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Abstract

Border’s theorem gives an intuitive linear characterization of the feasible interim alloca-
tion rules of a Bayesian single-item environment, and it has several applications in economic
and algorithmic mechanism design. All known generalizations of Border’s theorem either re-
strict attention to relatively simple settings, or resort to approximation. This paper identifies
a complexity-theoretic barrier that indicates, assuming standard complexity class separations,
that Border’s theorem cannot be extended significantly beyond the state-of-the-art. We also
identify a surprisingly tight connection between Myerson’s optimal auction theory, when applied
to public project settings, and some fundamental results in the analysis of Boolean functions.

1 Introduction

Let us start by considering the computational complexity of a basic problem in probability theory:
characterizing the possible vectors of marginal probabilities in a probability space. Questions of
this type have already been asked by George Boole in the 19th century (see [27]) under the name
“conditions of possible experience”. Here is a simple but very relevant special case that we will focus
on: for which vectors (p0, p1, . . . , pn) does there exist a probability space with events E,X1, . . . , Xn,
with X1, . . . , Xn independent with Pr[Xi] = 1/2 for all i = 1, 2, . . . , n, such that p0 = Pr[E] and
pi = Pr[E|Xi] for all i = 1, 2, . . . , n?

The reader may pause for a second here and convince themselves that this is not a trivial
question: for example, Pr[E] = 1/2 and Pr[E|X1] = Pr[E|X2] = 0.7 is possible while Pr[E] = 1/2
and Pr[E|X1] = Pr[E|X2] = 0.8 is not possible!

1.1 Relevance to Bayesian Mechanism Design

Why would anyone care about this problem? One motivation comes from mechanism design,
specifically the problem of characterizing the set of feasible interim allocation rules. To explain,
recall that in a generic Bayesian mechanism design problem, a principal faces n strategic agents, each
holding some private information, termed its type, where the tuple of types is distributed according
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to some known prior distribution. The mechanism must specify an (ex post) allocation rule: for
each possible profile of agent types, an outcome chosen from some family of possible outcomes
or, more generally, a probability distribution over outcomes. The description of a mechanism is
thus naturally exponential in the number of agents, even if there are only two possible types per
agent and two outcomes. This exponential description size is the first reason that mechanism
design problems are difficult both mathematically and computationally. In particular, while it
turns out that most mechanism design problems of interest are easily expressed as linear programs,
computational efficiency does not follow due to the exponential size of these linear programs.

There is still hope, however: the goals and constraints of Bayesian mechanism design problems
typically depend only on the marginals of the allocation rule, also known as the interim allocations:
for each possible type of each agent, the average outcome over the types of the other players. This
reduces the numbers of variables and constraints to be linear in the number of players rather than
exponential. One would naturally hope that analysis in terms of the interim allocations helps the
mathematical understanding of the problem, in addition to computational tractability.

This is almost the case. The only rub is the combinatorial issue of which interim allocation
rules are feasible — for which values of the interim allocation probabilities do there exist values
of the (ex post) allocation probabilities with these marginals. Checking feasibility of an interim
allocation rule is an instance of verifying the consistency of a collection of marginals, the problem
described above.

Maskin and Riley [19] were the first to highlight the importance of characterizing feasible interim
allocation rules; their motivation was to develop an analog of Myerson’s characterization of optimal
single-item auctions with risk-neutral bidders [22] for the case of risk-adverse bidders. Matthews
[20] proposed an intuitive necessary condition and conjectured that it is sufficient for feasibility,
and Border [2] proved this conjecture.1 For further applications and interpretations in economics,
see [15, 17, 21].

Border’s theorem also has computational implications. As a linear characterization that uses
only “simple” linear inequalities, it implies that checking the feasibility of an interim allocation
rule is a coNP problem (assuming finite type-spaces and explicitly given type distributions). In
simultaneous and independent works, Alaei et al. [1] and Cai et al. [5] show that the problem is in
fact in P.

To what extent can Border’s theorem be generalized to other mechanism design problems? This
question has been the focus of much of the recent work in algorithmic mechanism design since,
as explained above, it lies at the heart of the efficient computational treatment of multi-player
mechanism design challenges. The current state of knowledge, discussed in detail in Section 1.4,
is that there are analogs of Border’s theorem in settings modestly more general than single-item
auctions, such as k-unit auctions with unit-demand bidders [1, 5], and that approximate versions
of Border’s theorem exist fairly generally [5, 6].

Can the state-of-the-art be improved upon? Can we provide computationally useful exact
extensions of Border’s theorem?

1For the finite version of Border’s theorem that we consider (see Section 2.3), there are also more combinatorial
proofs [3, 7].
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1.2 Summary of Results: The Borders of Border’s Theorem

The first main take-away from this paper is that, under widely-believed complexity assumptions,
Border’s theorem cannot be extended significantly beyond the state-of-the-art. For example, our
negative results imply the (conditional) impossibility of an exact Border’s theorem even for the
following extremely simple mechanism design setting.

Definition 1.1 (Boolean Public Project Problem). In the Boolean public project mechanism design
problem, there are only two possible social outcomes: “yes” and “no.” (E.g., build a bridge, or
not.) Each of the n players has valuation 0 for “no.” Player i’s value for “yes” is either 0 or ai; the
ai’s are publicly known, but only player i knows which of 0 or ai is its true value for “yes.” The
distribution on the players’ types is uniform, with all 2n possibilities equally likely.

Key to our approach is the study of the computational complexity of the OptRev problem:
given a description of a mechanism design problem — for each agent i and type ti, the probability
that i’s type is ti — compute the maximum expected revenue obtained by a mechanism that is
Bayesian incentive-compatible and interim individually rational. (See Section 2 for formal defini-
tions.) We prove in Theorem 4.1 that the OptRev problem is #P-hard2 for Boolean public project
problems. A similar result has been independently proven by Yang Cai (private communication).
We note that the OptRev problem is hard despite the setting’s status as “completely solved” from
a revenue-maximization perspective: Myerson’s optimal auction theory [22] tells us exactly what
the optimal auction is (always pick the outcome with the highest sum of “virtual values”), and
this auction is trivial to implement (since virtual values are trivial to compute). Thus while we
know what to do (run Myerson’s optimal auction) and it is computationally efficient to do it, it’s
intractable to compute (exactly) what our expected revenue will be!3

But so what? Isn’t identifying the optimal mechanism the problem we really care about? The
point is this (Theorem 3.3): a generalization of Border’s theorem (defined formally in Section 3.1)
would imply that the OptRev problem is relatively tractable, formally within the complexity class
PNP. Combining this result with our #P-hardness result for the OptRev problem for Boolean
public projects rules out an analog of Border’s theorem for that setting, unless #P ⊆ PNP, which
is widely believed not to be the case.4

This impossibility result is not an artifact of the fact that Boolean public project settings are
not “downward-closed”. For example, we can rule out a generalized Border’s theorem (here and
below, assuming #P 6⊆ PNP) for the setting of single-minded bidders with known bundles, even
when all bundles have size 2 (Theorem 4.6). The same reduction rules out a Border’s-type theorem
for multi-item auctions with unit-demand bidders (Corollary 4.8). Analogous hardness results
even apply to the mathematically well-behaved class of matroid environments, including graphical
matroids (Theorem 4.9).

Taken together, our negative results suggest that Border’s theorem cannot be extended signif-
icantly beyond the cases already identified in [1, 2, 5, 7] without resorting to approximation (as
in [5, 6]). In particular, computationally useful Border’s-type characterizations are apparently far
rarer than computationally efficient characterizations of optimal auctions (as in [22]).

2In this paper all our hardness results are under general Turing reductions.
3Solving the OptRev problem is non-trivial even when you know what the optimal mechanism is, because the

expectation is over the exponentially many type profiles.
4Recall that PNP denotes the problems that can be solved in polynomial time using an NP oracle. Toda’s theorem

implies that if #P ⊆ PNP, then the polynomial hierarchy collapses to PNP.
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1.3 Summary of Results: Applications to Boolean Function Analysis

The second main take-away of this paper is orthogonal to the first: there is a surprisingly tight
connection between classical optimal auction theory, especially in the setting of Boolean public
projects, and the analysis of Boolean functions.

To see this, here is yet another formulation of the problem stated at the beginning of the paper,
this time in the setting of the Fourier transform of Boolean functions. For a Boolean function
f : {0, 1}n → {0, 1}, we will consider its Chow parameters (a.k.a. level 0 and 1 Fourier coefficients),
which are defined as

f̂(0) = Ex∼{0,1}n [f(x)] ;

f̂(i) = Ex∼{0,1}n
[
f(x)(−1)1+xi

]
for i ∈ [n].

We can convexify this set by considering all bounded functions f : {0, 1}n → [0, 1]. The space of
Chow parameters for such functions is a convex polytope which we denote by Cn.

We observe that the space of feasible interim allocation rules for the Boolean public project
setting (given by the conditional allocations) is essentially equivalent to the the space of feasible
Chow parameters for functions f : {0, 1}n → [0, 1]. This lets us reinterpret our hardness results for
the setting of Boolean Public Projects in the language of Chow parameters as well: We can view
the problem of maximizing revenue as maximizing a weighted sum of the form

∑n
i=0 aif̂(i) over Cn.

Theorem 5.5 shows that this problem is #P-hard, and hence testing membership of a vector in Cn
is also #P-hard. At this point we can also return to the problem regarding marginal probabilities
that this paper started with and observe that this also implies its #P-hardness.

This equivalence is also useful in the converse direction and provides, in lemma 5.4, a simple
alternative stand-alone analysis of the OptRev problem for the Boolean Public Project setting
that is based on simple analysis of Boolean functions rather than relying on Myerson’s analysis of
optimal auctions.

1.4 Related Work

Three recent and independent papers ask to what extent Border’s theorem can be extended beyond
the original setting of single-item auctions [2] and provide some positive results. The results in this
paper give senses in which their results are close to the best possible.

Alaei et al. [1] give an analog of Border’s theorem for every single-parameter matroid environ-
ment, in the form of an exponential-size set of linear inequalities that characterizes the feasible
interim allocation rules. They illustrate some special cases, such as k-unit auctions, in which this
characterization can be used to test the feasibility of a rule, and more generally optimize over the
set of all feasible rules, in polynomial time. For general matroids, their linear characterization uses
inequalities for which the right-hand side is #P-hard to compute (this follows from the reductions
in the present work); thus for general matroids, their characterization does not meet our notion of
a “generalized Border’s theorem” (Definition 3.1), and indeed by our Theorem 4.9 it cannot (unless
the polynomial hierarchy collapses).

The contributions of Che et al. [7] relevant to present work are similar in spirit to but technically
different from those of Alaei et al. [1]: they give an analog of Border’s theorem for a class of multi-
unit environments, involving “paramodular” constraints on the number of units each bidder can
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get.5 In general, this linear characterization uses inequalities that are computationally intractable
to compute, but it includes some tractable special cases, such as when the upper and lower bounds
of the different bidders are uncoupled.

Cai et al. [5] also identify some computationally tractable extensions of Border’s theorem, for
example to the case of multi-item auctions with additive bidders (i.e., no feasibility constraints).6

[5, 6] also develop a theory of “approximate” Border’s-type theorems that encompasses a much
wider swath of mechanism design settings, including all of the concrete settings that we consider in
this paper. Such approximate theorems identify a set of linear inequalities with the property that
every feasible solution is close (in `∞ norm, say) to a feasible interim allocation rule, and conversely.
[5, 6] show that approximate versions of Border’s theorem are very useful for algorithmic mechanism
design: roughly, for an arbitrary constant ε > 0, they enable the polynomial-time computation
of a mechanism that is approximately Bayesian incentive compatible (up to an incentive of ε to
misreport) and is approximately revenue-optimal (up to a loss of ε). Our results in this paper imply
that the approximation approach taken in [5, 6] is unavoidable, in that no exact and computationally
useful analog of Border’s theorem can exist for most of the settings they consider (unless #P ⊆ PNP).

Our work shares some of the spirit of recent works that use complexity to identify barriers in
mechanism design. For example, Daskalakis et al. [10] consider a single-bidder multi-item (and
hence multi-parameter) setting, and prove that it is #P-hard to compute a description of the
revenue-maximizing incentive-compatible mechanism.7 Note this problem is not hard in most of
the (single-parameter) settings that we consider, where the optimal mechanism is simple to compute
and write down (it is just a “virtual welfare maximizer” with virtual values given by simple explicit
formulas, as per Myerson [22]). What is hard for us is computing the expected revenue obtained
by the (simple-to-describe) optimal mechanisms, not the mechanism design problem per se. Still
more distant from the present work are previous papers on the intractability of computing optimal
deterministic mechanisms in various settings, including [4, 8, 13, 26].

2 Preliminaries

2.1 Mechanism Design Settings

We recall first the standard model of binary single-parameter mechanism design settings, with play-
ers’ valuations drawn from a commonly known product distribution. Formally, a single-parameter
environment E consists of the following ingredients: (i) a player set U = {1, 2, . . . , n}; (ii) for each
player i, a finite set Vi of possible nonnegative valuations; (iii) for each i ∈ U and vi ∈ Vi, a prior
probability fi(vi) that i’s valuation is vi; and (iv) a non-empty collection F ⊆ 2U of feasible sets.
For example (see also Section 4):

1. A single-item auction (with n bidders) corresponds to an environment with F = {∅, {1}, {2}, . . . , {n}}.

2. In a k-unit auction with unit-demand bidders, F is all subsets of U with size at most k.

5Che et al. [7] define paramodularity as the upper bounds being submodular, the lower bounds being supermodular,
and the two constraints being “compliant,” meaning irredundant in a certain sense.

6Both Alaei et al. [1] and Cai et al. [5] also give (different) compact formulations (i.e., polynomially many variables
and constraints) of the feasible interim allocation rules for single-item settings.

7Daskalakis et al. [10] assume an additive bidder, with the prior distribution over valuations encoded in the natural
succinct way.
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3. In a public project environment, F = {∅, U}.

4. In a single-minded environment, the set F is described implicitly as follows. There is a set M
of items and a subset Si ⊆M desired by each bidder i. A set F ⊆ U belongs to F if and only
if no desired bundles conflict: Si ∩Sj = ∅ for all distinct i, j ∈ F . For example, if |Si| = 2 for
every i, then feasible sets correspond to the matchings of a graph with vertices M and edges
correspondings to the Si’s.

We also consider multi-parameter environments. Because our primary contributions are impos-
sibility results, we confine ourselves to the simplest such environments (negative results obviously
apply also to generalizations). A multi-item auction environment differs from a single-parameter
environment in the following respects. First, there is also a set M of items. Second, a valuation vi

of a bidder i is now a nonnegative vector indexed by M . We restrict attention to additive bidders,
meaning that the value a player i derives from a set S ⊆ M of items is just the sum

∑
j∈S vij .

Third, F is now a subset of 2U×M , indicating which allocations of items to bidders are possible.
For example, the standard setting of unit-demand bidders can be encoded by defining F to be the
subsets F of U ×M in which, for every bidder i, there is at most one pair of the form (i, j) in F
(and also at most one such pair for each j).

By a setting, we mean a family of mechanism design environments. For example, all single-item
auction environments (with any number n of players, any valuation sets, and any prior distribution);
all public project environments; all multi-item unit-demand auction environments; etc.

2.2 Bayesian Incentive-Compatible Mechanisms

This section reviews the classical setup of Bayesian mechanism design problems, as in Myerson [22].
Fix a binary single-parameter environment, as defined in Section 2.1. A (direct-revelation) mech-
anism (x,p) comprises an allocation rule x : V → {0, 1}n and a payment rule p : V → Rn

+, where
V = V1 × · · · × Vn. The former is a map (possibly randomized) from each bid vector b — with
one bid per player — to a characteristic vector of a feasible set in F , the latter is a map (possibly
randomized) from each bid vector b to a payment vector p, with one payment per player. For the
questions we study, we can restrict attention to truthful mechanisms (via the Revelation Principle,
e.g. [23]), and we henceforth use the true valuations v in place of the bids b.

A mechanism (x,p) and prior distribution F over valuations together induce an interim allo-
cation rule

yi(vi) = Ev−i∼F−i [xi(vi,v−i)] , (1)

which describes the probability (over the randomness in v−i and any randomness in x) that bidder i
is chosen when it reports the valuation vi. Similarly, the interim payment rule

qi(vi) = Ev−i∼F−i [pi(vi,v−i)] (2)

describes the expected payment made by i when it reports vi. The pair (y,q) is the reduced form
of the mechanism (x,p). We sometimes call x and p ex post rules for emphasis.

A mechanism (x,p) for an environment is Bayesian incentive compatible (BIC) if truthful
bidding is a Bayes-Nash equilibrium. We assume that bidders are risk-neutral and have quasi-linear
utility (value minus payment), and can therefore use linearity of expectation to write succinctly
the BIC condition in terms of the reduced form (y,q) of a mechanism:

viyi(vi)− qi(vi) ≥ viyi(v′i)− qi(v′i) (3)
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for every bidder i, true valuation vi, and reported valuation v′i.
Similarly, we can express the interim individual rationality (IIR) requirement — stating that

truthful bidding leads to non-negative expected utility — by

viyi(vi)− qi(vi) ≥ 0 (4)

for every bidder i and true valuation vi.
We can also write the seller’s expected revenue

n∑
i=1

∑
vi∈Vi

fi(vi) · qi(vi) (5)

in terms of the reduced form of the mechanism. In the optimal (revenue-maximizing) mechanism
design problem, the goal is to identify the BIC and IIR mechanism (x,p) that maximizes (5).

Multi-item auction environments can be treated similarly, with an (ex post) allocation rule
choosing a feasible set of F for each valuation profile v and xij(v) now denoting whether or not
bidder i receives the item j. (There is no need to keep track of a separate payment for each item
received.) For example, because we assume that bidders are additive, the BIC constraints for a
multi-item environment can phrased in terms of the reduced form (y,q) of a mechanism by∑

j∈M
vijyij(vi)− qi(vi) ≥

∑
j∈M

vijyij(vi
′)− qi(vi

′) (6)

for every bidder i, true valuation vi, and reported valuation vi
′.

2.3 Border’s Theorem for Single-Item Auction Environments

As discussed in the Introduction, there are several applications that rely on understanding when
an interim allocation rule y is induced by some ex post allocation rule x. Such interim rules are
said to be feasible.

Border’s Theorem [2] characterizes interim feasibility for single-item auction environments. To
review it, fix such an environment and assume without loss of generality that the valuation sets
V1, . . . , Vn are disjoint.8 To derive an obvious necessary condition for feasibility, consider an ex post
allocation rule x with induced interim rule y. Fix for each bidder i a set Si ⊆ Vi of distinguished
valuations. Linearity of expectation implies that the probability, over the random valuation profile
v ∼ F and any coin flips of the allocation rule x, that the winner of the item has a distinguished
valuation is

n∑
i=1

∑
vi∈Si

fi(vi)yi(vi). (7)

The probability, over v ∼ F, that there is a bidder with a distinguished type is

1−
n∏

i=1

1−
∑
vi∈Si

fi(vi)

 . (8)

8We can enforce this by thinking of each vi ∈ Vi as the pair {vi, i}.
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Since there can only be a winner with a distinguished type when there is a bidder with a distin-
guished type, the quantity in (7) can only be less than (8). Border’s theorem asserts that satisfying
these linear (in y) constraints, ranging over all choices of S1 ⊆ V1, . . . , Sn ⊆ Vn, is also a sufficient
condition for the feasibility of an interim allocation rule y.

Theorem 2.1 (Border’s Theorem [2]). In a single-item environment, an interim allocation rule y
is feasible if and only if for every choice S1 ⊆ V1, . . . , Sn ⊆ Vn of distinguished types,

n∑
i=1

∑
vi∈Si

fi(vi)yi(vi) ≤ 1−
n∏

i=1

1−
∑
vi∈Si

fi(vi)

 . (9)

3 Generalized Border’s Theorems and Computational Complexity

3.1 Generalizing Border’s Theorem

What do we actually mean by a “Border’s-type theorem?” Since we aim to prove impossibility
results, we should adopt a definition that is as permissive as possible. Border’s theorem (Theo-
rem 2.1) gives a characterization of the feasible interim allocation rules of a single-item environment
as the solutions to a finite system of linear inequalities. This by itself is not interesting — since
the set is a polytope,9 it is guaranteed to have such a characterization (see e.g. [30]). The appeal
of Border’s theorem is that the characterization uses only the “nice” linear inequalities in (9). Our
“niceness” requirement is that the characterization use only linear inequalities that can be effi-
ciently recognized and tested. This is a weak necessary condition for such a characterization to be
computationally useful.

Definition 3.1. A generalized Border’s theorem holds for the mechanism design setting Π if, for
every environment E ∈ Π, there is a linear inequality system L(E) such that the following properties
hold.

1. (Characterization) For every E ∈ Π, the feasible solutions of L(E) are precisely the feasible
interim allocation rules of E .

2. (Efficient recognition) There is a polynomial-time algorithm that, given as input a description
of an environment E ∈ Π and a linear inequality, decides whether or not it belongs to L(E).10

Note the description length of E is polynomial in n, the |Vi|’s, and the maximum number of
bits needed to describe a valuation or a prior probability.

3. (Efficient testing) There is a polynomial p(·) such that, for every E ∈ Π, the natural encoding
length of every inequality of L(E) is at most p(`), where ` is the description length of E .
(The number |L(E)| of inequalities can still be exponential.) Thus, deciding whether or not a
given point x ∈ Rn satisfies a given inequality of L(E) can be done in time polynomial in the
descriptions of E and x, just by computing and comparing the two sides of the inequality.

9The set of ex post allocation rules is a polytope, and the feasible rules are the image of this polytope under a
linear map (and hence also a polytope).

10Note this is a weaker assumption than requiring the efficient recognition of an arbitrary valid inequality.
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For example, consider the original Border’s theorem, for single-item auction environments (The-
orem 2.1). The recognition problem is straightforward: the left-side of (9) encodes the Si’s, from
which the right-hand side can be computed and checked in time polynomial in the description of
E . It is also evident that the inequalities in (9) have a polynomial-length description.

The characterization in Theorem 2.1 and the extensions in [1, 5, 7] have additional features
not required or implied by Definition 3.1, such as polynomial-time separation oracles (and even
compact reformulations in the single-item case [1, 5]).11 All of our impossibility results rule out
analogs of Border’s theorem that merely satisfy Definition 3.1, let alone these stronger properties.

A generalized Border’s theorem does imply that the problem of testing the feasibility of an
interim allocation rule is in coNP. To prove that such a rule for an environment E is not feasible,
one simply exhibits an inequality of L(E) that the rule fails to satisfy — there is always such an
inequality by Definition 3.1(i), and verifying this failure reduces to the recognition and testing
problems for L(E), which by Definition 3.1(ii,iii) are polynomial-time solvable.

Formally, we define the Membership problem for a setting Π as: given as input a description
of an environment E and an interim allocation rule y for it, decide whether or not y is feasible.

Proposition 3.2. If a generalized Border’s theorem holds for the mechanism design setting Π, then
the Membership problem for Π belongs to coNP.

3.2 Impossibility Results from Computational Intractability

We now forge a connection between the existence of generalized Border’s theorems and the compu-
tational complexity of natural optimization problems. For a setting Π, the OptRev (Π) problem is:
given a description of an environment E ∈ Π, compute the expected revenue earned by the optimal
BIC and IIR mechanism. The main result of this section shows that a generalized Border’s theorem
exists for a setting only when it is relatively tractable to solve exactly the OptRev problem.

Theorem 3.3. If a mechanism design setting Π admits a generalized Border’s theorem, then the
OptRev (Π) problem belongs to PNP.12

We later apply Theorem 3.3 in the form of the following corollary.

Corollary 3.4. If the OptRev (Π) problem is #P-hard, then there is no generalized Border’s
theorem for Π (unless the polynomial hierarchy collapses).

In the next section, we prove that the OptRev problem is #P-hard for many simple settings,
ruling out the possibility of generalized Border’s theorems for them (conditioned on #P 6⊆ PNP).

Remark 3.5. By the same reasoning and under the same complexity assumption, #P-hardness of
the OptRev (Π) problem rules out any PH algorithm that recognizes the set of interim allocation
rules for the setting Π, not just via a generalized Border’s theorem. Modulo the same assumptions,
it also rules out other approaches to efficient revenue optimization, say via an extended formulation
of polynomial size.

11Separation can be hard even when recognition and testing are easy — see e.g. [16] for some examples in combi-
natorial optimization.

12Recall that PNP denotes the problems that can be solved in polynomial time using an NP oracle (or equivalently,
a coNP oracle).
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Proof of Theorem 3.3: Consider a setting Π in which a generalized Border’s theorem holds and an
instance of the OptRev (Π) problem — a description of an environment E ∈ Π. We compute the
optimal expected revenue of a BIC and IIR mechanism via linear programming, as follows.

The decision variables of our linear program correspond to the components of an interim allo-
cation rule y and payment rule q. The number of variables is polynomial in n and maxi |Vi| and
hence in the description of E . The (linear) objective function is to maximize the expected seller
revenue, as in (5). The BIC and IIR constraints can be expressed as a polynomial number of linear
inequalities as in (3) and (4), respectively. By assumption, the interim feasibility constraint can be
expressed by a linear inequality system L(E) that satisfies the properties of Definition 3.1. Thus
the optimal objective function value of the linear program (LP) that maximizes (5) subject to (3),
(4), and L(E) is the solution to the given instance of OptRev (Π).

To solve (LP), we turn to the ellipsoid method [18], which reduces the solution of a linear
program to a polynomial number of instances of a simpler problem (plus polynomial additional
computation). The relevant simpler problem for us is a membership oracle: given an alleged
reduced form (y,q), decide whether or not (y,q) is feasible for (LP). Using Proposition 3.2 and
the fact that there are only polynomially many constraints of the form (3) and (4), we have a
coNP membership oracle. (The most common way to apply the ellipsoid method, on the other
hand, involves a separation oracle: given an alleged reduced form (y,q), either verify that (y,q)
is feasible for (LP) or, if not, produce a constraint of (LP) that it violates. Our assumption of a
generalized Border’s theorem for Π does not include also a separation oracle of the same complexity
hence we use the version of Ellipsoid that is based on a membership oracle.)

For optimization over polytopes described by linear inequalities of bounded size, assuming
that one knows a priori a feasible point (y0,q0), the ellipsoid method can also be used to reduce
the solution of a linear program to a polynomial number of invocations of a membership oracle
(see [28, P.189]). The size bound on the defining linear inequalities is implied by the Efficient
Testing condition in Definition 3.1. Computing a feasible point is trivial in our context: we can
just consider a mechanism that outputs some constant outcome irrespectively of players’ types
(with payments that are always zero) and the induced constant interim allocation rule.

We conclude that the linear program (LP) and hence the OptRev problem can be solved using a
polynomial number of invocations of a membership oracle and polynomial additional computation.
Since the membership problem for (LP) belongs to coNP, the OptRev problem belongs to PNP. �

What we have actually shown is a general Turing reduction from the OptRev (Π) problem to
the Membership problem for Π.

Corollary 3.6. If the OptRev (Π) problem is #P-hard, then so is the Membership problem for
Π.

More generally, the proof of Theorem 3.3 shows that a generalized Border’s theorem allows an
arbitrary linear function of the interim allocation and payment rules to be optimized over the space
of BIC and IIR mechanisms in PNP. For example, let OptWel (Π) be the problem of, given an envi-
ronment E ∈ Π, computing the maximum expected welfare achieved by a BIC and IIR mechanism.13

Since the expected welfare obtained by a mechanism can be written as
∑n

i=1

∑
vi∈Vi

fi(vi)viyi(vi)
for a single-parameter environment or as

∑n
i=1

∑
vi∈Vi

fi(vi)
∑

j∈M vijyij(vi) for a multi-item en-
vironment, we have the following corollary.

13The welfare-maximizing mechanism is of course the VCG mechanism (e.g. [23]) — but even knowing this, it is
not generally trivial to compute its expected welfare.
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Corollary 3.7. If the OptWel (Π) problem is #P-hard, then there is no generalized Border’s
theorem for Π (unless the polynomial hierarchy collapses).

4 Complexity of Computing the Optimal Expected Revenue and
Welfare

This section shows that, in several simple settings, the OptRev or the OptWel problem is #P-
hard. Together with Corollaries 3.4 and 3.7, these results effectively rule out, conditioned on
#P 6⊆ PNP, significant generalizations of Border’s theorem beyond those that are already known.

4.1 Preliminaries and Examples

Recall the definition of the OptRev problem for a setting Π: given a description of an environment
E ∈ Π, compute the maximum expected revenue obtained by any BIC and IIR mechanism. Even if
one is handed the optimal mechanism on a silver platter, and this mechanism runs in polynomial
time for every valuation profile, naive computation of its expected revenue requires running over
the exponentially many valuation profiles. The question is whether or not there are more efficient
methods for computing this expected value.

To develop context and intuition for the problem, we review the argument that the OptRev
problem for single-item auctions can be solved in polynomial time (see also [1, 5]).14

1. For each bidder i and possible valuation vi ∈ Vi, compute the corresponding (ironed) virtual
valuation ϕi(vi), as in Myerson [22].15 This can be done straightforwardly in time polynomial
in the size of E .

2. By [14, 22], the (ex post) allocation rule x∗ of the optimal mechanism awards the good to the
bidder with the highest positive virtual valuation (breaking ties lexicographically, say), if any,
and to no one otherwise. The second step of the algorithm is to compute the interim allocation
rule y∗ induced by x∗. This can be done in polynomial time via a simple computation.16

3. By [14, 22], the solution to the OptRev problem equals
∑n

i=1 Evi∼Fi [ϕi(vi)y
∗
i (vi)]; given

the virtual valuations and the interim allocation rule, this quantity is trivial to compute in
polynomial time.

4.2 Public Projects

Recall that in a public project environment, there are only two outcomes: choose all players (“build
the bridge”) or no player (“not”). We now show that the OptRev problem is hard in such
environments, even in the extremely simple case when each player is equally likely to have a zero
valuation or a known positive valuation for the “yes” outcome.17

Theorem 4.1. The OptRev problem is #P-hard for the public project setting, even when every
player has only two possible valuations, and the valuation distribution is uniform.

14This is not surprising in light of Theorems 2.1 and 3.3!
15There is an analogous simple formula for the case of a discrete set of bidder valuations [14].
16For a bidder i and valuation vi, y

∗
i (vi) is 0 if ϕi(vi) ≤ 0, and otherwise is

∏
j 6=i Pr[ϕj(vj) < ϕi(vi)].

17Note that the OptWel problem is trivial to solve in the public project setting.
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This result can be usefully re-interpreted in the context of Boolean function analysis; see Sec-
tion 5 for details.

Theorems 3.3 and 4.1 immediately imply the following.

Corollary 4.2. Unless the polynomial hierarchy collapses, there is no generalized Border’s theorem
for the public project setting.

We begin by reformulating the OptRev problem, in the special case of an environment E in
which each bidder i is equally likely to have the valuation 0 or the valuation ai. We show it is
equivalent to the #P-complete problem of computing the Khintchine constant of a vector, which
is defined as follows (cf., [12]).

Definition 4.3. For a vector a ∈ Rn, define

K(a) = Ex∼{±1}n [|x · a|]

to be the Khintchine constant for a.

It is known that
‖a‖2√

2
≤ K(a) ≤ ‖a‖2,

where the upper bound follows from Cauchy-Schwarz and the lower bound is the classical Khint-
chine inequality. We use the following #P-hardness result, which we prove in the appendix for
completeness.

Lemma 4.4. Given a vector a ∈ Rn, the problem of computing K(a) is #P-complete, even when
a ∈ Zn with bit-length polynomial in n.

Lemma 4.5. The optimal revenue of a BIC and IIR mechanism for the public projects problem is
K(a)/2.

Combining these two lemmas, the proof of Theorem 4.1 is immediate. We present two proofs
of Lemma 4.5. Our first proof invokes Myerson’s characterization of optimal auctions [22]. Our
second proof is self-contained and uses an argument from the analysis of Boolean functions [24] and
will be presented in section 5.

Proof of Lemma 4.5: (First version.) The standard virtual valuations for our setting (see [14, 22])
are ϕi(0) = −ai and ϕi(ai) = ai for each bidder i. In a binary single-parameter environment,
the revenue-maximizing auction always selects the outcome that maximizes the sum of the virtual
valuations of the chosen players — the “virtual welfare” — and the expected revenue of this auction
equals its expected virtual welfare [14, 22]. Translated to the current special case, the solution to
the OptRev problem is precisely

Ev∼F

[
max

{
0,

n∑
i=1

ϕi(vi)

}]
= Ex∼{±1}n [max {0, x · a}] , (10)

where x ∈ {±1}n is chosen uniformly at random and a = (a1, . . . , an).
Since (−x) · a = −(x · a), we have

Ex∼{±1}n [max {0, x · a}] =
1

2
Ex∼{±1}n [|x · a|] =

K(a)

2
,

completing the proof. �
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4.3 Single-Minded Environments

This section presents an impossibility result for a downward-closed setting (where, unlike in public
project environments, every subset of a feasible set is again feasible). Recall that in a single-minded
environment, each bidder i wants a publicly known subset Si of goods, and the feasible outcomes
are subsets of bidders with mutually disjoint bundles.

Assume that there are t items in total, and p players, so that we can view each player’s bundle
as an edge in a graph with t vertices. Denote the resulting graph by H. We allow parallel edges
(i.e., players that desire the same bundle). The prior distribution is uniform over {0, 1}p. Given
a string x ∈ {0, 1}p, we define a subgraph Hx of H by keeping edge i if xi = 1. Having xi = 0
indicates that player i has 0 valuation, xi = 1 means her valuation is 1 for her bundle. A feasible
allocation corresponds to a matching in Hx, and the maximum welfare is the size of a maximum
matching. Thus the OptWel problem in this setting amounts to computing the expected size of
the maximum matching in a random edge subgraph of H.

Theorem 4.6. The OptWel problem is #P-hard for the single-minded bidder setting, even when
every player’s bundle contains two items, every player has only two possible valuations, and the
valuation distribution is uniform.

Proof. The proof is by reduction from the s-t connectivity problem in directed graphs. Formally,
#stConnectivity is the following problem: Given a directed graph H with two distinguished vertices
s, t, what is the probability that there is an s-t path in a random edge subgraph of H? Valiant
shows this problem is #P-complete [29].

Assume that G has vertex set [n]∪{s, t} and m edges. We construct a bipartite graph H where
the vertex set is L ∪R, where L = {s} ∪ [n] and R = [n] ∪ {t}. When we speak of an edge (i, j) in
H, we always mean with i ∈ L and j ∈ R. If there is a directed edge (i, j) in G, we add an edge
between i on the left and j on the right in H. We call these red edges. For every i ∈ {1, . . . , n},
we add k parallel edges between the two copies of i (k will be a large polynomial in m,n). We call
these blue edges.

Consider picking a random subgraph H ′ of H. Except with probability m/2k (over the choice
of blue edges), at least one blue edge of the form (i, i) survives for every i ∈ [n]. Conditioned on
this event, the maximum matching in H ′ has size at least n. Further, a matching of size n + 1
exists if and only if the subgraph of G that corresponds to the surviving red edges has an s-t path
P — the red edges corresponding to P match s ∈ L, t ∈ R, and both copies of all vertices internal
to P (vertices not on P are matched with blue edges).

Let p denote the probability that a random subgraph G′ of G contains an s-t path. Let the
random variable M denote the size of the maximum matching in H ′. The observations above imply
that

EH′ [M ] ≤ p(n+ 1) + (1− p)n = n+ p

EH′ [M ] ≥ (p− m

2k
)(n+ 1) + (1− p)n = n+ p− mn

2k
.

Note that p is always an integer multiple of 1/2m. Therefore if we choose k sufficiently large (bigger
than mn), then we can recover p by subtracting n from EH′ [M ] and rounding up the remainder to
the form c/2m for some integer c.

Combining Corollary 3.7 and Theorem 4.6 gives the following.
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Corollary 4.7. Unless the polynomial hierarchy collapses, there is no generalized Border’s theorem
for the single-minded bidder setting.

4.4 Multi-Item Auctions with Unit-Demand Bidders

Recall that in a multi-item auctions setting, there is a set M of goods and each bidder i has a
valuation vij for each item j ∈ M . The set F ⊆ 2U×M describes the feasible allocations of items
to bidders. In a multi-item auction with unit-demand bidders, the feasible sets F correspond to
the matchings of a complete bipartite graph G with vertex sets U and M . Given valuations v, the
welfare-maximizing allocation corresponds to the maximum-weight matching in G (with each edge
weight wij equal to the valuation vij). Since the reduction in the proof of Theorem 4.6 produces a
bipartite graph, the reduction also implies that the OptWel problem is #P-hard for the setting
of multi-item auctions with unit-demand bidders. Corollary 3.7 then implies the following.

Corollary 4.8. Unless the polynomial hierarchy collapses, there is no generalized Border’s theorem
for the setting of multi-item auctions with unit-demand bidders.

4.5 Matroid Environments

Our final example shows that there are even simple matroid settings which do not admit generalized
Border’s theorems (unless #P ⊆ PNP). In a graphical matroid environment, bidders correspond
to the edges of an undirected graph G = (V,E). The feasible sets correspond to the acyclic
subgraphs of G, so the welfare-maximizing outcome corresponds to a maximum-weight spanning
forest. Using the same valuation distributions as in Section 4.3, the OptWel problem becomes
that of computing the expected size of a spanning forest — or equivalently, the expected number
of connected components — of a random subgraph G′ of G.

Theorem 4.9. The OptWel problem is #P-hard for the graphical matroid setting, even when
every player has only two possible valuations, and the valuation distribution is uniform.

Proof. We reduce from the #stConnectivity problem in undirected graphs, which is also #P-
complete [29]. Given an instance G of #stConnectivity, let C1 denote the expected number of
connected components in a random subgraph of G. Derive H from G by adding the edge (s, t)
— a second copy if it is already in G — and let C2 denote the expected number of connected
components in a random subgraph of H. Since

C1 − C2 =
1− p

2
,

where p is the probability that s and t are connected in a random subgraph of G, we conclude that
the #stConnectivity problem reduces to the OptWel problem in the graphical matroid setting.

Corollary 4.10. Unless the polynomial hierarchy collapses, there is no generalized Border’s theo-
rem for the graphical matroid setting.

5 Connections to Boolean Function Analysis

In this section we re-interpret our results on the public projects problem in terms of Boolean
function analysis and, conversely, provide a stand-alone analysis of the optimal-revenue Boolean
public project mechanism based on Boolean function analysis.
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5.1 From Boolean Public Projects to Boolean Functions

Let us go back to the revenue maximization problem, OptRev, for the Boolean public project
problem addressed in subsection 4.2 and re-derive the characterization of the optimal revenue from
first principles. Recall that each of our n players has either value 0 or value ai for the “positive
outcome” with both possibilities equally likely and independent of the others’ values. To convert
this setting to a Boolean functions setting let us indicate by xi = 0 the case that the value of player
i is 0 and by xi = 1 the case that the value of player i is ai. Our prior distribution of values for
the Boolean public project setting is now translated to the uniform distribution over the Boolean
hypercube {0, 1}n.

Let us denote by f(x1, . . . , xn) ∈ [0, 1] the probability of a positive outcome that our mechanism
gives when the players’ values are according to indicators xi. Let us further denote by

f i(xi) = Ex−i∈{0,1}n−1 [f(xi, x−i)] = Ex∈{0,1}n [f(x)|xi].

the interim allocation of player i with value indicated by xi. Now let us denote by pi(xi) the interim
payment of player i with value xi. Our incentive constraints and individual rationality constraints
imply bounds on pi in terms of the f i and allow us to characterize exactly the maximum payments
that are possible for a given interim allocation rule.

Lemma 5.1. The maximum possible interim payments for a Bayesian Incentive Compatible and
Interim Individually Rational Mechanism for the Boolean Public Projects problem with interim
allocations given by f i with f i(1) ≥ f i(0) are precisely pi(0) = 0 and pi(1) = ai · (f i(1)− f i(0)). In
particular, the optimal revenue among such mechanisms is exactly

∑
i(ai/2) · (f i(1)− f i(0)).

Proof. The individual rationality constraint for xi = 0 immediately implies pi(0) ≤ 0 since in that
case the player gets no utility from “the bridge”. Now let us focus on the incentive constraint for
the case xi = 1: reporting the truth will result in the bridge being built with probability f i(1)
while lying and reporting 0 will give a probability f i(0). Player i’s value for telling the truth is
thus ai · (f i(1) − f i(0)) larger than his value from lying, and this difference is the maximum that
the payment pi(1) can be larger than the payment pi(0) without his utility becoming lower which
would violate the incentive constraints.

We now only need to observe that indeed setting pi(0) = 0 and pi(1) = ai · (f i(1) − f i(0))
does yield an incentive compatible and individually rational mechanism. Individual rationality:
for x0 = 0 the value and payment and thus also utility are 0; for xi = 1 the value is aif

i(1) and
the payment pi(1) is lower, and thus the utility is positive. Incentives: for xi = 0 lying would not
increase player i’s value which is 0, but may only increase his payment; for xi = 1 the payment pi(1)
was chosen exactly so his utility for the truth will exactly match his utility from lying, ai ·f i(0).

The constraint that f i(1) ≥ f i(0) for each i must be satisfied by every incentive compatible
mechanism since otherwise the incentive constraints for xi = 0 would dictate pi(1) ≥ pi(0) while
the incentive constraints for xi = 1 would dictate pi(1) < pi(0), a contradiction. We may however,
without loss of generality, optimize over all functions f , since one can always switch the roles of 0
and 1 by ”Not”-ing an input bit. We thus have reduced the revenue maximization problem to the
following problem on functions f : {0, 1}n → [0, 1].

Lemma 5.2. The optimal revenue of the Boolean public project problem is given by

OPT = max
f :{0,1}n→[0,1]

n∑
i=1

ai
2

(Ex∼{0,1}n [f(x)|xi = 1]−Ex∼{0,1}n [f(x)|xi = 0]). (11)
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It turns out that characterizing the function f that maximizes this weighted sum of differences
is not difficult using the basic tools of Boolean function analysis (and of course yields the same
mechanism as Myerson’s theorem implies). The rest of this section will continue coming up with
this derivation in a leisurely way within the Boolean function context. As expected, this analysis
will identify the optimal f to be threshold function (halfspace) f(x) = sign+(

∑
ai ·(−1)xi+1) where

sign+(z) = 1 if z ≥ 0 and sign+(z) = 0 otherwise. The fact that this is a Boolean function (rather
than taking fractional values) translates to the optimal mechanism being deterministic, and the
fact that it is a monotone function can be translated to an optimal mechanism that is truthful in
dominant strategies (obtained, as usual, by setting critical payments).

5.2 The Chow Parameters of a Boolean Function

We refer to functions f : {0, 1}n → [0, 1] as bounded functions and the subset of functions
f : {0, 1}n → {0, 1} as Boolean functions. Every bounded function can be viewed as a convex
combination of Boolean functions. Given f : {0, 1}n → [0, 1], we define its Chow parameters or
degree-0 and degree-1 Fourier coefficients as18

f̂(0) = Ex∼{0,1}n [f(x)] ;

f̂(i) = Ex∼{0,1}n
[
f(x)(−1)1+xi

]
for i ∈ [n].

We refer to (f̂(0), . . . , f̂(n)) as the Chow vector of f . Let us define the set

Cn = {(c0, . . . , cn)|∃f : {0, 1}n → [0, 1] s.t. ci = f̂(i) for 0 ≤ i ≤ n}.

Note that the space of feasible Chow vectors is a polytope, since it is convex, and has finitely many
vertices corresponding to the Chow vectors of Boolean functions. Let us denote this polytope by
Cn. While this polytope is natural in the context of Fourier analysis, we are not aware of prior work
that studies it explicitly.

Note that

f̂(0) = Ex∼{0,1}n [f(x)]

=
1

2
Ex∼{0,1}n [f(x)|xi = 1] +

1

2
Ex∼{0,1}n [f(x)|xi = 0] . (12)

f̂(i) = Ex∼{0,1}n
[
f(x)(−1)1+xi

]
=

1

2
Ex∼{0,1}n [f(x)|xi = 1]− 1

2
Ex∼{0,1}n [f(x)|xi = 0] . (13)

This lets us reinterpret our results regarding revenue maximization for the public projects
problem in the language of Chow parameters. By comparing Equation (11) in the statement of
lemma 5.2 and (13), we see that the problem of maximizing revenue is equivalent to maximizing
the weighted sum of the Chow parameters of a function.

OPT = max
f :{0,1}n→[0,1]

n∑
i=1

aif̂(i). (14)

18The reason we use (−1)1+xi instead of the more common (−1)xi is that f̂(i) being positive implies positive
correlation between xi and f by Equation (13).
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We briefly explain why these parameters are of interest in the analysis of Boolean functions.
Recall that sign+(z) = 1 if z ≥ 0 and sign+(z) = 0 otherwise. We say that a function h : {0, 1}n →
{0, 1} is a halfspace if there exist real numbers a0, . . . , an such that

h(x) = sign+(a0 +
n∑

i=1

ai(−1)1+xi).

We may assume that a0 +
∑n

i=1 ai(−1)1+xi never vanishes on {0, 1}n. An elegant result of Chow [9]
implies that the the Chow parameters of a halfspace identify it uniquely in the set of all Boolean
functions, and in fact all Bounded functions.

Theorem 5.3 (Chow’s Theorem [9]). Let h : {0, 1}n → {0, 1} be a halfspace. If f : {0, 1}n → [0, 1]
satisfies f̂(i) = ĥ(i) for 0 ≤ i ≤ n, then f(x) = h(x) for all x ∈ {0, 1}n.

Chow’s theorem is usually stated assuming that f is Boolean, but the proof [24, Theorem 5.1]
also applies to the bounded case. Chow’s argument does not give an algorithm to reconstruct a
halfspace from its Chow parameters; this problem is known as the Chow parameters problem. It
was solved recently by O’Donnell and Servedio [25] and subsequently improved in De et al. [11].
Both results start from approximations to the Chow parameters, and return a halfspace that is
close in Hamming distance to the target halfspace (with exactly the right Chow parameters).

Further motivation comes from the fact that for monotone functions, 2f̂(i) equals the influence
of variable xi, and hence 2

∑
i f̂(i) equals the average sensitivity of the function f . For n odd, let

Maj : {0, 1}n → {0, 1} denote the Majority function. It is known [24, Theorem 2.33] that for all
Boolean functions,

n∑
i=1

f̂(i) ≤
n∑

i=1

M̂aj(i) =

(√
2

π
+ o(1)

)
√
n (15)

which implies that the Majority function has the highest average sensitivity among all monotone
functions19 . For more on Chow parameters and their significance, we refer the reader to [24,
Chapter 5].

5.3 Optimization over Cn
At this point we proceed with our analysis in the setting of Chow parameters which, on one hand,
applies our hardness results to the problems of membership an optimization over the polytope Cn
(Theorem 5.5), and on the other hand completes the promised stand-alone alternative proof of
Lemma 4.5. By now, using lemma 5.2 and the formulation in equation 14 we have shown the
equivalence of the revenue optimization problem for the Boolean public project setting to that
of maximizing the weighted sum of the Chow parameters of a bounded function, equivalently
maximizing a linear function over the polytope Cn.

Given a = (a0, . . . , an) ∈ Rn+1, it defines a linear objective function over Cn given by a · c.
To analyze the linear function corresponding to a vector a ∈ Rn+1, we define the affine function
a(x) = a0+

∑n
i=1 ai(−1)1+xi mapping {0, 1}n to R. When a0 = 0, the first part of Lemma 5.4 below

is essentially a restatement of Lemma 4.5, whereas the second part replaces the role of Myersons’s
theorem for identifying the optimal function in 4.5.

19Going back the the Boolean public projects problem, this would be an estimate of the optimal revenue for the
case where all ai = 1.
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Lemma 5.4. Given a ∈ Rn+1, we have

max
c∈Cn

a · c = Ex∼{0,1}n
[
sign+(a(x))a(x)

]
=

1

2
(K(a) + a0). (16)

Equality is attained at the Chow vectors corresponding to functions f : {0, 1}n → [0, 1] such that
f(x) = sign+(a(x)) whenever a(x) 6= 0.

Proof. Let c = (f̂(0), . . . , f̂(n)). We have

a · c = a0f̂(0) +
n∑

i=1

aif̂(i)

= a0Ex∼{0,1}n [f(x)] +
n∑

i=1

aiEx∼{0,1}n
[
f(x)(−1)1+xi

]
= Ex∼{0,1}n

[
f(x)(a0 +

n∑
i=1

aixi)

]
= Ex∼{0,1}n [f(x)a(x)] .

Since 0 ≤ f(x) ≤ 1,
f(x)a(x) ≤ sign+(a(x))a(x).

If a(x) 6= 0, this holds with equality iff f(x) = sign+(a(x)), whereas if a(x) = 0, f(x) can take an
arbitrary value in [0, 1]. This gives us

max
c∈Cn

a · c = Ex∼{0,1}n
[
sign+(a(x))a(x)

]
and characterizes the functions that achieve equality. To complete the proof, we just compute this
expectation. This is a routine calculation which we defer to Appendix B.

Theorem 5.5. The problems of linear optimization over Cn and deciding membership in Cn are
#P-hard.

Proof. The hardness of linear optimization follows from Lemmas 5.4 and 4.4: if we can solve linear
optimization efficiently, we can compute K(a).

The hardness of membership is proved using a similar argument to Theorem 3.3. 0n+1 is a
feasible point in Cn. Hence the ellipsoid method can also be used to reduce linear optimization to a
polynomial number of invocations of a membership oracle (see [28, P.189]). Hence if we can decide
membership in the polytope Cn, then we can solve linear optimization over Cn using the Ellipsoid
algorithm, which we just showed is #P-hard.

This hardness result rules out a nice characterization of the polytope Cn, in the spirit of Def-
inition 3.1. We believe this negative result is interesting in the context of the Chow parameters
problem, and sheds light on why the exact version of the problem, (where the goal is to find a
function whose Chow vector equals the input) is hard.

O’Donnell and Servedio [25] observe that the inverse problem of computing f̂(0) for a given
halfspace is #P-complete, which implies that given a target Chow vector, it is hard to verify if an
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input halfspace has exactly these Chow parameters. This can be viewed as evidence that the exact
version of the Chow parameters problem is intractable.

Assume that we drop the requirement that the output be a halfspace and are willing to settle
for any bounded Boolean function that has some compact representation, which lets us evaluate
its Chow vector exactly. Can we now hope to solve the Chow problem exactly? Theorem 5.5 says
this is unlikely, since such an algorithm with allow us to test membership in Cn: run the algorithm,
and check the function output by it.

Let us return to the question that we have started the paper with: For which vectors (p0, p1, ..., pn)
does there exist a probability space with events E,X1, . . . , Xn, with X1, . . . , Xn independent and
Pr[Xi] = 1/2 for all i =∈ [n], such that p0 = Pr[E] and pi = Pr[E|Xi] for all i ∈ [n]? Let xi be
the indicator of the event Xi. Define f : {0, 1}n → [0, 1] by setting f(x) to be the probability of
E given x. The above problem reduces to testing whether a vector of Chow parameters is feasible,
which is #P-hard by Theorem 5.5.
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A Hardness of computing the Khintchine constant

Proof of Lemma 4.4: Partition is a well-known NP-complete problem whose input consists of n
integers w1, . . . , wn and the goal is to split the numbers in two parts so that their sum is equal.
This is equivalent to asking if there exists x ∈ {±1}n such that w · x = 0 where w = (w1, . . . , wn).
The counting version which we denote #Partition is the problem of computing

Prx∈{±1}n [w · x = 0].

It is complete for #P. We show that this problem reduces to computing the Khintchine constant.
Given w, define the vectors

a0 = (2w1, . . . , 2wn, 0), a1 = (2w1, . . . , 2wn, 1).

For x ∈ {±1}n, define x+ = (x, 1) and x− = (x,−1). We observe that

|a0 · x+|+ |a0 · x−| = 4|w · x|; (17)

|a1 · x+|+ |a1 · x−| = |2w · x+ 1|+ |2w · x− 1|. (18)

When w · x = 0, the RHS equals of Equation (17) equals 0, while that of Equation (18) equals 2.
If w · x 6= 0, then |2w · x| ≥ 2. We then use

|a+ b|+ |a− b| = 2 max(|a|, |b|)

to conclude that

|a1 · x+|+ |a1 · x−| = 4|w · x| = |a0 · x+|+ |a0 · x−|.

Finally, observe that we can write

K(ai) = Ex∼{±1}n

[
|ai · x+|+ |ai · x−|

2

]
.

It follows that
Prx∈{±1}n [w · x = 0] = K(a1)−K(a0).

�
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B Completing the Proof of Lemma 5.4

Consider the affine function a(x) = a0 +
∑n

i=1 ai(−1)1+xi mapping {0, 1}n to R. Our goal is to
show that Ex∼{0,1}n [sign+(a(x))a(x)] = 1

2(K(a) + a0). Observe that

(2sign+(a(x))− 1)a(x) = |a(x)|

Hence

Ex∈{0,1}n [|a(x)|] = 2Ex∈{0,1}n [sign+(a(x))a(x)]−Ex∈{0,1}n [a(x)]

= 2Ex∈{0,1}n [sign+(a(x))a(x)]− a0

We will now show that
Ex∈{0,1}n [|a(x)|] = K(a),

which implies the claim. Observe that

K(a) = Ey∈{±1}n+1 [|a · y|]

=
1

2
Ey∈{±1}n [|a0 +

n∑
i=1

aiyi|] +
1

2
Ex∈{±1}n [| − a0 +

n∑
i=1

aiyi|]

We claim that the two expectations on the RHS are in fact equal to each other, since

Ey∈{±1}n [| − a0 +

n∑
i=1

aiyi|] = Ey∈{±1}n [|a0 −
n∑

i=1

aiyi|] = Ey∈{±1}n [|a0 +

n∑
i=1

aiyi|]

since
∑

i aiyi is an even random variable. Hence we get

K(a) = Ey∈{±1}n

[
|a0 +

n∑
i=1

aiyi|

]

= Ex∈{0,1}n

[
|a0 +

n∑
i=1

ai(−1)1+xi |

]
= Ex∈{0,1}n [|a(x)|].
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