs) ≤ L. (2)

Inequality (2) would imply that the total delay of the optimal routing (with the true cost
functions) is at least L, the overall delay of the equilibrium, as claimed by the theorem.

To prove (2), zoom in on a particular edge e of the network. Suppose there are y units
of traffic on e in the optimal routing (with 2 units) and z units at equilibrium (with 1 unit).
If y ≥ z, then there cannot be any overestimate—the frozen cost ce(z) can only be less the
the true cost ce(y). (We’re using here that cost functions are nondecreasing.)

So suppose y < z. What’s the worst that could happen? The frozen cost is ce(z),
and the smallest the true cost ce(y) could be is 0. (We’re using here that cost functions
are nonnegative.) This would lead to an overestimate of ce(z) per unit of traffic. We are
assuming that there are less than z units of traffic on e in the optimal routing, so that total
overestimate on this edge is no more than z ·c(z), the overall delay suffered by the equilibrium
on this edge. (Note that this worst case basically happens in Figure 3(b) for large d, on the
lower edge, where z = c(z) = 1, y = 1 − ε ≈ z, and c(y) = (1 − ε)d ≈ 0.) Summing over
all of the edges implies that the total overestimate is at most total delay in the equilibrium
routing (that is, L), and this establishes (2) and completes the proof.
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