
CS269I: Incentives in Computer Science
Lecture #9: Incentives in Bitcoin Mining∗

Tim Roughgarden†

October 24, 2016

1 Bitcoin

Digital currencies have been around for decades, but only over the past 7 or so years has
one really taken off: Bitcoin. Bitcoin enables digital payments between untrusted parties in
a fully decentralized way, meaning with no central authority involved (no banks, credit card
companies, governments, etc.).1 Before Bitcoin, it was not at all obvious that such a system
could function at a reasonably large scale.

Why use Bitcoin? The jury is still out on what its killer applications will be. One
prosaic but representative example is transferring money internationally. Ever tried to do
that through a bank? You’ll typically be charged a lot (like 20 USD) and the funds are
usually released only after a couple of days. Through Bitcoin, you can accomplish the same
goal, saving an order of magnitude in both time and cost.

So how does Bitcoin work? The basic primitive is that of a transaction, which includes
the following ingredients.

A Bitcoin Transaction

1. One or more senders.

2. One or more receivers.

3. The amount of BTC (Bitcoins) transferred from each sender to each
receiver.

4. A proof of ownership of the coins being transferred, in the form of a
pointer back to most recent transactions involving the transferred coins.

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Without the decentralization constraint, a system like Paypal already solves the problem.

1



5. A transaction fee, paid by the sender to the authorizer of the transaction.

Several comments. First, feel free to think only about transactions with a single sender and
receiver (this is the common case, anyways). Second, senders and receivers are specified by
their public keys. So the notion of a “user” of Bitcoin is equated with a specific public key.2

Third, the value of a BTC on the open market has fluctuated a lot over the years. Recently,
the value of one BTC has been in the 600–650 USD range.3 Finally, the transaction fees
won’t play much of a role until next lecture, so you can ignore them for now. We’ll talk
shortly about the who and the how of authorizing transactions.

A transaction is valid if:

1. It has been cryptographically signed by all of the senders. (This can be verified using
the senders’ public keys.)

2. The senders really do own the coins being transferred.

The second criterion is also easy to verify, given how Bitcoin works. Specifically, transactions
are broadcast to all other users (through a peer-to-peer network), and all users keep track
of all transactions that have ever been authorized. Thus, everyone knows everyone’s current
balance, and whether they’re in a position to make the specified transfer. The record of all
transactions that have been authorized so far is called the ledger, and it is the sun around
which the Bitcoin world orbits.

Many questions come to mind. For example, how do transactions get authorized and
added to the ledger? (Traditionally, this would done by a centralized entity like a bank.)
Also, how do Bitcoins get created in the first place? (Traditionally, money is printed by the
government.) Amazingly, Bitcoin addresses both these issues in one fell swoop.

2 Bitcoin’s Blockchain Protocol

2.1 Blocks

Transactions are added to the ledger in groups (rather than one-by-one), known as blocks.
Specifically, a block has the following ingredients:

1. One or more transactions.

2. A hash of the previous block.

3. A nonce. (I.e., a bunch of bits that can be set arbitrarily.)

2This means that the same entity can correspond to multiple different Bitcoin users. The ability to
create multiple identities in a system is often a big problem (see the next lecture), but remarkably, it’s no
problem for Bitcoin (Section 2.6).

3Users can also transfer fractions of Bitcoins—any multiple of 10−9 BTC (called Satoshis) is allowed.

2



Blocks typically have on the order of 1000–2000 transactions (there is a 1 MB cap on the
block size). The second ingredient imposes a natural linked list-type structure on the ledger,
with the predecessor of a block b2 being the block b1 whose hash matches the hash stored in
b2. See Figure 1; this is the blockchain.

Figure 1: Bitcoin’s blockchain. Each block contains a hash of the previous block, imposing
a linked-list-type structure on the ledger.

2.2 The High-Level Idea

How do new blocks get added to the blockchain? Who can do it? Why should they bother?
How can we make sure that everybody agrees on the contents of the blockchain? The two-
prong solution to these questions is brilliant in its elegance.

1. Any user can authorize a block. Bitcoin incentivizes users to do authorizations through
explicit monetary rewards (in BTC, naturally).

2. To avoid anarchy, authorizing a new block of transactions involves a proof of work,
meaning that the authorizer has to solve a computationally difficult puzzle.4

2.3 Computationally Difficult Puzzles

Now for the details, beginning with the second point. An important definition: a block b
(consisting of transactions, the hash of the previous block, and the nonce) is valid if h(b) is suf-
ficiently close to 0, where h is a pre-agreed upon hash function (currently, SHA-256, so h(b) is
256 bits). Thus finding a valid block more or less involves inverting a one-way/cryptographic
hash function. By “sufficiently close to 0,” we mean that the leading ` bits of h(b) should
all be 0, where ` is a parameter. Note that ` provides a knob to control the difficulty of the
problem: the bigger the choice of `, the harder the problem.5 How is ` chosen? To keep the
rate of valid block creation roughly constant, averaging around one block every ten minutes.
The parameter ` is re-calibrated roughly every two weeks, based on the average time between
blocks during this window. (So if the average time between blocks has dropped to 9 minutes,

4Proofs of work have been around for awhile—e.g., in the spam-fighting proposal in [1] (from 1992, which
basically predates spam!)—but Bitcoin has emerged as the real killer application of the idea.

5Inverting a one-way function is one of the few computational problems where the difficulty can be tightly
controlled through a natural parameter. For example, how you would define an equally tunable family of
instances of the satisfiability problem?

3



it’s time to increase `.) Why 10 minutes? Because to maintain the property that all miners
are on the same page about what the current blockchain is, it seems essential to have block
creation happening on a time scale slower than the latencies in the peer-to-peer network.
(So 5 minutes between blocks would probably still work fine, but 1 minute might be asking
for trouble.) Currently, ` is roughly 70.

2.4 Block Rewards and Bitcoin Mining

Bitcoin mining refers to the process of finding new valid blocks. The intended behavior
for a bitcoin miner is: choose a subset of the outstanding transactions that it knows about
(e.g., the ones with the highest transaction fees), insert the hash of the current last block
of the blockchain, arbitrarily set the bits in the nonce, and hope that the resulting block
b is valid. Since h is a cryptographic hash function, the accepted belief is that there is
no algorithm for finding a valid block that is smarter or faster than random guessing or
exhaustive search. (This has not been proved formally, but is consistent with the current
state-of-the-art.) Assuming that SHA-256 acts like a random function, for any given block b,
the probability that b is valid is 2−`. This means that the expected number of tries necessary
to find a valid block is 2`. In practice, Bitcoin miners typically search for a valid block by
fixing the set of transactions and varying the nonce until the block becomes valid.6,7 When
a new valid block has been found, the miner is supposed to immediately broadcast it across
the entire peer-to-peer network, so that it gets appended to the blockchain (and the miner
can collect its reward, see below). If someone else announces a new valid block first, then
the miner restarts this procedure, now using only transactions not already authorized by the
new block, and using the hash of the new block.

The reward that a miner gets for adding a new (valid) block to the blockchain has two
ingredients.

1. A flat reward that does not depend on the contents of the block (other than it being
valid). When Bitcoin debuted this reward was 50 BTC, but the protocol dictates that
this amount gets cut in half every four years. It was cut to 25 BTC in 2012, and to
12.5 BTC just this past summer. At current exchange rates, this amounts to an 8K or
9K USD reward per block.

2. The sum of the transaction fees of the transactions in the block. Currently, transaction
fees are non-zero but typically constitute only a few percent of the overall reward.8

6270 is a really big number! A bitcoin miner who only uses CPUs to search for valid blocks would not
find one for hundreds of thousands of years. Using lots of GPUs would bring the expected wait time down to
the hundreds of years. These days, the only viable way of bitcoin mining is via ASICs (application-specific
integrated circuits), meaning hardware that is built specifically to search for valid blocks and do nothing
else.

7The nonce has enough bits that there will be a “magic nonce” that renders the block valid—but such
nonces will be hard to find.

8Next lecture we’ll speculate about incentive issues when transaction fees are large.

4



The transaction fees are just a transfer of bitcoins between users (from the transaction
originators to the authorizer). The flat reward, however, represents newly minted bitcoins.
This is the only way that new money gets printed. Currently, there are roughly 15 million
BTCs out there. Because the rate of bitcoin creation is decaying exponentially with time,
only a finite number (roughly 21 million) will ever be created (unless the protocol is changed).

2.5 Forks

Once in a while, two different bitcoin miners will discover valid blocks at roughly the same
time. This results in a fork in the blockchain (Figure 2), where two valid blocks, each with its
own set of transactions, point to the same previous block. There needs to be a mechanism for
deciding which branch of the fork is the “right” one, for two reasons: (i) so that everybody
knows which transactions have been authorized; and (ii) so that bitcoin miners know which
block they should be trying to extend.

Figure 2: Fork in the blockchain, caused by two new blocks being discovered by different
miners at roughly the same time.

The Bitcoin protocol specifies the intended behavior when there’s a fork: a user should
regard the longest branch as the valid one, breaking ties according to the block that it heard
about first. When there is a fork as in Figure 2, it is completely possible that different users
will have different opinions about which branch is the valid one (user 1 may have heard
about b2 before b3, while user 2 heard about b3 before b2).

Eventually, some bitcoin miner will authorize a new block, which extends only one of
the branches (depending on which hash the miner put in the new block). If there were
previously branches with equal length, then this new block will break the tie and create a
chain longer than any other. At this point, all users will again have a consistent view of the
blockchain (as the longest chain). When this happens, blocks not on this longest chain are
“orphaned,” and the transactions in them are not regarded as authorized. (Some of them
may be authorized instead by a block on the longest chain.) Similarly, the creators of these
orphaned blocks do not get any reward for them.

Blocks will occasionally get orphaned even when all miners are obediently following the
protocol. Thus, one should not regard a transaction as authorized until it has been included
in a block on the blockchain, and also been extended by another block (Figure 3). For
example, when a user buys some goods using a Bitcoin transaction, the merchant should
not ship the goods until the transaction shows up and has been extended in the blockchain.

5



More conservative sellers can choose to wait until some number k ≥ 1 of blocks have been
appended to the block containing the relevant transaction.

Figure 3: The transaction T between the user and the merchant is in block b2. The merchant,
for safety, should wait for the next block b3 to be added to the blockchain before shipping
the goods.

2.6 Sybil Attacks

Bitcoin users are identified with public keys. It’s not hard to generate many public keys, so
many Bitcoin “users” might actually correspond to the same person. Deliberately creating
multiple identities in a system is often called a Sybil attack.9 Sybil attacks plague many
systems (see the next lecture), but remarkably, they cause no issues in Bitcoin. Your influence
in Bitcoin is determined entirely by the amount of computational power that you wield—the
number of identities is irrelevant.

3 Incentive Issues

There are many ways that a bitcoin miner could conceivably deviate from the intended
behavior, and we explore some of these next. At the outset, we should say that there have
been little to no sightings of any of these attacks “in the wild.” The usual explanation for
this is that any major attack on Bitcoin would immediately devalue the currency, a losing
situation for everyone (including the attacker). Still, it’s important to think through what
kinds of attacks we might see in the future. Some of the more recently identified attacks are
fairly subtle and hard-to-detect, and may become increasingly prevalent over time.

3.1 The Double-Spend Attack

The first type of deviation we’ll look at is when miners deliberately create forks. This is simple
to do: when searching for a valid block, just insert the hash of a block on the blockchain
that is not the last block.

To see why a miner might want to create a fork, suppose in the transaction T , Alice
transfers some bitcoins to Bob. Suppose this transaction gets added to the blockchain as
part of block b1. Per the discussion above, Bob only ships the purchased goods to Alice once

9Named after the 1973 book Sybil about a woman with what was then called a “multiple personality
disorder.”

6



another block b2 has been appended to b1. When Alice has the goods, she could try the
following attack: try to find a valid block b3 extending b0, another block b4 extending b3,
and a third block b5 extending b4. Alice does not put transaction T in any of these blocks.
If Alice successfully creates these three blocks before any other miner extends b2, then she
rips off Bob: b1 and b2 are orphaned and Alice’s payment to Bob gets canceled, while the
goods have already been sent.10 This attack is sometimes called the double-spend attack,
especially in the case where Alice puts a payment T ′ to Carol in the block b3, promising the
same coins to Carol that she already promised to Bob. Since bits are easily copied, every
digital currency must address double-spending attacks.

The probability that Alice succeeds in her double-spend attack depends on how much
computational power she has. Suppose that of all the computational cycles being devoted to
bitcoin mining, Alice controls an α fraction. The fraction α is sometimes called Alice’s mining
power. Since finding valid blocks just boils down to random guessing or exhaustive search,
the probability that Alice is the one who finds the next valid block is well-approximated
by α. Finding three blocks in a row before anyone else, as needed in the double-spend attack
above, happens with probability only α3. More generally, if Bob waits for k ≥ 1 blocks to be
appended to b1 before shipping the goods, then the probability that a double-spend attack
succeeds is only αk+2.

How big is α? If just a solo miner, then not very big. However many miners participate
in mining pools, where the miners join forces, all working on the same puzzle, and sharing
the rewards of finding a valid block among the pool members. The reward is shared propor-
tionally, according to the amount of computation contributed by each member of the pool.11

And big mining pools can control a significant fraction of the total computational power
(e.g. α = .3).

3.2 The 51% Attack

On the surface, our discussion of a double-spend attack above would seek to apply even if
α = .51—even here the success probability is only ≈ 1

8
. But when α > 1

2
, a more patient

strategy is guaranteed to succeed: Alice just continues to extend her own chain (b3, b4, b5,
. . . ) until it is the longest chain. Since on average Alice creates more than every other block,
her chain will eventually overtake any other chain.

More generally, Bitcoin is not intended to function when a single entity controls more than
50% of the computational power. Such an entity can effectively act as a centralized authority,
defeating the whole point of Bitcoin. For example, while such an entity cannot outright
steal bitcoins from another user’s account (because of the cryptographic protections), it can
freeze the assets of any user that it wants, by forcing any blocks involving that user to be

10Assuming all other miners behave as intended, appending only two blocks b3 and b4 is not enough. The
reason is that other miners will have heard about b2 first, and ties are broken in favor of blocks heard about
earlier.

11Pool members prove their computational contribution by reporting all of the “partial solutions” that
they found—e.g., blocks b where h(b) has 50 leading zeroes (rather than the requisite 70).

7



orphaned.12 In general, it is only interesting to study Bitcoin when no one controls more
than 50% of the overall computational power.

3.3 Selfish Mining

All of our previous attacks involved deliberate forking. Next we discuss a different type of
deviation from the intended behavior: block withholding. Recall that a miner is supposed to
announce a valid block to everyone as soon as she finds one; but if she desires, she can opt
to keep it a secret.

What is the incentive for Alice to withhold a block and forego the corresponding reward?
The intuition is that Alice can trick all of the other miners into working on the wrong
computational problem (extending the last publicly announced block, not Alice’s secret
block). Meanwhile, Alice can work privately on extending her own block. This trick boosts
Alice’s fraction of the (useful) computation being done, and hence has the potential to boost
her expected reward.

In detail, here’s the selfish mining strategy. Suppose the last block of the current
blockchain is b0, and Alice just discovered a new valid block s1 (which she will withhold
from the others).

Selfish Mining

1. Work privately to find a valid block s2 that extends s1. If some other
miner announces a new valid block b1 (extending b0), then give up and
start over.13

2. If Alice finds s2 (extending s1) before any other miner finds b1 (extending
b0), then Alice continues to mine her secret chain s1, s2, . . . , sk until her
“lead” over the public blockchain b1, b2, . . . , b` drops to 1 (i.e., ` = k−1).

3. Announce her entire secret chain s1, . . . , sk.

For example, suppose Alice gets lucky and finds s2 and s3, and only then does some other
miner find b1. Alice continues to try to extend the end s3 of her secret chain (with a lead
of 2, this is still safe). If some other miner finds b2 first, however, then Alice cashes in her
chips and announces s1, s2, and s3.

Assume that all miners other than Alice behave as intended. Would selfish mining give
Alice a higher expected reward than honest mining? The answer is not obvious, but can be

12One mining pool, Ghash.io, once reached roughly 50% of the total computational power. As the pool
had no interest in attacking Bitcoin (this would devalue the currency), it took steps to bring the membership
back down to below 40%.

13This is the bad scenario for the selfish miner—she could have collected a reward for the block s1, but
once b1 is announced she can no longer collect any reward for it. (Recall miners are supposed to break ties
in favor of the block announced earlier, so announcing s1 now would not help.)

8



obtained through a calculation.14 And the answer is interesting:

Theorem 3.1 ([2]) If Alice’s mining power α is bigger than 1
3
, and all other miners are

honest, then selfish mining yields greater expected reward than honest mining.

Interestingly, the original white paper on Bitcoin [3], by a mysterious individual or team
known only as Satoshi Nakamoto, seems to suggest that there should be no incentive issues
provided no miner has more than 50% of the overall computational power. Presumably
Nakamoto had in mind attacks based on forking (like the double-spend attack), rather than
attacks based on block withholding.

Theorem 3.1 effectively says that all miners being honest is not an “equilibrium,” when
at least one miner controls more than a third of the overall computational power. So what
are the equilibria? That seem like a very difficult question.

References

[1] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Proceedings of
the 12th Annual International Cryptology Conference (CRYPTO), pages 139–147, 1992.

[2] I. Eyal and E. Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Proceedings of the Eighteenth International Conference on Financial Cryptography and
Data Security, 2014.

[3] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Unpublished white paper,
2008.

14Basically by computing the stationary distribution of a suitable Markov chain (where states correspond
to different-sized “leads”) and then the expected rewards.

9


