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Do Externalities Degrade GSP’s Efficiency?
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We consider variants of the cascade model of externalities in sponsored search auctions introduced indepen-
dently by Aggrawal et al. and Kempe and Mahdian in 2008, where the click-through rate of a slot depends
also on the ads assigned to earlier slots. Aggrawal et al. and Kempe and Mahdian give a dynamic program-
ming algorithm for finding the efficient allocation in this model. We give worst-case efficiency bounds for a
variant of the classical Generalized Second Price (GSP) auction in this model.

Our technical approach is to first consider an idealized version of the model where an unlimited number
of ads can be displayed on the same page; here, Aggrawal et al. and Kempe and Mahdian show that a greedy
algorithm finds the optimal allocation. The game theoretic analog of this greedy algorithm can be thought of
as a variant of the classical GSP auction. We give the first non-trivial worst-case efficiency bounds for GSP
in this model.

In the more general model with limited slots, greedy algorithms like GSP can compute extremely bad
allocations. Nonetheless, we show that an appropriate extension of the greedy algorithm is approximately
optimal, and that the worst-case equilibrium inefficiency in the corresponding analog of GSP also remains
bounded. In the context of these models, the GSP mechanisms suffer from two forms of suboptimality: that
from using a simple allocation rule (the greedy algorithm) rather than an optimal one (based on dynamic
programming), and that from the strategic behavior of the bidders (caused by using the GSP’s critical bid
pricing rule rather than one leading to a dominant-strategy implementation). Our results show that for this
class of problems, the two causes of efficiency loss can be analyzed separately.
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1. INTRODUCTION
The now standard method of selling advertisements on search pages is the Generalized
Second Price (GSP) auction. Advertisers are charged only when their ad is clicked on.
In the auction, each advertiser places a bid expressing their willingness to pay for a
click, and these bids are resolved in a simple automated auction resulting in a sequence
of ads displayed next to the organic search results. The classical model of GSP was
introduced in [Edelman et al. 2007; Varian 2007]. The ads are ordered on the page
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AFOSR MURI grant. Email: tim@cs.stanford.edu. Éva Tardos was supported in part by NSF grants CCF-
0910940, ONR grant N00014-08-1-0031, a Yahoo! Research Alliance Grant, and a Google Research Grant.
Author’s addresses: Tim Roughgarden, Department of Computer Science, Stanford University, 462 Gates
Building, 353 Serra Mall, Stanford, CA 94305, tim@cs.stanford.edu; Éva Tardos, Computer Science De-
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from top to bottom, and the probability of an ad i getting a click when displayed on
slot j is modeled as γiαj , the product of two separable quantities, where αj is the click-
through rate (CTR) of the assigned slot, and γi depends on the quality (or relevance)
of the ad. Here the CTR αi models that the value of showing an ad decreases as its
position on the page falls (as higher slots have higher CTRs), and the quality factor γi

models that more relevant ads may receive more clicks.
A limiting aspect of the standard model is the assumption that the click-through

rate of a slot does not depend on the other ads shown on the page. Modeling such
externalities among the ads displayed is one of the key issues in better understand-
ing sponsored search. In this paper we consider variants of the model of externalities
introduced independently in [Aggarwal et al. 2008] and [Kempe and Mahdian 2008],
called the cascade model, which provides an endogenous model of click-through rates,
where the click-through rate of a slot is a function of the players assigned to earlier
slots. The proposed endogenous model of click-through rates was recently shown by
[?] to be more realistic. [Aggarwal et al. 2008] and [Kempe and Mahdian 2008] give a
dynamic programming algorithm for finding the efficient allocation in the model, and
show that a greedy algorithm can find the optimal allocation in the idealized version
of the model where an unlimited number of ads can be displayed on the same page.
The game theoretic analog of the greedy algorithm can be thought of as a variant of
the classical GSP auction. We give the first non-trivial worst-case efficiency bounds for
GSP in these models.

We see our results for GSP in the cascade model as a positive example of the broader
question: for which problems are there simple mechanisms that always have near-
optimal performance at equilibrium? Dominant-strategy mechanism design has an el-
egant and powerful theory (see, e.g., Nisan [Nisan 2007]) but is not always popular
in practice [Ausubel and Milgrom 2006; Rothkopf 2007]. On many occasions, practi-
tioners have willingly sacrificed strong incentive properties in favor of simpler imple-
mentations. For example, in the standard single-shot pay-per-click model of [Edelman
et al. 2007; Varian 2007] for sponsored search, the Vickrey-Clarke-Groves (VCG) mech-
anism (e.g., [Nisan 2007]) provides a dominant-strategy implementation of the welfare-
maximizing outcome. Current search auctions, however, are based instead on the GSP
auction, which shares its rank-by-bid allocation rule with the VCG mechanism but
uses a simpler payment rule. The GSP mechanism has a welfare-maximizing equilib-
rium, but participants do not generally have dominant strategies [Edelman et al. 2007;
Varian 2007].

Motivated by the prevalence of relatively simple mechanisms in practice, we are
interested in developing a theory of how to design such simple mechanisms:

(Q1) For which problems are there simple mechanisms that always have near-optimal
performance at equilibrium?

(Q2) Which simple mechanisms have the best equilibrium guarantees, especially for equi-
librium concepts more general, and easier to attain, than Nash equilibria?

In this paper, we answer these questions for GSP-style auctions in several variants
of the cascade model. Our analysis of the GSP game can be view as having two separate
parts, corresponding to the two causes of inefficiency of GSP-style auctions: that from
using a simple allocation rule (the greedy algorithm) rather than an optimal one (based
on dynamic programming), and that from the strategic behavior of the bidders (made
possible by using the GSP’s critical bid pricing rather than one leading to a dominant-
strategy implementation). The modularity of our analysis leads us to a third general
question.
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(Q3) Are there well-motivated mechanism design problems and a class of simple allocation
rules for which analyzing the ”price of anarchy” of an induced game under the critical
bid payment rule reduces to analyzing the approximation factor of the allocation rule
with truthful bids?

1.1. Our Results
We consider the cascade model from a game theoretic perspective. One can think of
the greedy algorithm of [Aggarwal et al. 2008] and [Kempe and Mahdian 2008] for the
case with unbounded slots as a variant of the classical GSP auction. In more detail,
recall that in the standard setup, advertisers are asked for bids bi (expressing their
willingness to pay for a click), and ads are sorted by the product of bid and quality fac-
tor γibi. If players would bid their true values, then this would result in the maximally
efficient sorting of ads; thus, this mechanism fails to be fully efficient only because of
strategic behavior by the players. The greedy algorithm of [Aggarwal et al. 2008] and
[Kempe and Mahdian 2008] can also be thought of as sorting by a product of the form
γivi; the difference is that the quality factor γi now depends also on the effect of the ad
on the user viewing later ads on the page.

— We show that all Nash equilibria of the above analog of the GSP auction for the
cascade model with unbounded slots have efficiency at least 1/4th of the maximum
possible,1 i.e., the corresponding game has a price of anarchy of at most 4. Our ap-
proximation bounds also extend well beyond Nash equilibria, both to more general
and easy-to-learn full-information equilibrium concepts (like coarse correlated equi-
libria), as well as to Bayes-Nash equilibria in the incomplete information setting,
even when players’ private valuations are correlated.

— Rather than focusing on the exact greedy algorithm of [Aggarwal et al. 2008] and
[Kempe and Mahdian 2008], we show the above result by considering a class of al-
gorithms: GSP with arbitrary quality factors γi, and prove that the price of anarchy
in the corresponding GSP mechanism is at most 4 times worse than the approxima-
tion factor of the greedy algorithm for the underlying welfare maximization problem.
Considering a class of algorithms makes our analysis flexible, effectively reducing the
price of anarchy analysis to designing an (approximately) efficient greedy allocation
rule.

— We use the above flexibility to extend the analysis for the GSP mechanism for vari-
ants of the cascade model, including the problem with only k slots, where the greedy
allocation rule is no longer optimal. [Aggarwal et al. 2008] and [Kempe and Mahdian
2008] give a dynamic programming algorithm for this problem, which is much more
complex than the ranking-based algorithms prevalent in sponsored search. We give
approximately optimal greedy algorithms for these problems, by modifying the qual-
ity factors γi to take into account also the limited number of slots available, and show
a price of anarchy analysis for the resulting variant of GSP.

— Finally, in the full-information cascade model with unbounded number of slots, we
show that the game has a Nash equilibrium that is fully efficient. This is analogous
to the result of [Edelman et al. 2007; Varian 2007] for GSP in the classical sponsored
search model (without externalities).

1We assume throughout the paper that bidders are conservative in that they do not bid above their value.
When players can ”bluff” by bidding more than their value, even the full-information version of the Vickrey
auction has arbitrarily poor Nash equilibria. Further, bidding above their valuation is a dominated strategy
in all our games.
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1.2. Related Work
The classical model of sponsored search auctions has been introduced by [Edelman
et al. 2007; Varian 2007]. In this model the Vickrey-Clarke-Groves (VCG) mecha-
nism (e.g., [Nisan 2007]) provides a dominant-strategy implementation of the welfare-
maximizing outcome. Current search auctions, however, are based instead on the Gen-
eralized Second Price (GSP) mechanism, which shares its rank-by-bid allocation rule
with the VCG mechanism but uses a simpler payment rule. [Edelman et al. 2007; Var-
ian 2007] show that the GSP mechanism has a welfare-maximizing equilibrium, but
participants do not generally have dominant strategies. In addition to the welfare-
maximizing Nash equilibrium, there can also be suboptimal Nash equilibria, even
when every player bids at most its value [Aggarwal et al. 2006; Leme and Tardos
2010].

A sequence of recent papers consider the price of anarchy in the standard GSP
auction of [Leme and Tardos 2010; Caragiannis et al. 2011; Lucier and Paes Leme
2011; Caragiannis et al. 2012]. There are no previous non-trivial results on the worst-
case inefficiency of equilibria in other models of sponsored search, such as the models
with externalities studied here.2 The cascade model that we consider was proposed
independently in [Aggarwal et al. 2008] and [Kempe and Mahdian 2008]; several
other researchers have also studied models to accommodate externalities in sponsored
search [Abrams et al. 2007; Giotis and Karlin 2008] or offer endogenous models of
click-through rates [Athey and Nekipelov 2010; Athey and Ellison 2011; Ghosh and
Mahdian 2008].

Several recent papers have studied the price of anarchy in simple mechanisms with-
out dominant strategies [Bhawalkar and Roughgarden 2011; Borodin and Lucier 2010;
Christodoulou et al. 2008; Hassidim et al. 2011; Johari and Tsitsiklis 2004; Lucier
2010; Lucier and Borodin 2010]. Among these, the closest to our paper in spirit is
by [Lucier and Borodin 2010; Lucier 2010], who consider greedy allocation rules and
study that additional inefficiency at equilibrium compared to the inefficiency of the al-
location rule as an approximation algorithm. The setting in [Lucier and Borodin 2010;
Lucier 2010] is greedy allocation rules for welfare maximization in combinatorial auc-
tions. One of the main results in [Lucier and Borodin 2010] is that a c-approximate
greedy algorithm, coupled with the natural definition of a critical bid payment rule,
induces a mechanism in which the price of anarchy is at most c + 1. One drawback
of the setting in [Lucier and Borodin 2010; Lucier 2010] is that welfare maximization
in combinatorial auctions is an extremely difficult problem; in particular, for most spe-
cial cases of interest, no greedy algorithm can obtain a reasonable approximation ratio.
Another difference that is more technical: in the direct-revelation combinatorial auc-
tions in [Lucier and Borodin 2010; Lucier 2010], a bidder can always ”target” a given
bundle (i.e., submit a non-zero bid only for that bundle), a fact that facilitates the price
of anarchy analysis. In a single-parameter problem with multiple different quantities
(like sponsored search), a bidder cannot bid directly on a given quantity; this restricted
bidding vocabulary makes the analysis harder.

2. PRELIMINARIES
The classical model of Sponsored Search Auctions introduced by [Edelman et al. 2007;
Varian 2007] assumes that a set of n advertisers want to display ads on a Web page of
search results. Each advertiser i has a private valuation vi for a web-surfer clicking on
the ad. Advertisements can be displayed in multiple slots on a Web page. In the basic
model for sponsored search auctions the bidder receiving the jth slot from the top

2Of course, we are not counting applications of the welfare-maximizing but relatively complicated VCG
mechanism to such models [Aggarwal et al. 2008; Kempe and Mahdian 2008].
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in a ranked list of ads gets a click with probability αj , where αj is the click-through
rate (CTR) of the slot. We assume, as is natural and standard, that higher ads are
better: α1 ≥ α2 ≥ · · · ≥ αk. We consider the simple allocation rule that assigns the ith
highest bidder to the ith slot for each i = 1, 2, . . . , k. An easy exchange argument shows
that this (monotone) allocation rule maximizes the welfare when players bid their true
values. The classical work of [Myerson 1981] yields a payment rule that extends this
allocation to a truthful, dominant-strategy mechanism: given bids b1 ≥ b2 ≥ · · · ≥ bn,
charge the ith highest bidder a payment of

k+1∑
j=i+1

(αj−1 − αj)bj (1)

for each i = 1, 2, . . . , k, where αk+1 should be interpreted as 0.
The sponsored search auctions used by modern search engines are derived from this

”rank-by-bid” allocation rule above, but they use the critical bid payment rule in lieu
of the relatively complicated one in (1). The critical bid payment rule corresponding to
this allocation charges the ith highest bidder bi+1 for each click (and αibi+1 in total),
which is a higher price than in (1). The resulting mechanism does not have dominant
strategies. Intuitively, depending on others’ bids, a player might have an incentive
to underbid, with the goal of getting a clicks with slightly smaller probability at a
much cheaper price. We will assume throughout the paper that ”conservative” bidding
strategies are used in that every player bids at most its valuation. We will see that
bidding above the valuation is a dominated strategy in our games. Further, when play-
ers can ”bluff” by bidding more than their value, even the full-information version of
the Vickrey auction has arbitrarily poor Nash equilibria. (Consider two bidders with
value 1 and 0 who bid 0 and 1, respectively.) With conservative bidding, every Nash
equilibrium under payment rule (1) is fully efficient.

Modern search engines distinguish ads also by relevance by assigning each ad i
a “quality score” γi, and rank ads by sorting bid – quality factor products γibi. The
results of [Edelman et al. 2007; Varian 2007] also extend to a more general model
including quality factors, assuming that the quality factors are publicly known and
effect the probability of ad i getting a click as follows: when the ad is displayed in slot
j resulting in a click by probability αjγi. The natural extension of GSP for the problem
with quality scores is the critical value payment scheme, charging each player the
smallest bid that would allow it to keep its slot in the assignment. More formally, if
the bid in slot i was bi and has quality factor γi, then the per-click payment pi of bidder
in slot i is set by the equality

piγi = bi+1γi+1 (2)

for each i = 1, 2, . . . , k, where bn+1 should be interpreted as 0.
Our main result concerns the Cascade Model of Sponsored Search Auction intro-

duced independently by [Aggarwal et al. 2008] and [Kempe and Mahdian 2008]. As
before, assume a set of n advertisers want to display ads on a Web page of search
results. Each advertiser i has a private valuation vi per click and two public param-
eters pi, qi. Given an assignment of advertisers to k slots, a potential customer scans
the ads, beginning at the top. If the ith ad is looked at, then it is clicked on with prob-
ability pi, and the next ad is also looked at with probability qi. (These two events can
be assumed independent, or not; it doesn’t matter to any of the computations in this
paper.)

[Aggarwal et al. 2008] and [Kempe and Mahdian 2008] show that when k = n
and simple greedy algorithm finds the efficient allocation. We can view this greedy
algorithm as the sort by bid × quality factor allocation rule using quality factors
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γi = pi/(1 − qi. However, with a limited number of slots, maximizing welfare in this
model involves dynamic programming. Thus neither the allocation nor payment rule
of the VCG mechanism for this problem is as simple as the GSP mechanism. Nonethe-
less, we will prove that coupling GSP with a suitable definition of quality factors, the
corresponding critical bid payment rule (2) yields a mechanism in which every Nash
equilibrium has welfare at least a constant times that of the maximum possible.

2.1. Solution Concepts
In all the models we consider, we will think of the allocation resulting from the variant
of the GSP mechanism with arbitrary quality factors γi as a game. Each player is asked
for a bid bi, then ads get sorted and allocated along the page in the order of biγi, and
charge per-click is computed using the formula (2). When advertisement with value vi

gets displayed in a slot so that the probability of getting a click is xi and has to pay
pi for each click, than we view the resulting utility to be ui = xi(vi − pi). In the full
information setting, a pure Nash equilibrium of this game is a bid vector b, such that
for each player i and any other bid z for this player ui(z, b−i) ≤ ui(b). As mentioned in
the introduction, we will assume that players are conservative and use bids bi ≤ vi,
i.e., they never bid above their valuation. We note that for the class of allocation and
payments rules used by GSP, overbidding is dominated strategy.

LEMMA 2.1. For any quality factors γi, bidding above the player’s valuation bi > vi

in the GSP mechanism is dominated by bidding vi.

To evaluate the quality of Nash equilibria we will use the Price of Anarchy: the
smallest factor µ such that all Nash equilibria (assuming conservative bidding) have
welfare at least a 1/µ fraction of the welfare in the efficient allocation.

Finding equilibrium in games may be computationally hard, and even when the
equilibrium can be found algorithmically, it can be challenging for the players to co-
ordinate on an equilibrium. In contrast, simple and natural strategies can guaran-
tee that players have no-regret in a sequence of repeated play of the game in the
following sense. Suppose the sequence of bid vectors in a repeated play is b1, b2, . . ..
To evaluate the regret of player i we consider the player’s best strategy with hind-
sight, keeping all other bids bt

−i fixed: maxz

∑
(ui(z, bt

−i). The regret of a player is
maxz(

∑
t(ui(z, b−i) −

∑
t ui(bt))). Let ri(T ) denote the regret of player i after T rounds

of play. We say that a play of the game has the no-regret (or vanishing regret) property
for player i if ri(T )/T goes to 0 as T goes to infinity. There are many simple and natu-
ral strategies (see, e.g., [Arora et al. 2012; Hart and Mas-Colell 2000] and the citations
within these papers) that guarantee a player no-regret for any play by the other play-
ers. When all players use such no-regret strategies, the resulting play converges to a
coarse correlated equilibrium. Formally, a coarse correlated equilibrium is a probabil-
ity distribution of bid vectors, such that for all players i E(ui(b)) ≥ E(ui(z, b−i)) for all
possible bids z, where the expectation is taken over the distribution of bids.

Our bounds for the price of anarchy also extend bounding the price of total anar-
chy [Blum et al. 2008], which is the smallest factor µ such that the expected value of
the social welfare in any coarse correlated equilibrium is at least a 1/µ fraction of the
welfare in the efficient allocation.

Finally, we will consider also the Bayesian model when valuations of users are not
full information, but rather are drawn from a distribution V, where valuations of differ-
ent bidders can be arbitrarily correlated. In this case a player’s strategy is a (possibly
randomized) bidding function bi(z) that assigns bids to each valuation z. A set of bid-
ding functions is a Bayes-Nash equilibrium if E(ui(b)|vi = ν) ≥ E(ui(z, b−i)|vi = ν) for
all values ν of player i and all possible bids z, where the expectation is taken with
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respect to the valuations of all players other than i, and the randomness in the bid-
ding functions. We define the price of anarchy for this solution concept via expected
welfare, the smallest µ such that the expected efficiency at any equilibrium is at least
a 1/µ fraction of the expected welfare of the efficient allocation.

Roughgarden [Roughgarden 2009] developed a framework that identifies price of
anarchy bounds that naturally extend to some of the above solution concepts. Using
the slightly relaxed version from [Lucier and Paes Leme 2011; Caragiannis et al. 2012]
we say that a utility game (λ, µ) semi-smooth if for any valuation vector v there is a
bid vector b∗ so that b∗ results in the efficient allocation, and for all other bid vectors b
the following inequality holds:∑

i

ui(b∗i , bi) ≥ λ
∑

i

ui(b∗)− µ
∑

i

ui(b).

In [Roughgarden 2009] it was shown that whenever this inequality holds in a full-
information game, the price of total anarchy (i.e., for easy-to-learn outcomes) is
bounded by λ

1+µ . In [Lucier and Paes Leme 2011; Caragiannis et al. 2012] it was
proved, essentially, that if b∗i is a function only of vi (and not of v−i), then the price of
anarchy of Bayes-Nash equilibria is bounded by λ

1+µ for every distribution over player
valuations (even correlated ones).

2.2. The class of games
Our results concern variants of the Cascade Model of Sponsored Search Auctions. Our
main result concerns the model with k slots introduced independently by [Kempe and
Mahdian 2008] and [Aggarwal et al. 2008].

Example 2.2 (Cascade Model of Sponsored Search Auctions). A set of n advertisers
want to display ads on a Web page of search results. Each advertiser i has a private
valuation vi per click and two public parameters pi, qi. Given an assignment of adver-
tisers to k slots, a potential customer scans the ads, beginning at the top. If the ith ad
is looked at, then it is clicked on with probability pi, and the next ad is also looked at
with probability qi. (These two events can be assumed independent, or not; it doesn’t
matter to any of the computations in this paper.) Maximizing welfare in this model
involves dynamic programming. Thus neither the allocation nor payment rule of the
VCG mechanism for this problem is simple in our sense. Nonetheless, we prove that
coupling a suitable nonadaptive greedy allocation rule with the corresponding critical
bid payment rule yields a mechanism in which every Nash equilibrium has welfare at
least a constant times that of the maximum possible.

We start the technical developments by considering a simpler model also introduced
by [Kempe and Mahdian 2008] and [Aggarwal et al. 2008] that has unlimited number
of slots.

Example 2.3 (Unbounded Cascade Model of Sponsored Search Auctions). Each
advertiser i has a private valuation vi per click and two public parameters pi, qi. Given
an assignment of advertisers to slots, a potential customer scans the ads, beginning
at the top. If the ith ad is looked at, then it is clicked on with probability pi, and, with
probability qi, the next ad is also looked at (where the two probabilities do not have to
be independent). [Kempe and Mahdian 2008] and [Aggarwal et al. 2008] show that a
simple greedy algorithm can be used to maximize the welfare of the assignment: sort
advertisers in nondecreasing order of vipi

1−qi
.

We can think of the mechanism based on this greedy algorithm as the classical GSP
using a quality factor γi = pi

1−qi
. In the Appendix we further extend this analogy by
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showing that the full information game with quality factors γi has a Nash equilibrium
that implements the VCG outcome (like in the standard GSP model [Edelman et al.
2007; Varian 2007]).

Our first technical result will be to bound the price of anarchy of the above greedy
mechanism. We will do this in the more general context of allowing the greedy al-
gorithm to use quality factors γi smaller than what is needed in the optimal greedy
algorithm. Such a modified greedy algorithm may not result in (even approximately)
efficient allocation. We compare the welfare of the Nash equilibrium with the welfare
of the greedy outcome with the true valuations in the spirit of the high-level outline
suggested by (Q3) in the introduction. This flexibility allows us to extend the result
to variants of the model where the welfare-maximizing allocation rule is not simple,
like in the Cascade Model with limited number of slots, as well as a few other mod-
els defined below where algorithms that find a welfare-maximizing allocation are not
known.

Example 2.4 (Cascade Model with Periodic Gaps). Here is a model that combines
features of the unbounded cascade model, and the limited slot model. The model has
two extra parameters k and δ ∈ (0, 1). The integer k models the number of ads on
a single screen, and δ models the decreased probability of looking at ads below the
current screen. Formally, this model is identical to the unbounded cascade model with
one exception. For slots i that are integer multiples of k, if an ad is placed in this slot,
the continuation probability is only qiδ.

Example 2.5 (Unbounded Cascade Mechanisms with Reserve Price). Instead of
limiting the ads shown by having only limited number of slots, we can add a reserve
price r. The mechanism discards all bids below the reserve price, runs on the remain-
ing ads, and charges all players at least the reserve price, charging the critical bid
of the modified mechanism. Reserve price limits the participants to only those with
value vi ≥ r, but is also limiting the strategy space of the players, as bids below r
are discarded. Our bounds also extend to the Unbounded Cascade Mechanisms with
Reserve Price.

For simplicity of presentation we will assume throughout the paper that pj = 1 for
all j. It is easy to adopt all results to the case with general pj by using the “impression
value” v′j = pjvj everywhere in place of the value vj .

3. GREEDY ALGORITHM AND THE PRICE OF ANARCHY
The first goal of this section is to analyze the price of anarchy of a class of greedy
mechanism in the setting of Example 2.3 with unlimited slots. As mentioned earlier,
the greedy algorithm with “quality factors” γi = (1−qi)−1, sorting the ads in decreasing
order of viγi results in the efficient allocation. We will consider a class of mechanisms
that greedily sorts bids in decreasing order of biγi for a “quality factor” γi ≤ (1− qi)−1.
Following the high-level outline of the introduction, we compare the resulting welfare
of an equilibrium to the welfare of the greedy outcome with ads modified to have q′i ≤ qi

such that γi = (1−q′i)
−1. We show that if the bidders are conservative in the sense that

bi ≤ vi for all i, then the welfare of the resulting equilibrium of the mechanism is at
most a constant factor worse than the welfare of the greedy outcome with the modified
q′i values. This flexibility in choosing quality factors makes our analysis more flexible,
and allows us to use it in models where such greedy algorithm isn’t optimal.

As a first step, we will consider the social welfare generated by any ordering of the
ads, and express the resulting welfare in two different forms, as a convex combination
of values, and as an integral. For expressing values as a convex combination, we will
associate a value of an ad with the event that this ad is looked at and then the pro-
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cess stops. Consider ads displayed in order i1, i2, . . .. Ad ik will now get clicked on with
probability

∏
j<k qij , the probability of continuing after every ad in earlier slots. The

ad contributes vik

∏
j<k qij to social welfare. We want to associate this welfare with the

event that ik is the last ad looked at. This event has probability sk = (1− qik
)
∏

j<k qij
,

the probability of the ad getting a click and then not continuing. To make the treatment
uniform for all slots, including the last one, we add sn+1 =

∏
j≤n qij

. With this defini-
tion, (s1, s2, . . . , sn+1) is a probability distribution and if we define a modified value of
an ad i to be Vi = vi

1−qi
, we can express the social value of the resulting allocation as a

convex combination of the modified values as follows.

LEMMA 3.1. Given a sorted order of ads i1, i2, . . ., the expected welfare∑
k vik

∏
j<k qij

is the same as the expected modified value of the last ad looked at,
which is expressed as

∑
k≤n skVik

.

Next we will express the above social welfare also as an integral over the interval
[0, 1]. This intergal will be helpful in comparting the social value generated by two
different orderings. Assume as before that ads are ordered as i1, i2, etc, and recall the
values sk defined above, denoting the probability of the ad in slot k is the last to get
clicked on. Intuitively, we want to think of the integral of an initial segment [0, x]
as expressing the value of an initial segment of the ads: the segment [0, s1] the value
generated by ad i1, the next segment [s1, s1+s2] the value generated by ad i2, etc. To do
this we define a function f(x) as a piecewise constant function setting f(x) = Vik

for x
in (

∑
j<k sj ,

∑
j≤k sj ], an interval of length sk, and setting f(x) = 0 for x ∈ (1− sn+1, 1].

We note that
∑

j<k sj is the probability that we stop the process before getting to the
kth slot, so xk = 1 −

∑
j<k sj is the probability of the ad in the kth slot getting clicked

on. The integral of the segment of f with value Vik
is exactly ad ikth contribution to

social welfare. Summing over ads we get the following

LEMMA 3.2. Given a sorted order of ads i1, i2, . . ., the expected welfare resulting from
displaying ads in this order is expressed as

∫ 1

0
f(x)dx.

To facilitate evaluating the resulting welfare with different quality factors we will
also consider the welfare with the decreased continuation probabilities q′j . Let f ′ de-
note the analogous function defined for the same ordering using the probabilities q′ to
define modified V ′

i , and use the fact that
∫ 1

0
f ′(x)dx =

∑
k vik

∏
j<k q′ij

.
Now consider the Nash equilibrium of the game defined via the quality scores and

critical value pricing. Assume that f and f ′ are the functions defined above associated
with a pure Nash equilibrium of the above game. We are going to compare the quality of
this equilibrium to the welfare resulting from a greedy algorithm that has access to the
true values, but sorts by γivi, and is using modified continuation probabilities q′i such
that γi = (1 − q′i)

−1 to evaluate welfare. With the modified continuation probabilities
and the true values this greedy algorithm results in the efficient allocation, but due to
using smaller continuation probabilities, the allocation may not be efficient with the
real continuation probabilities.

It will be useful to also express the value resulting from the above greedy order via
an integral. Let g′(x) be the analogous function defined using the ads in decreasing
order of viγi values, and continuation probabilities q′j . Note that the modified value
used for the interval associated with ad j in function g′ is viγi, and hence the function g′

is monotone decreasing throughout the interval [0, 1]. The integral
∫ 1

0
g′(x)dx expresses

the welfare of the outcome of the greedy algorithm with continuation probabilities q′.
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THEOREM 3.3. For functions f , f ′ and g′ defined above
∫ 1

0
g′(x)dx ≤ 2(

∫ 1

0
f(x)dx +∫ 1

0
f ′(x)dx). The left hand side is the social value of the greedy order with continuation

probabilities q′ while the two integrals on the right hand side each express the social
value of the Nash equilibrium with continuation probabilities q and q′ respectively.

Before proceeding to the proof of the theorem, we state the corollary summarizing
the result. The same sort has higher value with higher continuation probabilities, and
hence

∫ 1

0
f(x)dx ≥

∫ 1

0
f ′(x)dx.

COROLLARY 3.4. The social welfare of the mechanism using γi ≤ (1− qi)−1 at Nash
equilibrium is at least a 1/4th fraction of the welfare of the greedy outcome.

PROOF. Assume ads are numbered 1, 2, . . . in decreasing order of viγi. Consider an
ad i in the greedy order, and let xg

i denote the probability that ad i gets clicked on in
the greedy order with continuation probability q′i, and sg

i = xg
i (1 − q′i) the probability

that this is the last ad clicked on. The interval associated with ad i in the function g′(.)
is [1− xg

i , 1− xg
i + sg

i ] and g′(x) = viγi in this interval.
The proof is analogous the the price of anarchy proof of [Lucier and Paes Leme 2011;

Caragiannis et al. 2011, 2012] considering for each ad i the value it can get by a pos-
sible deviation from Nash by bidding bi = vi/2. If this alternate bid b′i gets i to a
slot where the ad would get viewed with probability y with the modified probabilities
(which is the product of the continuation probabilities q′ above the new position of the
ad), then the deviation would result in a value of at least 1

2viy for advertiser i, as the
real probability of getting clicked on is even higher, and the price charged cannot ex-
ceed the bid. This implies that i must derive this much utility also at the equilibrium
resulting in ui(N) ≥ 1

2viy. We consider a few cases.

(a) If y ≥ xg
i , then the ad must get a value ui(N) of at least 1

2viy ≥ 1
2vix

g
i also in its

position in Nash, which is 1/2 the value derived by advertiser i in the greedy outcome.

Next consider the integral expressing the social value of Nash. For any x < 1 − y the
function value f ′(x) is defined by an ad j that is in an earlier slot than where bid 1

2vi

takes i, and hence bjγj ≥ 1
2viγi. Due to the conservative assumption it must also be the

case that vjγj ≥ bjγj ≥ 1
2viγi. The function value f ′(x) = vjγj , so we get f ′(x) ≥ 1

2viγi.

(b) If y ≤ xg
i+1, smaller than the probability of the next ad getting clicked on in the

greedy outcome, than we get f(x) ≥ 1
2viγi throughout the interval [1−xg

i , 1−xg
i+1] that

corresponds to ad i in the integral of g′, and so
∫ 1−xg

i+1

1−xg
i

f ′(x)dx ≥ 1
2vi

∏
j<i q′j = 1

2vix
g
i .

Combining these two bounds we get the following in both cases.

ui(N) +
∫ 1−xg

i+1

1−xg
i

f ′(x)dx ≥ 1
2
vix

g
i .

Finally, we claim that this bound also holds when xg
i+1 < y < xg

i . The ad i derives
value ui(N) ≥ 1

2viy, while the contribution of the integral is at least 1
2 (xg

i − y)viγi.
Summing these two we get at least 1

2vix
g
i , as claimed.

Summing over all advertisers, and using that social welfare at Nash can be ex-
pressed at

∫ 1

0
f(x)dx ≥

∫ 1

0
f ′(x)dx, and is at least the sum of advertisers utilities we

get the claimed theorem.
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Note that the proof used only one property of the outcome that bidder i has utility at
least as much as his deviation to the bid b′i = 1

2vi. Using the terminology from [Lucier
and Paes Leme 2011; Caragiannis et al. 2012] we showed that for the Unbounded Cas-
cade model the GSP game using γi = (1− qi)−1 is (1/2, 1)-semi-smooth. This allows up
to bound the outcome quality even in the Bayesian setting when types are drawn from
a possibly correlated distribution, and they are valid for learning outcomes. We assume
that the continuation probabilities qi are known and are used in the mechanism, only
valuations are private.

THEOREM 3.5. Consider the Unbounded Cascade Model using GSP mechanism
with γi = (1− qi)−1 in the Bayesian setting when player types are drawn from a distri-
bution F that is possibly arbitrarily correlated. The expected social welfare in outcomes
when players have no regret about one particular alternate bid b′i = vi/2 is at least 1/4th
of the maximum possible social welfare. Implying that the price of total anarchy for this
GSP game in the Bayesian Unbounded Cascade Model setting with correlated bids is
bounded by 4.

Next we derive similar bounds for the other models introduced. A simple mechanism
the Example 2.4 in section 2 modeling page breaks follows immediately.

To deal with the occasional δ decrease of the probability, we will use q′i = qiδ
1/k,

and quality factors γi = (1 − q′i)
−1. The difference in the click-through rates with con-

tinuation probabilities q′ and q differs by at most a factor of δ at any slot, and hence
the greedy algorithm that is optimal for q′ is at most a factor of δ off from the true
optimum. Theorem 3.5 immediately gives us the following.

COROLLARY 3.6. Consider the Unbounded Cascade Model with periodic gaps using
GSP mechanism with γi = (1− δ1/kqi)−1 in the Bayesian setting when player types are
drawn from a distribution F that is possibly arbitrarily correlated. The expected social
welfare in outcomes when players have no regret about one particular alternate bid
b′i = vi/2 is at least δ/4th of the maximum possible social welfare. Implying that the
price of total anarchy for this GSP game in the Bayesian Unbounded Cascade Model
with periodic gaps in setting with correlated bids is bounded by 4/δ.

Next consider the mechanism of Example 2.5 Unbounded Cascade Model with re-
serve price r. In presence of the reserve price, the mechanism allocates only bidders
with bi ≥ r, and changes participant at least the reserve price r. Slightly modifying the
proof to consider alternate bids (vi + r)/2 we get the following.

THEOREM 3.7. Consider the Unbounded Cascade Model using GSP mechanism
with reserve price r and with γi = (1 − qi)−1 in the Bayesian setting when player types
are drawn from a distribution F that is possibly arbitrarily correlated. The expected
social welfare in outcomes when players with values vi ≥ r have no regret about one
particular alternate bid b′i = (vi + r)/2 is at least 1/4th of the maximum possible social
welfare. Implying that the price of total anarchy for this GSP game in the Bayesian Un-
bounded Cascade Model with reserve price r in setting with correlated bids is bounded
by 4.

PROOF. The proof follows closely the the proof on Theorem 3.3, but we use γi =
(1−qi)−1, so won’t distinguish f and f ′, or g and g′. For an ad with value vi we consider
deviating bid b′i = (vi + r)/2. Let probability y the click probability resulting from this
deviation from Nash, as in the proof on Theorem 3.3. We get that ui(N) ≥ (vi − b′i)y =
1
2 (vi− r)y. For x < (1− y), the value f(x) corresponds to an ad j with vjγj > b′iγi, which
implies that f(x) ≥ b′iγi = vi+r

2 γi and hence f ′(x)− rγi ≥ 1
2 (vi− r)γi. We combine these,
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as was done in the proof on Theorem 3.3 using the notation xg
i we get

ui(N) +
∫ 1−xg

i+1

1−xg
i

f(x)dx ≥ 1
2
(vi − r)

∏
j

qj .

Adding these bounds for all players gives us a bound on total utility of players at Nash.
To get the social welfare we can add the revenue, which is at least r for every click,
and as we have unlimited slots the number of clicks is 1− x for x =

∏
j qj independent

of the order the ads. We get the following:∑
i

ui(N) + r(1− x) +
∫ 1−x

0

f(x)dx ≥ 1
2

∑
i

(vi − r)
∏
j

q′j + (1− x)r ≥ 1
2

∫ 1

0

g(x)dx.

The first two terms together are at most social welfare at Nash, so the left hand side is
at most twice the social welfare, while the right hand side is the welfare of the efficient
outcome, proving the bound of 4 on the price of anarchy.

Finally, we prove the first result mentioned in the introduction, a greedy mechanism
for the Example 2.2 of the Cascade Model with k slots. The case k = 1 is the clas-
sic Vickrey auction, so we will assume here k > 1. To guarantee good approximation
quality with the true valuations, we will use quality factors γi = min((1 − q′i)

−1 for
q′i = min(qi, 1− 1/k).

LEMMA 3.8. The quality of the greedy algorithm that assigns ads to k slots in sorted
order of values viγi is an (1 − 1/k)k(1 − (1 − 1/k)k) at least an 8th fraction, and ≈
e−1(1− e−1) ≈ 4.3 approximation algorithm for large k.

PROOF. With only k slots, the difference in click probabilities using continuation
probabilities q or q′ is at most a factor (1− 1

k )k. Recall the integral
∫ 1

0
g′(x)dx express-

ing the welfare of the greedy sort with continuation probabilities q′. Let xg
k+1 denote

product of the first k continuation probabilities q′ in this order. The welfare with con-
tinuation probabilities q′ generated by the first k ads is expressed by

∫ 1−xg
k+1

0 g′(x)dx.
Since q′i ≤ 1− 1/k we get xg

k+1 < (1− 1/k)k. The function g′ is monotone decreasing, so
the integral is at least a 1−xg

k+1 fraction of the total value, and 1−xg
k+1 ≥ 1−(1−1/k)k.

Combining these two bounds the social welfare of the first k ads in the sorted order
of viγi is at least a (1− 1/k)k(1− (1− 1/k)k) fraction of the maximum possible welfare.

Combining the approximation result with our mechanism we get the main theorem.

THEOREM 3.9. Consider the Cascade Model using GSP mechanism with k slots
and with γi = (1− q′i)

−1 as defined above in the Bayesian setting when player types are
drawn from a distribution F that is possibly arbitrarily correlated. The expected social
welfare in outcomes when players with values vi have no regret about one particular
alternate bid b′i = vi/2 is at least a 1

4 (1 − 1/k)k(1 − (1 − 1
k )) fraction of the maximum

possible social welfare. Implying that the price of total anarchy for this GSP game in
the Bayesian Unbounded Cascade Model with reserve price r in setting with correlated
bids is bounded by 4(1− 1/k)−k(1− (1− 1

k ))−1.

PROOF. Following the high-level outline of the introduction, we use the approxi-
mation bound and the proof of Theorem 3.3 to bound the price of anarchy. As usual,
assume ads are numbered in decreasing order of viγi. Our goal is to compare the greedy
outcome with the Nash equilibrium.
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As in the previous proof consider the deviating bid b′i = vi/2 for an ad i as before. If
this deviating bid gives the bidder one of the first k slots, we can use the argument in
the proof above to show that

ui(N) +
∫ 1−xg

i+1

1−xg
i

f ′(x)dx ≥ 1
2
vi

∏
j<i

q′j .

Let i be the first ad in the greedy order, where such a deviating bid doesn’t result in ad
i getting one of the top k slots. Adding the above bounds for ads before i, we get that

∑
j<i

ui(N) +
∫ 1−xg

i

0

f ′(x)dx ≥ 1
2

∫ 1−xg
i

0

g′(x)dx.

Now consider ad i, and let y be the product of the q′ probabilities of the k ads placed
in Nash. If the deviation b′i = vi/2 doesn’t get the ad i one of the top k slots, it must
be the case that the product bjγj for all ads placed in the Nash outcome have vjγj ≥
bjγj ≥ viγi/2, which implies that for all x ≤ y associated with ads in the top k slots
have f ′(x) ≥ 1

2viγi.

∑
j<i

ui(N) +
∫ 1−y

0

f ′(x)dx ≥ 1
2

∫ 1−y

0

g′(x)dx.

The left hand side is at at most twice the social welfare at Nash, while the right
hand side is closely related to the value of the greedy outcome. The integral

∫ 1

0
g′(x)dx

is at least a (1 − 1/k)k fraction of the optimal social welfare, and taking the integral
only till 1 − y possibly looses an additional factor of (1 − (1 − 1/k)k) as y ≤ (1 − 1/k)k.
This shows that the value of the Nash equilibrium is at least a 1

4 (1− 1/k)k(1− (1− 1
k ))

fraction of the maximum possible.
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Appendix: Price of Stability
Here we show that in the Unbounded Cascade model of Example 2.3, if the mechanism
is using quality factors γ = (1− qi)−1 (so the sort is optimal with the true values), VCG
gives rise to a Nash equilibrium, analogous to the results of [Edelman et al. 2007;
Varian 2007] in the case of the classical GSP model, and hence the price of Stability is
1.

THEOREM 3.10. In the Unbounded Cascade model in the the full information set-
ting the GSP mechansim with quality factors γi = (1 − qi)−1 has a Nash equilibrium
that implements the VCG outcome, and hence is socially optimal.

PROOF. Assume that ads are numbered in decreasing order of viγi. For user i the
total VGG payment is

Pi =
∑
j>i

vj(
∏
k<j

qk −
∏

k<j,k 6=i

qk) =
∏
k<i

qk[
∑
j>i

vj(1− qi)
∏

i<k<j

qk]

Advertiser i gets
∏

k<i qk clicks, so to pay the price Pi overall, the per click price
needs to be

pi =
∑
j>i

vj(1− qi)
∏

i<k<j

qk.

To get this per-click price to be the critical price, the advertiser i + 1 has to bid to
make pi/(1− qi) = bi+1/(1− qi+1), which makes

bi+1 = (1− pi+1)
∑
j>i

vj

∏
i<k<j

qk.

We first claim that bi ≤ vi. This is true as by the greedy order of numbering, we know
that vi(1 − qj) ≥ vj(1 − qi) for all j ≥ i. Using this with i + 1 > j we get that bi+1 ≤∑

j>i vi+1(1− pj)
∏

i<k<j qk = vi+1(1−
∏

i<k qk).
Next we first claim that these bids will cause the optimal sort to happen, that is, we

claim that mi = biγi is monotone. We can write mi as
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mi =
bi

1− qi
=

∑
j≥i

vj

∏
i≤k<j

qk = vi + qi

∑
j>i

vj

∏
i<k<j

qk

=
vi

(1− qi)
(1− qi) + qimi+1.

Recall that vi ≥ bi, hence vi/(1 − qi) ≥ mi, and so mi is a convex combination of mi+1

and a larger term vi/(1− qi).
Finally, we want to also claim that the bids bi form a Nash equilibrium. Consider

an advertiser i. Deviating to a smaller bid has the same effect as claiming a smaller
value in VCG, as the per-click VCG payments for bidder i depend on the bidders under
the slot and (1 − qi). VCG is truthful, and hence bidding to get a slot with lower click
probability cannot be beneficial.

We need to verify that it is not beneficial to bid to get a higher click probability slot,
as the payment resulting from a deviation is now dependent on the current per-click
VCG payment in a higher slot, which depended on bidder i also. To do this, we will
show that any ad placed in a later slot prefers slot i+1 to slot i. Applying this to all ad
j and all i < j shows that j doesn’t want to take any earlier slot. Recall that such an ad
must have vγ < viγi. Compared to slot i − 1, slot i has a qi smaller click-through rate.
To prove that slot i is preferred, we need to argue that the per-click value increases by
at least this factor.

The per-click price that advertiser placed lower has to pay for the new slot i is c such
that c/(1−q) = bi/(1−qi) = mi. Then we get, (v−c)/(1−q) = v/(1−q)−mi. In slot i+1
we get the same expression with mi+1 or mi+2 depending of the ad was originally in
slot i or even lower. The move from i + 1 to i changes the scaled per-click benefit from
v/(1− q)−mi+1 (or more if the ad was in slot i+1) to v/(1− q)−mi. Recall the relation

mi =
vi

(1− qi)
(1− qi) + qimi+1

The scaled per-click benefit v/(1− q)−mi is bounded as

v/(1− q)−mi = v/(1− q)− vi

(1− qi)
(1− qi)− qimi+1 ≤ qi(v/(1− q)−mi+1)

showing that for such bidders slot i + 1 is no worse (and typically better) then slot i,
and hence deviation to an earlier slot is not beneficial.
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