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An auction house cannot generally provide the optimal auc-

tion technology to every client. Instead it provides one or sev-

eral auction technologies, and clients select the most appropri-

ate one. For example, eBay provides ascending auctions and

“buy-it-now” pricing. For each client the offered technology

may not be optimal, but it would be too costly for clients to

create their own. We call these mechanisms, which empha-

size generality rather than optimality, platform mechanisms.

A platform mechanism will be adopted by a client if its perfor-

mance exceeds that of the client’s outside option, e.g., hiring

(at a cost) a consultant to design the optimal mechanism. We

ask two related questions. First, for what costs of the outside

option will the platform be universally adopted? Second, what

is the structure of good platform mechanisms? We answer

these questions using a novel prior-free analysis framework in

which we seek mechanisms that are approximately optimal for

every prior.
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Auction houses, like Sotheby’s, Christie’s, and eBay, exemplify the com-

modification of economic mechanisms, like auctions, and warrant an ac-

companying theory of design. The field of mechanism design suggests how

special-purpose mechanisms might be optimally designed; however, in com-

modity industries there is a trade-off between special-purpose and general-

purpose products. While for any particular setting an optimal special-

purpose product is better, a general-purpose product may be favored, for

instance, because of its cheaper cost or greater versatility. We develop a

theory for the design of general-purpose mechanisms, henceforth, platform

design.

Consider the following simple model for platform design. The platform

provider offers a platform mechanism to potential customers (principals),

who each wish to employ the mechanism in their particular setting. For ex-

ample, the provider is eBay, the platform is the eBay auction, the principals

are sellers, and the settings are the distinct markets of the sellers, which

comprise of a set of buyers (agents) with preferences drawn according to a

distribution. Each principal has the option to not adopt the platform and

instead to employ a consultant to design the optimal auction for his specific

setting. We assume that this outside option comes at a greater cost than

the platform, and thus the platform provider has a competitive advantage.

We impose two restrictions to focus on the differences between the special-

purpose optimal mechanism design and the general-purpose optimal plat-

form design. First, we restrict the platform to be a single, unparameterized

mechanism (unlike eBay where sellers can set their own reserve prices).1

Second, we require that the platform is universally adopted. Without this

1In a separate study, we consider the technically orthogonal topic of reserve-price
based platforms (Hartline and Roughgarden, 2009).
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assumption, we would need to model in detail the relative value of adop-

tion in each setting, and this would likely give less general results. We ask:

What must the competitive advantage of the platform be to guarantee univer-

sal adoption by all principals? What is the platform designer’s mechanism

that guarantees universal adoption?

For several important objectives for mechanism design we show that there

are platform mechanisms that are universally adopted with modest compet-

itive advantage. Moreover these platform mechanisms are fundamentally

different from the standard mechanisms that arise in special-purpose mech-

anism design. For example, standard mechanisms operate on an absolute

scale, while platform mechanisms operate on a relative scale. What is im-

portant for the platform is not whether an agent has a high or low value, but

whether an agent has a high or low value relative to the values of the other

agents. The platform design question exposes the challenge of determining,

while the mechanism is being run, the relevant scale. This distinction is

critical; for potentially large markets no standard mechanism is universally

adopted with finite competitive advantage.

There are two important points of contact between this theory of platform

design and the existing literature. First, the problem of optimal platform

design provides a formal setting in which to explore the Wilson (1987) doc-

trine, which critiques mechanisms that are overly dependent on the details

of the setting but does not quantify the cost of this dependence. A uni-

versally adopted platform, by definition, performs well in all settings and

hence is not dependent on the details of setting. Second, the optimal plat-

form design problem is closely related to prior-free optimal mechanism de-

sign. Indeed, our study of platform design formally connects the prior-free
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and Bayesian theories of optimal mechanism design. We make a rigorous

comparison between the two settings and quantify the Bayesian designer’s

relative advantage over the prior-free designer.

Platform Design.

In classical Bayesian optimal mechanism design, a principal designs a

mechanism for a set of self-interested agents that have private preferences

over the outcomes of the mechanism. These private preferences are drawn

from a known probability distribution. The optimal mechanism is the one

that maximizes the expected value of the principal’s objective function when

the agents’ strategies are in Bayes-Nash equilibrium.

For a given distribution and objective function, the approximation factor

of a candidate mechanism is the ratio between the expected performance

of an optimal mechanism and that of the candidate mechanism. A good

mechanism is one with a small approximation factor (close to 1); a bad one

has a large approximation factor.

We assume that the cost of designing the optimal mechanism is higher

than the cost of adopting the platform. For this reason, a principal might

choose to adopt the sub-optimal platform mechanism. We assume this com-

petitive advantage of the platform is multiplicative. This assumption is con-

sistent with commission structures in marketing and, from a technical point

of view, frees the model from artifacts of scale. The platform’s competitive

advantage gives an upper bound on the approximation factor that the plat-

form mechanism needs to induce a principal to adopt the platform instead

of hiring a consultant to design the optimal mechanism. Each principal’s

decision to adopt is based on the platform mechanism’s performance in the
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principal’s setting. Therefore, universal adoption demands that the plat-

form mechanism’s approximation factor on every distribution is at most its

competitive advantage. Of particular interest is the minimum competitive

advantage for which there is a platform that is universally adopted, and also

the platform that attains this minimum approximation factor. This optimal

platform is the mechanism that minimizes (over mechanisms) the maximum

(over distributions) approximation factor. Optimal platform design is there-

fore inherently a min-max design criterion.

The basic formal question of platform design is: What is the minimum

competitive advantage β and optimal platform mechanism M such that for

all distributions F the expected performance of M when values are drawn

i.i.d. from F is at least 1
β
times the expected performance of the optimal

mechanism for F?

Directly answering the platform design questions above is difficult as it

requires simultaneous consideration of all distributions. This difficulty mo-

tivates a more stringent version of the basic question which has the following

economic interpretation. Suppose that instead of requiring the principal to

choose ex ante between the optimal mechanism and the platform, we allow

him to choose ex post? Clearly, this makes the platform designer’s task even

more challenging, in that the minimum achievable β is only higher.

The formal question of platform design now becomes: What is the mini-

mum competitive advantage β and optimal platform mechanism M such that

for all valuation profiles v = (v1, . . . , vn) the performance of M on v is at

least 1
β
times the supremum over symmetric2 Bayesian optimal mechanisms’

2Our study focuses solely on settings where the agents are a priori indistinguishable.
This focus motivates our restriction to i.i.d. distributions and symmetric optimal mech-
anisms. Distinguishable agents are considered by Balcan et al. (2008) and Bhattacharya
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performance on v?

This question motivates the definition of a performance benchmark that is

defined point-wise on valuation profiles, specifically as the supremum over

optimal symmetric mechanisms’ performance on the given valuation pro-

file. Notice that this benchmark is prior-free. The analysis of a platform

mechanism is then a comparison of the performance of a prior-free platform

mechanism and a prior-free performance benchmark.

Results.

Our contributions are two-fold. First, we propose a conceptual framework

for the design and analysis of general-purpose platforms. Second, we in-

stantiate this framework to derive novel platform mechanisms for specific

problems and, in some cases, prove their optimality.

In more detail, we consider the problem of optimal platform design in

general symmetric settings of multi-unit unit-demand allocation problems

and for general linear (in agents’ payments and values) objectives of the

principal. For much of the paper, we focus on the canonical objective of

consumer surplus, which is the difference between the winning agents’ val-

ues and payments. Consumer surplus is interesting in its own right (e.g.,

McAffee and McMillan, 1992; Condorelli, 2012; Chakravarty and Kaplan,

2013) and is, in a sense, technically more general than the objectives of

surplus and profit.3 Intuitively, maximizing the consumer surplus involves

compromising between the competing goals of identifying high-valuation

et al. (2013).
3For surplus maximization, the Vickrey auction is optimal for every distribution. For

profit maximization, reserve-price-based auctions are optimal under standard distribu-
tional assumptions (Myerson, 1981). For consumer surplus, reserve-price-based auctions
are not optimal even for standard distributions.
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agents and of minimizing payments. For example, with a single item, the

Vickrey auction performs well when there is only one high-valuation agent;

while the lottery, which gives the item away for free, is good when all agents

have comparable valuations.

Our approach comprises four steps.

1) We characterize Bayesian optimal mechanisms for multi-unit unit-

demand allocation problems and general linear objectives by a straight-

forward generalization of the literature on optimal mechanism design.

2) We characterize the prior-free performance benchmark, i.e., the supre-

mum over optimal symmetric mechanisms’ performance on a given

valuation profile, as an ex post optimal two-level lottery.

3) We give a general platform design and a finite upper bound on the

competitive advantage necessary for universal adoption.

4) We give a lower bound on the competitive advantage for which there

exists a platform that achieves universal adoption.

Importantly, the platform mechanisms that we identify as being univer-

sally adopted with finite competitive advantage are not standard mecha-

nisms from the literature on Bayesian optimal mechanisms. Indeed, we

prove that no standard mechanism is universally adopted with any finite

competitive advantage. Instead, general purpose mechanisms for platforms

require novel features, which we identify in Step 3.

Example.

Our main results are interesting to interpret in the special case of allocat-

ing a single item to one of two agents to maximize the consumer surplus.
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Denote the high agent value by v(1) and the low agent value by v(2). We

characterize the performance benchmark as max(
v(1)+v(2)

2
, v(1)− v(2)

2
). As the

supremum of Bayesian optimal mechanisms, the first term in this bench-

mark arises from a lottery and the second term from the two-level lottery

that serves a random agent with value strictly above price v(2) if one exists

and otherwise serves a random agent (at price zero). The optimal platform

mechanism randomizes between a lottery and weighted Vickrey auctions.

Precisely, it sets w1 = 1, draws w2 uniformly from {0, 1/2, 2,∞}, and serves

the agent i ∈ {1, 2} that maximizes wivi. It is universally adopted with

competitive advantage 4
3
and no other mechanism is better.

While all possible prior distributions are considered when deriving the

performance benchmark above, the actual benchmark for a particular valu-

ation profile is given by a simple formula with no distributional dependence.

Consequently, our analysis that shows the 4
3
competitive advantage is a sim-

ple comparison between a (prior-free) platform mechanism and a (prior-free)

performance benchmark in the worst case over valuation profiles.

Related Work.

Our description of Bayesian optimal mechanisms for general linear ob-

jectives follows from the work on optimal mechanism design (see Myerson,

1981, and Riley and Samuelson, 1981). Within this theory, the consumer

surplus objective coincides with that of the grand coalition in a weak car-

tel, where agents wish to maximize the cartel’s total utility without side

payments amongst themselves, so that payments to the auctioneer are ef-

fectively “burnt”. Our characterizations are thus related to those in the

literature on collusion in multi-unit auctions, e.g., by McAffee and McMil-
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lan (1992) and Condorelli (2012). Recently, Chakravarty and Kaplan (2013)

also specifically studied Bayesian optimal auctions for consumer surplus.

There is a growing literature on “redistribution mechanisms” where, simi-

lar to the objective of consumer surplus, payments are bad, e.g., see Moulin

(2009) and Guo and Conitzer (2009). These mechanisms transfer some of

the winners’ payments back to the losers so that the residual payment left

over is as small as possible. The mechanisms considered are prior-free.

As already mentioned, there is a large related literature on prior-free op-

timal mechanism design. Goldberg et al. (2001), Segal (2003), Baliga and

Vohra (2003), and Balcan et al. (2008) consider asymptotic approximation

of the Bayesian optimal mechanisms by a single (prior-free) mechanism. A

key aspect of these works is the order of the existential quantification on the

agents’ value distribution and the limit argument on the number of agents.

These papers show that for all distributions, in the limit of the number of

agents, their mechanisms performs well. Thus, their results do not address

the question of whether or not a principal in a small or moderate-sized mar-

ket would adopt the platform. In contrast, the line of research initiated

by Goldberg et al. (2006) on prior-free profit maximization can be reinter-

preted in the context of platform design; Section V describes this connection

in detail.

Finally, there is an important and growing literature on minmax analyses

in areas related to mechanism design. Like our framework for platform

design, these analyses look for mechanisms that work well in the worst

case when some of the fundamentals of the setting are unknown to the

principal. Frankel (2014) applies such an analysis to the principal-agent

problem of delegation; Carroll (2015) applies such an analysis to contract
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design; and Carroll (2016) applies such an analysis to multi-dimensional

screening. The conclusion of these studies is that while optimal mechanisms

given the parameters can be complex, the minmax optimal mechanism often

takes a simple and natural form.

I. Warm-up: Monopoly Pricing

Consider the following monopoly pricing problem. A monopolist seller

(principal) of a single item faces a single buyer (agent). The seller has no

value for the item and wishes to maximize his revenue, i.e., the payment of

the buyer. The buyer’s value for the item is v ∈ [1, h] and she wishes to

maximize her utility which is her value less her payment. The seller may

post a price p and the buyer may take it or leave it. The buyer will clearly

take any price p ≤ v.

The seller’s optimal mechanism, when the buyer’s value comes from the

distribution F (where F (z) = Pr[v ≤ z]), is to post the price p that maxi-

mizes p(1−F (p)), a.k.a., the monopoly price. The performance benchmark

G(v), i.e., the revenue of the best of the Bayesian optimal mechanism when

the buyer’s value is v, is then G(v) = v. The platform designer must give

a single mechanism with revenue that approximates v for every value v in

the support [1, h]. The optimal platform and its competitive advantage for

universal adoption are given by the theorem below.

THEOREM 1: The optimal platform mechanism offers a price drawn from

distribution P with cumulative distribution function P (z) = (1 + ln z)/(1 +

ln h) on [1, h], and a point mass of 1/(1 + ln h) at 1, and is universally

adopted with competitive advantage 1 + ln h.

PROOF: An easy calculation verifies that, for every v ∈ [1, h], the ex-
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pected revenue from such a random price from P is v/(1 + ln h). Thus, the

competitive advantage for universal adoption is 1 + ln h as claimed.

To show that this is the optimal platform, we can similarly find a distri-

bution F over values v such that the expected revenue of every platform

mechanism is 1. The equal revenue distribution has distribution function

F (z) = 1 − 1/z, a point mass of 1/h at h, and any price p is accepted by

the agent with probability 1/p for an expected revenue of 1. The expected

value of the benchmark for the equal-revenue distribution can be calculated

as E[G(v)] = E[v] = 1 + ln h. Thus, the ratio of these expectations is

1+ lnh, and for any platform mechanism there must be some v ∈ [1, h] that

achieves the ratio. We conclude that no platform is universally adopted

with competitive advantage less than 1 + ln h. Q.E.D.

This analysis can be viewed as a zero-sum game between the platform

designer and Nature where the solution is a mixed strategy on the part of

both players, every action in the game achieves equal payoff, and the value

of the game is the optimal competitive advantage.

To conclude, we considered a simple monopoly pricing setting and derived

for it the optimal platform. While a logarithmic competitive advantage may

seem impractical, except when the maximum variation h in values is small,

the ideas from this design and analysis play an important role in the devel-

opments of this paper. The platform mechanisms we derive subsequently,

however, will be universally adopted with a competitive advantage that is

an absolute constant, independent of the number of agents, the number of

units, and the range of agent values.
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II. Review of Bayesian Optimal Mechanism Design

In this section we review Bayesian optimal mechanism design for single-

dimensional agents, i.e., with utility given by the value for receiving a good

or service less the required payment, and develop the notation employed in

the remainder of the paper. Characterizing Bayesian optimal mechanisms

is the first step in our approach to platform design.

We consider mechanisms for allocating k units of an indivisible item to

n unit-demand agents. The outcome of such a mechanism is an allocation

vector, x = (x1, . . . , xn), where xi is 1 if agent i receives a unit and 0 other-

wise, and a non-negative payment vector, p = (p1, . . . , pn). The allocation

vector x is required to be feasible, i.e.,
∑

i xi ≤ k, and we denote this set of

feasible allocation vectors by X .

We assume that each agent i is risk-neutral, has a privately known valua-

tion vi for receiving a unit, and aims to maximize her (quasi-linear) utility,

defined as ui = vixi − pi. Each agent’s value is drawn independently and

identically from a continuous distribution F , where F (z) and f(z) denote

the cumulative distribution and density functions, respectively. We denote

the valuation profile by v = (v1, . . . , vn).

We consider general symmetric, linear objectives of the mechanism de-

signer. For valuation coefficient γv and payment coefficient γp, the objective

for maximization is:

∑n

i=1
γvvixi + γppi.(1)

We single out three such objectives: surplus with γv = 1 and γp = 0,

profit with γv = 0 and γp = 1, and consumer surplus with γv = 1 and
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γp = −1. We will not discuss surplus maximization in this paper as the

optimal mechanism for this objective is simply the prior-free k-unit Vickrey

auction; therefore, we assume that γp 6= 0.

We assume that agents play in Bayes-Nash equilibrium and moreover if

truthtelling is a Bayes-Nash equilibrium then agents truthtell. When search-

ing for Bayesian optimal mechanisms, the revelation principle (Myerson,

1981) allows us to restrict attention to Bayesian incentive compatible mech-

anisms, i.e., ones with a truthtelling Bayes-Nash equilibrium.

A. Characterization of incentive compatibility.

The allocation rule, x(v), is the mapping (in equilibrium) from agent val-

uations to the outcome of the mechanism. Similarly the payment rule, p(v),

is the mapping from valuations to payments. Given an allocation rule x(v),

let xi(vi) be the interim probability with which agent i is allocated when

her valuation is vi (over the probability distribution on the other agents’

valuations): xi(vi) = E
v−i

[xi(vi,v−i)] . Similarly define pi(vi). We require

interim individual rationality, i.e., that non-participation in the mechanism

is an allowable agent strategy. The following lemma provides the standard

characterization of allocation rules that are implementable by Bayesian in-

centive compatible mechanisms and the accompanying payment rule (which

is unique up to additive shifts, and usually fixed by setting pi(0) = 0).

LEMMA 1: (Myerson, 1981) Every Bayesian incentive compatible mech-

anism satisfies, for all i and vi ≥ v′i:

(a) Allocation monotonicity: xi(vi) ≥ xi(v
′
i).

(b) Payment identity: pi(vi) = vixi(vi)−
∫ vi
0

xi(z) dz + pi(0).
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Virtual valuations.

Myerson (1981) defined virtual valuations and showed that the virtual

surplus of an agent is equal to her expected payment. For v ∼ F , this

virtual valuation for payment is:

ϕ(vi) = vi − 1−F (vi)
f(vi)

.(2)

LEMMA 2: (Myerson, 1981) In a Bayesian incentive-compatible mecha-

nism with allocation rule x(·), the expected payment of an agent equals her

expected virtual surplus: E
v
[pi(v)] = E

v
[ϕ(vi) xi(v)] .

The notion of virtual valuations applies generally to linear objectives. By

substituting virtual values for payments into the objective (1) we arrive at

a formula for general virtual values: ϑ(vi) = (γv + γp)vi − γp
1−Fi(vi)
fi(vi)

. For

the objective of consumer surplus, i.e., the sum of the agent utilities, virtual

values for utility are given by:

ϑ(vi) =
1−Fi(vi)
fi(vi)

.(3)

The revenue-optimal mechanism for a given distribution is the one that

maximizes the virtual surplus for payment subject to feasibility and mono-

tonicity of the allocation rule. Analogously, optimal mechanisms for general

linear objectives are precisely those that maximize the expected (general)

virtual surplus subject to feasibility and monotonicity of the allocation rule.

Unfortunately, choosing x to maximize
∑

i ϑ(vi)xi for each valuation profile

v does not generally result in a monotone allocation rule. When ϑ(·) is not
monotone increasing, an increase in an agent’s value may decrease her vir-
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tual value and cause her to be allocated less frequently. Notice that under

the standard “monotone hazard rate” assumption the virtual value function

for utility ϑ(v) = 1−Fi(v)
fi(v)

is monotone in the wrong direction.

Ironing.

We next generalize the “ironing” procedure of Myerson (1981) that trans-

forms a possibly non-monotone virtual valuation function into an ironed vir-

tual valuation function that is monotone; optimizing ironed virtual surplus

results in a monotone allocation rule. Furthermore, the ironing procedure

preserves the target objective, so that an optimal allocation rule for the

ironed virtual valuations is equal to the optimal monotone allocation rule

for the original virtual valuations.

Given a distribution function F (·) with virtual valuation function ϑ(·),
the ironed virtual valuation function, ϑ̄(·), is constructed as follows:

1) For q ∈ [0, 1], define h(q) = ϑ(F−1(q)).

2) Define H(q) =
∫ q

0
h(r)dr.

3) Define G as the convex hull of H — the largest convex function

bounded above by H for all q ∈ [0, 1].

4) Define g(q) as the derivative of G(q), where defined, extended to all

of [0, 1] by right-continuity.

5) Finally, define ϑ̄(z) = g(F (z)).

Convexity of G implies that Step 4 of the ironing procedure is well defined

and that g, and hence ϑ̄, is a monotone non-decreasing function.

From the main theorem of Myerson (1981), maximizing the expectation

of a general linear objective subject to incentive compatibility is equivalent
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ϑ̄(v)

(a) lottery is optimal

ϑ̄(v)

(b) Vickrey is optimal

ϑ̄(v)

(c) indirect Vickrey is opt.

Figure 1. Ironed virtual value functions in the three distributional cases.

For the objective of consumer surplus the cases correspond to (a) MHR

distributions, (b) anti-MHR distributions, and (c) non-MHR distributions.

to maximizing the expected ironed virtual surplus. Different tie-breaking

rules, however, can yield different optimal mechanisms. In our symmetric

settings, with i.i.d. agents and the symmetric feasibility constraint X of

k-unit auctions, it is natural to consider symmetric optimal mechanisms.

THEOREM 2: For every general linear objective and distribution F , the

k-unit auction that allocates the units to the agents with the highest non-

negative ironed virtual values, breaking ties randomly and discarding all left-

over units, maximizes the expected value of the objective.

Interpretation for consumer surplus maximization.

Consider the consumer surplus objective, where ϑ(v) = 1−F (v)
f(v)

, and the fol-

lowing three types of distributions (Figure 1). Monotone hazard rate (MHR)

distributions; e.g., uniform, normal, and exponential; have monotone non-

increasing ϑ(v). In this case, ironing ϑ(·) to be non-decreasing results in

ϑ̄(·) = E[v], a constant function. The optimal (symmetric) mechanism is

therefore a lottery that awards the k units to k agents uniformly at random.
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For distributions with a hazard rate monotone in the opposite direction,

henceforth anti-MHR distributions, ϑ(·) is non-negative and monotone non-

decreasing. Power-law distributions, such as F (z) = 1− 1/zc with c > 0 on

[1,∞), are canonical examples. In this case, the optimal mechanism awards

the k units to the k highest valued agents, i.e., it is the k-Vickrey auction.

Thus, as also observed by McAffee and McMillan (1992), Chakravarty and

Kaplan (2006), and Condorelli (2007), the optimal mechanism depends on

whether or not the distribution is heavy-tailed.

The final case occurs when the distribution is neither MHR nor anti-MHR,

henceforth non-MHR. Here, the ironed virtual valuation function ϑ̄(·) is

constant on some intervals and monotone increasing on other intervals. The

optimal mechanism can be described, for instance, as an indirect Vickrey

auction where agents are not allowed to bid on intervals where the ironed

virtual value is constant. For example, consider the two-point distribution

with probability mass 1
2
on 1 and 1

2
on h > 1. Provided h is sufficiently large,

the consumer-surplus-maximizing mechanism allocates to a random high-

value agent or, if there are no high-value agents, to a random (low-value)

agent. This final case is the most general, in that it subsumes both the MHR

and anti-MHR cases. Our general theory of platform design necessitates

understanding this non-MHR case in detail.

III. The Performance Benchmark

In this section we leverage the characterization of Bayesian optimal mech-

anisms from the preceding section to identify and characterize a simple

prior-free performance benchmark. This constitutes the second step of our

approach to platform design.
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The performance benchmark is derived as follows. As discussed in Sec-

tion II, Bayesian optimal mechanisms are ironed virtual surplus optimizers.

For k-unit environments, these mechanisms simply select the k agents with

the highest non-negative ironed virtual values. Among these optimal mech-

anisms, the symmetric one breaks ties randomly. Denote the symmetric

optimal mechanism for distribution F by OptF . Denote by OptF (v) the

expected performance (over the choice of random allocation) obtained by

the mechanism OptF on the valuation profile v.

DEFINITION 1: The performance benchmark is the supremum of Bayesian

optimal mechanisms, G(v) = supF OptF (v).

For one interpretation of the definition of G, observe that

(4) E
v
[G(v)] ≥ E

v
[OptF (v)]

for valuation profiles drawn i.i.d. from an arbitrary distribution F . Thus, the

approximation of the performance benchmark G implies the simultaneous

approximation of all symmetric Bayesian optimal mechanisms.

We now give a simple characterization of the performance benchmark

for general linear objectives by considering ex post outcomes of symmetric

Bayesian optimal mechanisms. When k units are available, a symmetric

Bayesian optimal mechanism serves these units to the k agents with the

highest non-negative ironed virtual values. Ties, which occur in ironed vir-

tual surplus maximization when two (or more) agents’ values are mapped to

same ironed virtual value, are broken randomly. Ex post, we can classify the

agents into at most three groups: those that win with certainty (winners),

those that lose with certainty (losers), and those that win with a common



VOL. VOLUME NO. ISSUE OPTIMAL PLATFORM DESIGN 19

probability strictly between 0 and 1 (partial winners).

DEFINITION 2: A two-level (p, q)-lottery, denoted Lotp,q, first serves agents

with values strictly more than p, then serves agents with values strictly more

than q, while supplies last (breaking ties randomly, as needed). All agents

with values at most q are rejected.

It will be useful to calculate explicitly, using Lemma 1, the payments of

a two-level lottery. Let S and T denote the sets of agents with value in

the ranges (p,∞) and (q, p], respectively. Let s = |S| and t = |T |. For

simplicity, assume that s ≤ k < s + t, where k is the number of units

available. The payments are as follows.

1) Agents i ∈ S are each allocated a unit and charged

pi = p− (p− q) k−s+1
t+1

.(5)

2) The remaining k − s units are allocated uniformly at random to the

k − s agents i ∈ T , i.e., by lottery; each such winner pays pi = q.

We characterize the performance benchmark for platform design for gen-

eral linear objectives in terms of two-level lotteries.

THEOREM 3: The supremum of Bayesian optimal mechanisms benchmark

satisfies G(v) = supF OptF (v) = supp,q Lotp,q(v).

PROOF: The outcome of ironed virtual surplus maximization is equivalent

to a k-unit (p, q)-lottery. To see this, consider an ironed virtual valuation

function ϑ̄ and a valuation profile v. Set p to be the infimum bid that the

highest-valued agent can make and be a winner (possibly larger than the
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agent’s value), and q to be the infimum bid that a partial winner can make

and remain a partial winner (or p if there are no partial winners). The two

mechanisms have the same outcome on profile v. Conversely, every (p, q)-

lottery arises in ironed virtual surplus maximization with respect to some

i.i.d. distribution, for example with ϑ̄(v) = 2 for v ∈ (p,∞), ϑ̄(v) = 1 for

v ∈ (q, p], and ϑ̄(v) = −1 for v ≤ q.4 Q.E.D.

We conclude with a simple but useful observation: The values of p and q

that attain the supremum in Theorem 3 must each either be zero, infinity,

or an agent’s value. Observe that the objective
∑

i γvvixi + γppi is linear

in payments. If q or p is not in the valuation profile, then it can either

be increased or decreased without decreasing the objective. For example,

lowering p or q without changing the allocation increases consumer surplus.

IV. Consumer Surplus

In this section we consider platform design for the objective of consumer

surplus. We consider separately the n = 2 agent case and the general n > 2

agent case. For n = 2 agents (and a single unit) we completely execute our

template for platform design by reinterpreting the benchmark, giving a plat-

form mechanism that is universally adopted with competitive advantage 4/3,

and proving that no platform mechanism is universally adopted with a

smaller competitive advantage. The platform mechanism that achieves this

bound is neither a standard auction nor a mixture over standard auctions,

where by “standard” we mean a symmetric Bayesian-optimal mechanism

with respect to some i.i.d. valuation distribution.

For every number n > 2 of agents and k ≥ 1 of items, we give a heuristic

4For objectives like consumer surplus where the virtual values are always non-negative,
set ϑ̄(v) = 1/2 instead of −1 for v ≤ q. See the construction in Appendix A for details.
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platform that guarantees universal adoption with a constant competitive

advantage (independent of k, n, and the support of the valuations). This

platform is not a mixture of standard auctions, and we show that no such

mixture is universally adopted with any finite competitive advantage (as

n → ∞). This heuristic mechanism identifies properties of good platforms

and is a proof-of-concept that good platforms exist.

A. Single-unit Two-agent Platforms

We now execute the framework for platform design for two agents, a single

unit, and the objective of consumer surplus. Bayesian optimal mechanisms

and our benchmark are characterized in Sections II and III, respectively; for

two agents and a single item, the benchmark takes a simple form.

There are only two relevant (p, q)-lotteries for the performance benchmark,

the degenerate p = q = 0 lottery, and the p = v(2) and q = 0 lottery; here

v(1) and v(2) denote the highest and second-highest agent values, respectively.

From equation (5), the consumer surpluses of these two-level lotteries are

v1+v2
2

(i.e., the average value) and v(1) − v(2)
2
, respectively. Thus,

G(v) = max{v1+v2
2

, v(1) − v(2)
2
}.(6)

This benchmark is depicted in Figure 2(a).

We now turn to the problem of designing a platform mechanism that is

universally adopted with a minimal competitive advantage. As mentioned

above, the lottery is adopted with a competitive advantage of 2. A nat-

ural approach to platform design is to randomly mix over two platforms

that are good in different settings. For example, the Vickrey auction is

good on the valuation profile v = (1, 0), whereas the lottery is good on the



22 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

valuation profile v = (1, 1). Considering only these two valuation profiles

(where G(v) = 1), choosing the Vickrey auction with probability 1/3 and

the lottery with probability 2/3 balances the competitive advantage neces-

sary for adoption of the platform for each profile at 3/2. In fact, a routine

calculation shows that this mixture is universally adopted with competitive

advantage 3/2. This platform mechanism, however, is not optimal.

One approach to solving for the optimal platform mechanism is to look for

a mechanism that achieves the same approximation factor to the benchmark

for every valuation profile.5 Inspecting the benchmark (Figure 2(a)), we

conclude that an auction with identical approximation factor on all inputs

must have a discontinuity in its outcome only where the ratio between the

high and low value is 2. Importantly, there should be no discontinuity in

its outcome when the values are equal, that is, the optimal platform should

never mix over the Vickrey auction. These observations suggest the following

parameterized class of auctions.

DEFINITION 3: The two-agent single-item ratio auction with ratio α ≥ 1

and bias χ ∈ [1/2, 1] allocates the good according to a fair coin if the agent

values are within a factor α of each other and, otherwise, according to a

biased coin with probability χ in favor of the high-value agent.6

The Vickrey auction and the lottery are special cases of the ratio auction.

With bias 1/2 the ratio auction is a lottery (for every ratio); with ratio

α = 1 and bias χ = 1 it is the Vickrey auction. We next show that the

optimal two-agent single-item platform for consumer surplus is the ratio

auction with ratio α = 2 and bias χ = 3/4. The allocation probabilities

5The optimal platform for monopoly pricing from Section I also exhibits this property.
6Appropriate payments can be derived by reinterpreting the ratio auction as a distri-

bution over weighted Vickrey auctions; see also the proof of Lemma 3.
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Figure 2. The performance benchmark (6) and optimal platform mecha-

nism for the single-item, two-agent, consumer-surplus-maximization prob-

lem. The positive quadrant is partitioned by the lines v1 = 2v2 and 2v1 = v2.

The allocation rule of the platform mechanism is given as (x1, x2).

of this auction are depicted in Figure 2(b). It is adopted with competitive

advantage 4/3.

LEMMA 3: The ratio auction with ratio α = 2 and bias χ = 3/4 is uni-

versally adopted with competitive advantage 4/3.

PROOF: The ratio auction (with ratio α) can always be expressed as a

distribution over weighted Vickrey auctions, where w1 = 1, w2 is selected

randomly from some distribution over the set {0, 1/α, α,∞}, and the agent i

that maximizes wivi winning the item. With bias χ = 3/4, the distribution

over the set is uniform. We calculate the auction’s approximation of the

benchmark via simple case analysis. The expected consumer surplus from

the four choices of w2 averages, when v1 ∈ [v2/2, 2v2], to

1
4

[

v1 + (v1 − v2
2
) + (v2 − v1

2
) + v2

]

= 3
4
v1+v2

2
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and, when v1 > 2v2, to

1
4

[

v1 + (v1 − v2
2
) + (v1 − 2v2) + v2

]

= 3
4

(

v1 − v2
2

)

.

The case where v1 < v2/2 is symmetric. In each case, the expected consumer

surplus is exactly 3
4
G(v). Q.E.D.

We now show that the ratio auction with ratio α = 2 and bias χ =

3/4 is an optimal platform; meaning, no platform is universally adopted

with competitive advantage less than 4/3. We first note that, for every

distribution F , the expected consumer surplus of the ratio auction with

ratio α = 2 and bias χ = 3/4 is exactly 3/4 times the expected value of the

benchmark G. Of course, the Bayesian optimal auction for F is no worse.

COROLLARY 1: For every distribution F and n = 2 agents and k = 1

item, the expected benchmark is at most 4/3 times the expected consumer

surplus of the optimal auction, that is, E[G(v)] ≤ 4
3
E[OptF (v)] .

The following technical lemma exhibits a distribution F for which the in-

equality in Corollary 1 is tight. Intuitively, this distribution is the one with

constant virtual value for utility.

LEMMA 4: For the exponential distribution F (z) = 1− e−z, n = 2 agents,

k = 1 unit, the expected value of the benchmark is 4/3 times the expected

consumer surplus of the optimal auction, that is, E[G(v)] = 4
3
E[OptF (v)].

PROOF: Since the exponential distribution has a monotone hazard rate, a

lottery maximizes the expected consumer surplus (Section II). The expected

value of an exponential random variable is 1 so E[OptF (v)] = E[v] = 1.

We now calculate the expected value of the benchmark G(v) defined in

equation (6). Write the smaller value as v = v(2) and the higher value as
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x + v = v(1) for x ≥ 0. In terms of v and x the benchmark is v + x
2
when

x ≤ v and v
2
+ x when x ≥ v. Therefore, the expectation of G conditioned

on v is

E[G(x+ v, v) | v] =
∫ v

0

(

v + x
2

)

e−x dx+

∫ ∞

v

(

v
2
+ x

)

e−x dx

= v(1− e−v) + 1
2

(

1− (v + 1)e−v
)

+ v
2
e−v + (v + 1)e−v

= v + 1
2

(

1 + e−v
)

.

The smaller value v(2) = v is distributed according to an exponential distri-

bution with rate 2. Integrating out yields

E[G(x+ v, v)] =

∫ ∞

0

(

v + 1
2
+ 1

2
e−v

)

2e−2v dv

= 1
2
+ 1

2
+

∫ ∞

0

e−3v dv = 4
3
.

Q.E.D.

For the setting of Lemma 4, the optimal mechanism has expected con-

sumer surplus 3
4
E[G(v)]. Any platform mechanism is only worse and, by

the definition of expectation, there must be a valuation profile v where this

platform mechanism has consumer surplus at most 3
4
G(v).

COROLLARY 2: For n ≥ 2 agents, k = 1 item, and the consumer surplus

objective, no platform mechanism is universally adopted with competitive

advantage less than 4/3.

We conclude that the ratio auction with ratio α = 2 and bias χ = 3/4 is an

optimal platform for two-agent, single-item consumer surplus maximization.
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B. Multi-agent Platforms: Standard Mechanisms Are Not Universally

Adopted

For markets with n > 2 agents, neither the Vickrey auction, the lottery,

nor a convex combination thereof is universally adopted with a constant

competitive advantage. For instance, with k = 1 unit and valuation profile

v = (1, 1, 0, . . . , 0), the Vickrey auction has zero consumer surplus and the

lottery has expected consumer surplus 2/n, while the benchmark consumer

surplus is G(v) = 1 (Definition 1). In fact, no Bayesian optimal auction

(a.k.a., standard auction) or mixture over standard auctions is universally

adopted either. Consequentially, as will be described in Section IV.C, the

derivation of a platform mechanism that is universally adopted with a con-

stant competitive advantage requires non-standard auction designs. The

proof of the following theorem is in Appendix B.

THEOREM 4: For every ρ > 1 there is a sufficiently large n such that, for

an n-agent, 1-unit setting, no mixture over standard auctions is universally

adopted with competitive advantage ρ.

The intuition for the theorem comes from viewing the problem as a zero-

sum game of hide and seek between the platform designer (the seeker) and

nature (the hider) with a large number β of locations. If the seeker finds

the hider (i.e., they choose the same location κ ∈ {0, . . . , β − 1}) then the

seeker’s payoff is about β. Otherwise, the hider evades the seeker and the

seeker’s payoff is about 1. The value of this game (for the seeker) is about

2 and is given by the unique equilibrium where both the hider and seeker

picking locations uniformly at random.
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To relate this hide-and-seek game back to the platform design problem,

consider the following actions of the designer and nature. Nature’s actions

are to pick one of β value distributions where the κth distribution is con-

structed to have virtual value β on interval [κβ, κβ + β] and virtual value

1 everywhere else. Such a distribution can be constructed as a piece-wise

exponential distribution as described in detail in Appendix A. The platform

designer’s action will be to pick one of β mechanisms where mechanism κ

is highest-bid-wins with ironing on [κβ,∞), i.e., the optimal mechanism for

the κth distribution.

With sufficiently many agents (specifically n > eβ
2
) the designers payoffs

are as follows. If the designer and nature pick corresponding actions, the de-

signer’s payoff is about β. This follows as with high probability the winning

agent has virtual value β. If the designer and nature pick non-corresponding

actions then the designer’s payoff is about 1 as with high probability the

winning agent has virtual value 1. (These high probability results follow

because the constructed distributions are piece-wise exponential.)

From this hide-and-seek analogy we see that the platform designer’s payoff

is a constant, i.e., about 2, while for any of nature’s distributions the opti-

mal consumer surplus is about β, an arbitrarily large number. We conclude

that no randomization over these Bayesian optimal mechanisms is univer-

sally adopted with a constant competitive advantage. To extend the above

argument to prove Theorem 4, it remains to generalize to all mixtures over

standard auctions not just the ones in the hide-and-seek analogy. These

details are deferred to the formal proof in Appendix B.
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C. Multi-unit Multi-agent Platforms: A Universally Adopted Platform

We now upper bound the minimum competitive advantage for universal

adoption by an absolute constant; this upper bound is independent of the

number of units, the number of agents, and the support size of the valua-

tions. In contrast to the preceding section, this bound shows the existence

of good platform mechanisms. To make this task analytically tractable we

relax the problem of identifying the optimal platform and instead look for a

simple heuristic platform that is universally adopted with a constant com-

petitive advantage. Neither is the mechanism we identify the best possible,

nor is our analysis of it tight; however, the simplicity of the heuristic mech-

anism and our analysis of its performance allows the main features that go

into good platform mechanisms to be identified and interpreted. In contrast,

the optimal platform mechanism, even if it could be identified, is likely to

be too complex to interpret.

The heuristic mechanism is based on the random sampling paradigm of

Goldberg et al. (2001). Half of the agents (henceforth: the sample) are

used for a market analysis to determine a good mechanism to run on the

other half of the agents (henceforth: the market). The family of good mech-

anisms that we will consider are one-level lotteries (below, Definition 4).

Importantly, the resulting random-sampling-based mechanism (below, Def-

inition 5) does not use the sample to explicitly estimate the distribution of

agent preferences. Moreover, we have deliberately avoided optimizing the

parameters of the mechanism in order to keep its description and analysis

as simple as possible.

DEFINITION 4: The one-level r-lottery, denoted Lotr, serves agents with

values strictly more than r, while supplies last (breaking ties randomly).
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Winners are charged r and agents with values below r are rejected.

DEFINITION 5: The k-unit Random Sampling Optimal Lottery (RSOL)

mechanism works as follows.

1) Partition the agents uniformly at random into a market M and a

sample S, i.e., each agent is in S or M independently with probability

1/2 each.

2) Calculate the optimal k-unit lottery price rS for the sample: rS =

argmaxr Lotr(vS).

3) Run the k-unit rS-lottery on the market M ; reject the agents in the

sample S.

It is easy to see that RSOL is dominant strategy incentive compatible. A

one-level lottery at any fixed price is incentive compatible, and the agents

in the market face a one-level lottery with price set by the agents in the

sample.

The performance analysis of RSOL consists of two main steps. First, we

show that the performance of the optimal one-level lotteries (as used by

the mechanism) is within a factor of two of the performance of the optimal

two-level lottery (i.e., the benchmark). Second, we show that either RSOL

or the k-unit Vickrey auction has good consumer surplus. The probabilistic

analysis of RSOL shows that the one-level lottery chosen for the market

has expected consumer surplus close to the consumer surplus of the ex post

optimal one-level lottery on the full valuation profile. This result is stated

as Theorem 5, below, and formally proved in Appendix C.

THEOREM 5: For every n, k ≥ 1, there is an n-agent k-unit platform

mechanism that is universally adopted with constant competitive advantage.
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The mechanism in the statement of the theorem, as alluded to above, is

a convex combination of RSOL and the k-unit Vickrey auction, i.e., the

auction that sells to the top k valued agents at the k+1st price. The reason

for this combination is that RSOL does not get good consumer surplus when

most of the optimal consumer surplus comes from the agent with the highest

value. For example, for the n-agent valuation profile v = (1, ǫ, . . . , ǫ) and

one unit, RSOL’s expected consumer surplus is about 1/n + ǫ while the

optimal consumer surplus is 1− ǫ.

V. Platform Design and Prior-Free Profit Maximization

While the objective of profit maximization is not central to this paper,

there have been a number of studies of prior-free mechanisms for profit

maximization that are relevant to platform design. This section discusses

digital good settings (Section V.A), multi-unit settings (Section V.B), and

more general settings (Section V.C). We describe these results using the

terminology of platform design. An important goal of our discussion is to

compare our performance benchmark, which is justified by Bayesian foun-

dations, with the prior-free benchmarks employed in this literature.

A. Digital Good Settings

The simplest setting for platform design is that of a digital good, i.e., a

multi-unit setting with the same number k = n of units as (unit-demand)

agents. This environment admits a trivial optimal mechanism for surplus

and consumer surplus (serve all agents for free); but for profit maximization,

designing a good platform mechanism is a challenging problem.

The Bayesian optimal mechanism for a digital good when values are drawn

i.i.d. from the distribution F simply posts the monopoly price for F , i.e.,
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an r that maximizes r(1−F (r)). In the language of the preceding sections,

this optimal mechanism can be viewed as an r-lottery. The performance

benchmark described in Section III simplifies to

G(v) = maxi iv(i).(7)

For n = 1 agent, the benchmark (7) equals the surplus and, as we con-

cluded in Section I, it cannot be well approximated by any platform mech-

anism. Because of this technicality, the benchmark G(2) to which prior-free

digital good auctions have been compared (e.g., Goldberg et al., 2006) ex-

plicitly excludes the possibility of deriving all its profit from one agent:

G(2)(v) = maxi≥2 iv(i).(8)

Therefore, up to the technical difference between benchmarks (7) and (8),

the prior-free literature for digital goods is compatible with our framework

for platform design. Some notable results in this literature are as follows.

For reasons we explain shortly, we refer to the approximation of G(2) as

giving near-universal adoption. Optimal platform mechanisms are given in

Goldberg et al. (2006) and Hartline and McGrew (2005) for two and three-

player digital goods settings, where the competitive advantages for near-

universal adoption are precisely 2 and 13/6, respectively. As the number n of

agents tends to infinity, Goldberg et al. (2006) show that there is no platform

mechanism that is near-universally adopted with competitive advantage less

than 2.42; and Chen et al. (2014) show that there exists a mechanism that

matches this bound. This optimal platform mechanism is fairly complex;

Hartline and McGrew (2005) had previously given a simple mechanism that
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is near-universally adopted with competitive advantage 3.25.

The benchmark G(2) does not satisfy our most basic requirement for bench-

marks: there exist distributions for which the expected Bayesian optimal

revenue exceeds the expected value of the benchmark.7 Therefore, mech-

anisms that approximate the benchmark may not be universally adopted.

This problem is not an artifact of the G(2) benchmark and is inherent to profit

maximization: pathological distributions show that there is no benchmark

G ′ and constant β that satisfy βE
v
[OptF (v)] ≥ E

v
[G ′(v)] ≥ E

v
[OptF (v)]

for every distribution F .

For the profit objective, the requirement of universal adoption can be re-

laxed to adoption for every distribution in a large permissive class of distri-

butions. Approximation of the benchmark G(2) implies such a near-universal

adoption, in the following sense.

PROPOSITION 1: If mechanism M is a β approximation to G(2) on all

valuation profiles, i.e., M(v) ≥ G(2)(v)/β for every v, then M is adopted

with competitive advantage β on distributions F with E
v

[

G(2)(v)
]

≥ E
v
[OptF (v)].

Proposition 1 has bite in that it is satisfied by most relevant distributions.

The following lemma, which we prove in Appendix D, gives a sufficient con-

dition for the distribution. Intuitively, this condition states that the revenue

from posting a price does not drop too quickly as that price is lowered, and

it is a strict generalization of the regularity condition of Myerson (1981).

This condition is not satisfied in the bad example above, as most of the

optimal revenue is derived from one high-valued agent.

7For example, consider n agents, each having value n2 with probability 1/n2 and 0
otherwise. The expected revenue of a Bayesian optimal mechanism is n. The expected
value of the benchmark G(2) is bounded above by a constant, independent of n.
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LEMMA 5: For digital good settings and every distribution F with v (1 −
F (v))/F (v) non-increasing, E

v

[

G(2)(v)
]

≥ E
v
[OptF (v)].

B. Multi-unit Settings

We next consider maximizing profit in a k-unit auction with unit-demand

bidders. We assume throughout that k ≥ 2. We next define a variant of

the performance benchmark G(2) for platform design and compare it to the

benchmark F (2)(v) = max2≤i≤k iv(i) that has been employed, without formal

justification, in previous work on prior-free multi-unit auctions.

The benchmark G defined as the supremum of Bayesian optimal mecha-

nisms is, by Theorem 3, equivalent to the supremum over two-level lotteries

(which need not sell all units). Two-level lotteries are not useful for profit-

maximization in digital goods settings, where a (p, q)-lottery is equivalent

to a q-lottery which is equivalent to a q price posting. They are useful in

limited supply settings, however. The performance benchmark G(2) is de-

fined by G(2)(v) = G(v(2), v(2), v(3), . . . , v(n)). For every valuation profile, the

benchmark G(2) is at most twice the value of F (2) (cf. Lemma 6). Thus,

every multi-unit auction that β-approximates the benchmark F (2) also 2β-

approximates the benchmark G(2). As in Section V.A, approximation of the

benchmark G(2) implies approximation of the optimal expected revenue in

every Bayesian setting with a non-pathological distribution.

The above discussion provides Bayesian foundations for the benchmark

F (2), and translates the known results for approximating that benchmark

into good platform designs. Specifically, every digital good auction that

β-approximates the F (2) benchmark — equivalently for a digital good, the

G(2) benchmark — can be easily converted into a multi-unit auction that
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β-approximates the F (2) benchmark (Goldberg et al., 2006) and hence 2β-

approximates the G(2) benchmark. The optimal platform mechanism for

digital goods from Chen et al. (2014) can be thus converted into a plat-

form mechanism for limited supply that is near-universally adopted with

competitive advantage 4.84, i.e., it is a 4.84-approximation to G(2).

C. General Environments

The approach to Bayesian optimal mechanism design discussed in Sec-

tion II characterizes optimal mechanisms beyond just multi-unit settings.

For every single-parameter setting, where agents want service and there is

a feasibility constraint over the set of agents that can be simultaneously

served, the optimal mechanism is the ironed virtual surplus maximizer.

Our benchmark G is difficult to analyze beyond multi-unit settings. In

follow-up work to this paper, Hartline and Yan (2011) gave a refinement of

our benchmark using the notion of envy-freedom. For instance, when the

set system that constrains feasible outcomes satisfies a substitutes condi-

tion (formally: the set of feasible outcomes are the independent sets of a

matroid set system), their benchmark is at least as large as ours. They give

a mechanism that is similar to the RSOL (Definition 5) that, for these set

systems, is near-universally adopted with constant competitive advantage.

VI. Discussion

We defined an analysis framework for platform design based on relative

approximation of a performance benchmark. Auctions that approximate

this benchmark are simultaneously near-optimal in every Bayesian setting

with i.i.d. bidder valuations. Optimizing within this analysis framework

suggests novel multi-unit auction formats, different from those suggested by
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Bayesian analysis. The framework is flexible and permits several extensions

and modifications, discussed next.

We focused on platform design for the objectives of consumer surplus

(Section IV) and profit maximization (Section V), but our platform design

approach extends beyond these objectives. As an example, imagine the

k-unit auction in an i.i.d. Bayesian setting where the optimal solution is

characterized by optimizing the ironed virtual value corresponding to “a 8%

government sales tax.” The objective is then the value of the agents and

mechanism less the tax deducted by government, and the corresponding

virtual value function has the form ϕ(v) = 0.92v− 0.081−F (v)
f(v)

. The optimal

k-unit (p, q)-priority lottery remains the appropriate benchmark for this

and every other linear objective. For every linear objective with γp < 0,

see equation (1), there is always an optimal (p, q)-priority lottery with p

and q at most the second highest value v(2), and the mechanism RSOL

of Section IV.C can be mixed with a Vickrey auction to approximate the

benchmark.

Optimal mechanisms are ironed virtual surplus maximizers in every single-

parameter Bayesian setting with independent private values (Myerson, 1981),

not just in the multi-unit auction settings studied here. Examples of more

general single-parameter settings include constrained matching markets,

single-minded combinatorial auctions, and public projects. The performance

benchmark (Definition 1) can again be defined pointwise as the supremum

over the performance of ironed virtual surplus maximizers on a given val-

uation profile. As discussed in Section V.C, this performance benchmark

seems hard to characterize beyond multi-unit settings (cf., Theorem 3). The

follow-up work of Hartline and Yan (2011) recently proposed an alternative
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benchmark based on envy freedom. This benchmark has structure similar

to that of Bayesian optimal auctions and, for this reason, is analytically

tractable. Hartline and Yan (2011), for the profit objective and the envy-

free benchmark, give platform mechanisms that are near-universally adopted

with constant competitive advantage in general settings.

We defined the performance benchmark as the supremum performance of

(symmetric) mechanisms that are optimal in some Bayesian setting with

i.i.d. valuations. Clearly, one can define such a benchmark with respect to

any class of mechanisms. As an example alternative, consider consumer sur-

plus maximization and the class of symmetric mechanisms that are Bayesian

optimal for some i.i.d.. distribution that is either MHR or anti-MHR — that

is, the class consisting solely of the Vickrey auction and the (zero-price) lot-

tery. This class arises naturally when domain knowledge suggests that only

MHR and anti-MHR distributions are relevant, or if outside consultants are

only equipped to design optimal mechanisms for these cases. Specializing to

the two-bidder single-item case studied in Section IV.A, the platform design

benchmark decreases from max{v1+v2
2

, v(1) − v(2)
2
} to max{v1+v2

2
, v(1) − v(2)}.

Reworking the analysis of that section for this new benchmark shows that

the optimal mechanism remains a ratio auction, just with a different set-

ting of the parameters (namely, α = 3 and χ = 4/5, for an approximation

ratio of 5/4). Notably, the format of the optimal platform is robust to this

particular change in the benchmark.

The mechanism in Section IV.C demonstrates the existence of platform

mechanisms for consumer surplus maximization that are universally adopted

with constant competitive advantage, independent of the number of units

and bidders. No standard auction, meaning an ironed virtual surplus maxi-
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mizer, enjoys such a guarantee (Section IV.B). Developing our understand-

ing of n-player platform design further is an interesting research direction.

For starters, there should be a much tighter analysis of our mixture of RSOL

and Vickrey auctions. One avenue for improvement is to track contributions

to the consumer surplus on the 83% of the probability space for which the

chosen partition is not balanced. The “average balance” approach of Alaei

et al. (2009), used previously to improve over the balanced partition tech-

nique of Feige et al. (2005) in a profit-maximization context, can be used to

give such an improved bound. A second idea is to compare the mechanism’s

consumer surplus directly to the benchmark in Theorem 3, rather than to

the simpler “approximate benchmark” in Corollary 3. Analogously, avoid-

ing the approximate benchmark F (2) could lead to better profit-maximizing

platform designs (see Section V.B).

There are surely platforms that are universally adopted with smaller com-

petitive advantage than is demonstrated by Theorem 5 in Section IV.C. A

challenging problem is to characterize optimal platforms for the consumer

surplus objective. Even the case of three-bidder single-item settings appears

challenging. We conjecture that, for consumer surplus maximization with n

bidders and a single item, the minimum competitive advantage required by

an optimal platform for universal adoption is precisely the expected value of

the performance benchmark when bidders’ valuations are drawn i.i.d. from

the exponential distribution (as in Theorem 3).

While solving for optimal platforms is interesting theoretically, we sus-

pect that optimal platforms will suffer from some drawbacks. First, when

the number of agents is large, the optimal platform is a complex object,

perhaps a distribution over a very large number of different auctions. This



38 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

complexity is characteristic of exact optimization in any auction analysis

framework; other well-known examples include profit-maximizing auctions

in Bayesian single-item settings when bidders’ valuations are not identical

or are i.i.d. from an irregular distribution (Myerson, 1981). The complexity

of optimal auctions motivates the design and analysis of platforms that are

relatively simple while requiring a competitive advantage that is almost as

small as the minimum possible, e.g., in the spirit of Bulow and Klemperer

(1996) and Hartline and Roughgarden (2009). Second, in optimizing a min-

max criterion, the optimal platform will equalize the approximation factor

of the benchmark across all valuation profiles (cf., the proof of Lemma 3). In

practice there might be agreed-upon common distributions and rare distri-

butions with auction performance on common distributions being the most

important. For example, the random-sampling-based auctions of Balcan

et al. (2008) out perform the optimal platform mechanism (Goldberg et al.,

2006) on a natural family of common distributions.

An auction that approximates the performance benchmark is simultane-

ously near-optimal in every Bayesian setting with i.i.d. bidder valuations.

The converse need not hold, and an interesting research direction is to bet-

ter understand the relationship between these two conditions. Sometimes,

as with the monopoly pricing problem studied in Section I, simultaneous

Bayesian near-optimality is as hard as approximation of the performance

benchmark.8 This is not always the case, however. For example, Dhangwat-

notai et al. (2014) showed that the digital good auction that partitions the

agents into pairs and runs a Vickrey auction to serve one agent in each pair

8For a value of h ≥ 1, consider the set of distributions that are concentrated at a single
point in [1, h]. For each such distribution, the corresponding optimal auction extracts
full surplus. As in Section I, no single auction can extract more than a 1/ lnh fraction of
the surplus for every such distribution.
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obtains a 2-approximation to the revenue of the Bayesian optimal mecha-

nism whenever the distribution is regular, meaning that virtual values are in-

creasing (cf. Section II and Appendix D). The proof of this 2-approximation

is a simple consequence of the n = 1 agent special case of the main theo-

rem of Bulow and Klemperer (1996), i.e., that the 2-agent Vickrey auction

obtains more revenue than monopoly pricing a single agent. As mentioned

in Section V.A, no auction for a digital good achieves a 2-approximation of

the benchmark G(2) (Goldberg et al., 2006). On the other hand, all work

thus far on simultaneous Bayesian near-optimality that avoids the pointwise

benchmark approach — termed “prior-independent guarantees” by Dhang-

watnotai et al. (2014) — are confined to regular distributions (Dhangwatno-

tai et al., 2014; Devanur et al., 2011; Roughgarden et al., 2012). By contrast,

our benchmark approximations directly imply prior-independent guarantees

for most distributions (for profit maximization) and for all distributions (for

consumer surplus maximization).
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APPENDIX

A. Distribution Construction from Virtual Values

Section II gives a formula for calculating an agent’s virtual value function

from the distribution from which her value is drawn. For the consumer

surplus objective, this formula is ϑ(v) = 1−F (v)
f(v)

. This section reverses the
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calculation and gives a constructive proof that every non-negative piecewise

constant function arises as the virtual value (for utility) function for some

distribution. This fact is alluded to in Section III and is used explicitly in

the proof in Appendix B of Theorem 4 from Section IV.B.

First observe that the exponential distribution has constant virtual value

equal to its mean. That is, the exponential distribution with mean µ has rate

1/µ, cumulative distribution Fµ(z) = 1−e−z/µ, and virtual value ϑµ(z) = µ.

Now consider a non-negative piecewise constant function ϑ : [0,∞) → R+,

where the boundaries of each interval are given by a0 = 0, a1, . . ., and where

the value of the function on the interval [aj , aj+1) is ϑj . We construct the

distribution F with virtual value function ϑ(·) inductively. The starting

interval is given by the distribution function F (z) = Fϑ0(z) for z ∈ [a0, a1].

With the first j − 1 intervals defined by F (z) for z ∈ [a0, aj ], we define the

distribution function for the jth interval by F (aj+z) = Fϑj
(F−1

ϑj
(F (aj))+z)

for aj + z ∈ [aj , aj+1]. Intuitively, this construction does a horizontal shift

of the distribution function of the exponential distribution with mean µj so

that its height matches the height of the constructed (so far) distribution

function at aj . This construction is illustrated in Figure A1.

B. Inadequacy of Standard Auctions

In this section we prove Theorem 4 from Section IV.B. The proof, in fact,

demonstrates a lower bound on the competitive advantage for universal

adoption of any standard auction that grows proporionally to
√
log n with

the number n of agents.

THEOREM 4: For every ρ > 1 there is a sufficiently large n such that, for

an n-agent, 1-unit setting, no mixture over standard auctions is universally
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Figure A1. Construction of the cumulative distribution function F with

virtual value function (for utility) that is piecewise constant on [0, 1),

[1, 2), and [2,∞), with virtual values 1, 2, and 1, respectively.

adopted with competitive advantage ρ.

Our argument uses the distributions in the construction in Appendix A;

we next note some of their salient properties. These distributions are piece-

wise exponential distributions, with piece-wise constant virtual values for

utility and piece-wise constant hazard rates. Recall that the virtual value

for an exponential distribution equals its expected value which equals the

reciprocal of its hazard rate. Also, exponential distributions are memory-

less: given that the value v from an exponential distribution is at least z,

the conditional distribution of v is identical to that of z+w where w is expo-

nential with the same rate. Of particular relevance, the probability that an

exponential random variable with mean one exceeds β is e−β, and the prob-

ability that an exponential random variable with mean β exceeds β is 1/e.

For piece-wise exponential distributions, these properties hold within each

piece. From the analysis of Section II, the expected consumer surplus of any

mechanism M on distribution F is equal to its expected virtual surplus.

PROOF: Define β to be an integer greater than or equal to max{24 · ρ, 2}.
For κ ∈ {0, 1, 2, . . . , β − 1}, let Fκ,β denote the piece-wise exponential dis-
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tribution (as in Appendix A) with virtual value for utility equal to 1 every-

where except on the interval [κβ, κβ + β), where it is equal to β. Such a

distribution thus has a “special interval” where the hazard rate is relatively

low (and virual value is relatively high). Let Cβ denote the set of distribu-

tions {Fκ,β}β−1
κ=0. Consider a setting with a single item and n = eβ

2
agents

(rounded up to the nearest integer).

We claim the following:

(a) For every Fκ,β ∈ Cβ, there is an auction with expected consumer surplus

at least β/4.

(b) For every standard auction A, if Fκ,β ∈ Cβ is chosen uniformly at ran-

dom, then the expected consumer surplus of A, over the choice of Fκ,β

and valuations v1, . . . , vn ∼ Fκ,β, is at most 6.

Claims (a) and (b) imply the theorem. To see this, the consumer surplus

of a convex combination of mechanisms M is the convex combination of

their consumer surpluses. As the inequality of property (b) holds for each

auction in the support of such a convex combination, it also holds for the

combination. Taking expectation over F uniform from Cβ in inequality (4)

from Section III we have,

E
v,F [G(v)] ≥ E

v,F [OptF (v)] ≥ β
24
E

v,F [M(v)] .

By the definition of expectation, there must exist a valuation profile v that

achieves this separation, i.e., with G(v) ≥ β
24
M(v). Thus, the competitive

advantage needed for universal adoption is at least β/24 ≥ ρ.

We now proceed to the proofs of (a) and (b). Call an agent high-valued if

her value is at least β2. The probability that there is no high-valued agent
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is at most 1/β.9

To prove (a), fix a choice of κ ∈ {0, 1, . . . , β − 1} and consider the κβ-

lottery (Definition 4). The probability that all agents’ values are below κβ

is less than the probability that all agents’ values are below β2; thus the

probability of a winner in this lottery is at least 1− 1/β ≥ 1/2. Otherwise,

the winner is a random agent with value at least κβ. By the memoryless

property of exponential distributions, the probability that the winner, with

value at least κβ, has value less than κβ+β is 1−1/e ≥ 1/2; such a winner

has virtual value β. Virtual values for consumer surplus are non-negative, so

the expected virtual surplus of the κβ-lottery is at least 1
2
· 1
2
·β, as claimed.

To prove (b), we first warm up by considering the case where A is an

r-lottery. Choose Fκ,β ∈ Cβ uniformly at random. The intuition is that this

random choice effectively “hides” the location of the large virtual values.

If r ≥ κβ + β, then the winner of A (if any) has virtual value 1. If

r ≤ κβ − β, then by the memoryless property of exponential distributions,

the value of a winner is less than κβ with probability at least 1 − e−β.

Thus, the expected virtual value of a winner in this case (if any) is at most

1 + βe−β ≤ 2. Finally, if r ∈ (κβ − β, κβ + β), then the virtual value of a

winner (if any) is at most β. As the third case occurs with probability at

most 2/β (over the random choice of κ), the expected virtual value of A is

at most 2
β
· β + 1 · 2 = 4.

We conclude by extending the argument of the preceding paragraph for

one-level lotteries to an arbitrary ironed virtual surplus maximizer A. In our

9The analysis is elementary. Using the memoryless property of exponential distribu-

tions, the probability that a given agent is high-valued is η = (e−β)β−1 ·e−1 = e−β2+(β−1).

With n = eβ
2

= eβ−1/η agents, the probability of no high-valued agents is (1 − η)n ≤
e−ηn ≤ e−eβ−1 ≤ 1/β. The last inequality can be verified by checking the lower endpoint

of β = 2 and comparing the derivatives of ee
β−1

and β.
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single-item symmetric setting, the auction A specifies ironed intervals where

ties are broken randomly but otherwise awards the item to the agent with

the highest value. Let [r, r′] denote the ironed interval of A that contains the

value β2. (If value β2 is not ironed, then set r = r′ = β2.) Valuation profiles

without a high-valued bidder occur with probability at most 1/β (by the

above analysis) and give virtual surplus at most β; thus their contribution to

the expected virtual surplus ofA is at most 1. Valuation profiles with a high-

valued bidder and highest value in [r, r′] contribute the same expected virtual

surplus to A as to a r-lottery; by the previous paragraph, this contribution

is at most 4. In every valuation profile with highest value greater than r′,

the item is awarded to a bidder with virtual value 1; these profiles contribute

at most 1 to the expected virtual surplus of A. Q.E.D.

C. Analysis of Random Sampling Optimal Lottery

Mechanism

In this section we analyze the Random Sampling Optimal Lottery Mech-

anism (RSOL, Definition 5); which partitions to a sample and market, finds

the optimal one-level lottery on the sample, and then runs this lottery on

the market; and prove that for the consumer surplus objective there is a

platform that is universally adopted with a finite competitive advantage.

As described in Section IV.C, there are two steps to this proof. The first is

showing that one-level lotteries guarantee at least half the consumer surplus

of two-level lotteries. The second step shows that either the k-unit Vick-

rey auction or RSOL obtains nearly the consumer surplus of the optimal

one-level lottery on the full valuation profile.

LEMMA 6: For every valuation profile v and parameters k, p, and q, there
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is an r such that the k-unit r-lottery obtains at least half of the expected

consumer surplus of the k-unit (p, q)-lottery.

PROOF: We prove the lemma by showing that Lotp,q(v) ≤ Lotp(v) +

Lotq(v). We argue the stronger statement that each agent enjoys at least

as large a combined expected utility in Lotp(v) and Lotq(v) as in Lotp,q(v).

Let S and T denote the agents with values in the ranges (p,∞) and (q, p],

respectively. Let s = |S| and t = |T |. Assume that 0 < s ≤ k < s + t as

otherwise the k-unit (p, q) lottery is equivalent to a one-level lottery. Each

agent in T participates in a k-unit q-lottery in Lotq and only a (k − s)-unit

q-lottery in Lotp,q; her expected utility can only be smaller in the second

case. Now consider i ∈ S. Writing ρ = (k − s + 1)/(t + 1) in equation (5)

we can upper bound the utility of agent i in Lotp,q by

vi − p+ ρ(p− q) = (1− ρ)(vi − p) + ρ(vi − q) ≤ (vi − p) + k
s+t

· (vi − q),

which is the combined expected utility that the agent obtains from par-

ticipating in both a k-unit p-lottery (with s ≤ k) and a k-unit q-lottery.

Q.E.D.

COROLLARY 3: For every valuation profile v, the supremum of Bayesian

optimal mechanisms benchmark G is at most twice the expected consumer

surplus of the best one-level lottery: G(v) ≤ 2 · supr Lotr(v).

A key fact that enables the analysis of RSOL is that, with constant prob-

ability, the relevant statistical properties of the full valuation profile are

preserved in the market and the sample. These statistical properties can

be summarized in terms of a “balance” condition. Define a partition of the

agents {1, 2, 3, . . . , n} into a market M and a sample S to be balanced if
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1 ∈ M , 2 ∈ S, and for all i ∈ {3, . . . , n}, between i/4 and 3i/4 of the i

highest-valued agents are in S (and similarly M). In the proof of Theo-

rem 5, we use the following adaptation of the “Balanced Sampling Lemma”

of Feige et al. (2005) to bound from below the probability that RSOL se-

lects a balanced partitioning (for completeness we include this lemma’s proof

below).

LEMMA 7: When each agent is assigned to the market M or sample S

independently according to a fair coin, the resulting partitioning is balanced

with probability at least 0.169.

PROOF: Call a subset of the agents imbalanced if, for some i ≥ 3, it contains

fewer than i/4 of the i highest-valued agents. After conditioning on the

events that 1 ∈ M and 2 ∈ S, the probability that S is imbalanced can be

calculated as at most 0.161 by a simple probability of ruin analysis proposed

in Feige et al. (2005) (details given below). By symmetry, the same bound

holds for M . By the union bound, the partition is balanced with probability

at least 0.678. Agent 1 is in M and 2 is in S with probability 1/4, so the

unconditional probability that the partition is balanced is at least 0.169.

The following analysis from Feige et al. (2005) shows that the conditional

probability that S is imbalanced is at most 0.161. Consider the random

variable Zi = 4 |S ∩ {1, . . . , i}| − i; the balanced condition is equivalent

to Zi ≥ 0 for all i ≥ 3. By the conditioning, S ∩ {1, 2} = {2} and so

Z2 = 2. View Zi as the positions of a random walk on the integers that

starts from position two and takes three steps forward (at step i with i ∈ S)

or one step back (at step i with i 6∈ S), each with probability 1/2. The

set S is imbalanced if and only if this random walk visits position −1. The

probability r of ever (with n → ∞) visiting the preceding position in such
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a random walk can be calculated as the root of r4 − 2r + 1 on the interval

(0, 1), which is approximately 0.544. The probability of imbalance, which

requires eventually moving backward three steps from position 2, is at most

r3 ≤ 0.161, as claimed. Q.E.D.

THEOREM 5: For every n, k ≥ 1, there is an n-agent k-unit platform

mechanism that is universally adopted with constant competitive advantage.

PROOF: We outline the high-level argument and then fill in the details. We

focus on the expected consumer surplus of RSOL, where the expectation is

over the random partition of agents, relative to that of an optimal one-level

lottery, on the “truncated” valuation profile v(2) = (v(2), v(2), v(3), . . . , v(n)).

We only track the contributions to RSOL’s expected consumer surplus when

the partitioning of the agents is balanced. In such cases, RSOL’s consumer

surplus on the truncated valuation profile can only be less than on the

original one.

Step 1 of the analysis proves that, conditioned on the partitioning of the

agents being balanced, the expected consumer surplus of the optimal one-

level lottery for the sample is at least 1/2 times that of the optimal one-

level lottery for the full truncated valuation profile. Step 2 of the analysis

proves that, conditioned on an arbitrary balanced partition, the consumer

surplus of every one-level lottery on the market is at least 1/9 times its

consumer surplus on the sample. In particular, this inequality holds for

the optimal one-level lottery for the sample. Combining these two steps

with Lemma 7 implies that the expected consumer surplus of RSOL is at

least 0.169 × 1
2
× 1

9
≥ 1/107 times that of the optimal one-level lottery

on the truncated valuation profile v(2). The additional consumer surplus

achieved by an optimal one-level lottery on the original valuation profile v
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over the truncated one is at most v(1) − v(2). The consumer surplus of the

(k + 1)th-price auction, where k is the number of units for sale, is at least

this amount. The platform mechanism that mixes between RSOL with

probability 107/108 and the (k + 1)th-price auction with probability 1/108

has expected consumer surplus at least 1/108 times that of the optimal one-

level lottery on v, and (by Corollary 3) at least 1/216 times the benchmark

G. Below, we elaborate on the two steps described above.

Step 1: Conditioned on a balanced partitioning, the expected consumer

surplus of the optimal one-level lottery for the sample S is at least 1/2 times

that of the optimal one-level lottery for the full truncated valuation profile.

Let r be the price of the optimal one-level lottery for v(2). Conditioned

on a balanced partition, exactly one of the top two (equal-valued) bidders

of v(2) lies in S. By symmetry, each other bidder has probability 1/2 of

lying in S. The winning probability of bidders in S with value at least r

is only higher than that when all agents are present. Summing over the

bidders’ contributions to the consumer surplus and using the linearity of

expectation, ES[Lotr(S) | balanced partition] ≥ Lotr(v
(2))/2. Of course,

the optimal one-level lottery for the sample is only better.

Step 2: Conditioned on an arbitrary balanced partition, for the truncated

valuation profile v(2), the consumer surplus of every one-level lottery on

the market is at least 1/9 times its consumer surplus on the sample. Fix

a balanced partition into S and M and a one-level lottery at price r. The

expected contribution of a bidder j to a r-lottery is (vj−r) times its winning

probability (if vj > r) or 0 (otherwise). The balance condition ensures that,

for every i ≥ 2, the number of the i highest-valued bidders that belong to

the market is between 1/3 and 3 times that of the sample. In particular,
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the winning probability of bidders with value at least r in M is at least 1/3

of that of such bidders in S. Moreover, the balance condition implies that

∑

j∈M
max{vj − r, 0} ≥ 1

3

∑

j∈S
max{vj − r, 0}

for the truncated valuation profile v(2); the claim follows. Q.E.D.

It is certainly possible to optimize better the parameters of the platform

mechanism defined in the proof of Theorem 5. Furthermore, since for sim-

plicity we only keep track of RSOL’s performance when the partition is

balanced, the mechanism’s performance is better than the proved bound.

D. Profit Maximization with Near-universal Adoption

Recall from Section V the benchmark G(2) = maxi≥2 iv(i), which effectively

excludes selling to the highest-valued agent at her value. We will show that a

mechanism M that achieves a β-approximation of this benchmark on every

valuation profile is near-universally adopted with competitive advantage β,

meaning that for every distribution F in a large class, the expected profit

of M is at least a β fraction of that of the Bayesian optimal auction for F .

By Proposition 1, it suffices to give sufficient condition on F that guarantees

that E
v

[

G(2)(v)
]

≥ E
v
[OptF (v)].

From Bulow and Roberts (1989), virtual values for revenue are given by the

marginal revenue of the revenue curve that plots the revenue p (1 − F (p))

against the probability 1 − F (p) that the agent buys (i.e., her expected

demand). Virtual values are given by the slope of the revenue curve, thus

monotonicity of virtual values, as required by the regularity condition of

Myerson (1981), is equivalent to the concavity of the revenue curve.

Our sufficient condition, the “inscribed triangle property,” states that for
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every point (1−F (p), p (1−F (p))) on the revenue curve, the triangle formed

with the points (0, 0) and (1, 0) lies underneath the revenue curve. This con-

dition is clearly satisfied whenever the revenue curve is concave — equiva-

lently, whenever the distribution is regular — and is also satisfied by a large

family of multi-modal distributions that are not regular.

To understand this condition better, observe that, for every distribution

F and price p, the line from (0, 0) to (1 − F (p), p (1 − F (p))) lies beneath

the revenue curve. The reason is that, for every α ∈ [0, 1], the price p′

with selling probability α · (1 − F (p)) is at least p and hence obtains rev-

enue p′(1 − F (p′)) ≥ α · p(1 − F (p)). The inscribed triangle property is

therefore equivalent to requiring that, for every price p, the line between

(1 − F (p), p (1 − F (p))) and (1, 0) lies beneath the revenue curve. For an

economic interpretation of this condition, consider the measure of types that

are not served at a price p, i.e., F (p). Viewing the revenue curve as a func-

tion of F (p), the condition says that as the price is dropped, the revenue

per unit of types that are not served is non-decreasing. In other words, the

condition requires p (1− F (p))/F (p) to be non-increasing.

The inscribed triangle property immediately implies the following lemma,

which is reminiscent of the main theorem of Bulow and Klemperer (1996).

LEMMA 8: For distribution F with non-increasing v (1−F (v))/F (v), the

two-agent Vickrey auction revenue exceeds the single-agent optimal revenue.

PROOF: In the two-agent Vickrey auction, each agent faces a take-it-or-

leave-it offer equal to the other agent’s bid. Thus, each agent faces a random

price p distributed such that the probability of sale to this agent is uniform

on [0, 1]. Since the revenue of every such price is given by the revenue

curve, and the distribution of 1 − F (p) is uniform, the expected revenue
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obtained from the agent equals the area under the revenue curve. Invoking

the inscribed triangle property at the point (1 − F (p∗), p∗ (1 − F (p∗))) for

the monopoly price p∗, we conclude that the expected revenue obtained

from one agent is at least 1
2
· 1 · p∗ (1− F (p∗)), half the expected revenue of

the monopoly price. Since there are two agents, the total expected Vickrey

revenue is at least the optimal single-agent revenue. Q.E.D.

LEMMA 9: For distribution F with the non-increasing v (1 − F (v))/F (v)

property, conditioning to exceed a price p preserves the property.

PROOF: The original condition is saying that the virtual value is not more

negative than the slope of the line that connects that point on the revenue

curve to (1, 0). After conditioning on being at least p, the condition can

be viewed on the original revenue curve as the virtual value not being more

negative than the slope of line that connects the point on the revenue curve

to (1− F (p), 0). As this slope is steeper than the slope of the line through

(1, 0), the property is preserved by such conditioning. Q.E.D.

We now combine the above lemmas to prove Lemma 5, restated below.

A key intuition in this proof is that Lemma 8 implies that E
v

[

2v(2)
]

≥
E

v
[OptF (v)] for k = 2 items and n = 2 agents — the left-hand side is

double the revenue of the Vickrey auction (with 1 item) and the right-hand

side is double the revenue of the single-agent optimal mechanism.

LEMMA 10: For digital good settings and every distribution F with v (1−
F (v))/F (v) non-increasing, E

v

[

G(2)(v)
]

≥ E
v
[OptF (v)].

PROOF: Let p∗ = argmaxp p (1− F (p)) be the monopoly price for the dis-

tribution. The analysis proceeds by conditioning on v(3) = z and considering
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the cases where z ≤ p∗ and z > p∗. In the first case, we have

E
v
[G(2)(v) | v(3) = z ≤ p∗] ≥ E

v

[

2v(2) | v(3) = z ≤ p∗
]

≥ E
v

[

OptF (v) | v(3) = z ≤ p∗
]

.

The last inequality follows by Lemmas 8 and 9 and the fact that, given

v(3) = z ≤ p∗, OptF is an auction that sells to at most agents 1 and 2 and

therefore has revenue that is at most the optimal auction that sells to these

agents for the conditional distribution. In the second case, let k∗ ≥ 3 be a

random variable for the number of units sold by OptF ; we have

E
v
[G(2)(v) | v(3) = z ≥ p∗] ≥ E

v

[

k∗v(k∗) | v(3) = z ≥ p∗
]

≥ E
v

[

k∗p∗ | v(3) = z ≥ p∗
]

= E
v

[

OptF (v) | v(3) = z ≥ p∗
]

.

Combining the two cases proves the lemma. Q.E.D.


