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Abstract. We study price-of-anarchy type questions in two-sided mar-
kets with combinatorial consumers and limited supply sellers. Sellers own
edges in a network and sell bandwidth at fixed prices subject to capacity
constraints; consumers buy bandwidth between their sources and sinks so
as to maximize their value from sending traffic minus the prices they pay
to edges. We characterize the price of anarchy and price of stability in
these “network pricing” games with respect to two objectives—the social
value (social welfare) of the consumers, and the total profit obtained by
all the sellers. In single-source single-sink networks we give tight bounds
on these quantities based on the degree of competition, specifically the
number of monopolistic edges, in the network. In multiple-source single-
sink networks, we show that equilibria perform well only under additional
assumptions on the network and demand structure.

1 Introduction

The Internet is a unique modern artifact given its sheer size, and the number
of its users. Given its (continuing) distributed and ad-hoc evolution, as well as
emerging applications, there have been growing concerns about the effective-
ness of its current routing protocols in finding good routes and ensuring quality
of service. Congestion and QoS based pricing has been suggested as a way of
combating the ills of this distributed growth and selfish use of resources (see,
e.g., [5, 7, 8, 10, 12]). Unfortunately, the effectiveness of such approaches relies on
the cooperation of the multiple entities implementing them, namely the owners
of resources on the Internet, or the ISPs. The ISPs’ goals do not necessarily
align with the social objectives of efficiency and quality of service; their primary
objective is to maximize their own market share and profit.

In this paper we consider the following question: given a large combinatorial
market such as the Internet, suppose that the owners of resources selfishly price
their product so as to maximize their profit, and consumers selfishly purchase
bundles of products to maximize their utility, how does this effect the functioning
of the market as a whole?

We consider a simple model where each edge of the network is owned by a
distinct selfish entity, and is subject to capacity constraints. Each consumer is
interested in buying bandwidth along a path from its source to its destination,
and obtains a fixed value per unit of flow that it can send along this path; con-
sumers are therefore single-parameter agents. The game proceeds by the sellers

⋆ Supported by NSF CAREER award CCF-0643763.
⋆⋆ Supported in part by NSF CAREER Award CCF-0448664, an ONR Young Investi-

gator Award, and an Alfred P. Sloan Fellowship.



first picking (per-unit-bandwidth) prices for their edges, and the consumers buy-
ing their most-desirable paths (or nothing if all the paths are too expensive). An
outcome of the game (a collection of prices and the paths bought by consumers)
is called a Nash equilibrium if no seller can improve her profit by changing her
price single-handedly. Note that the consumers already play a best-response to
the prices. We compare the performance of equilibria in this game to that of the
best state achievable through coordination, under two metrics—the social value
(efficiency) of the system, and the total profit earned by all the edges.

Economists have traditionally studied the properties of equilibria that emerge
in pricing games with competing firms in single-item markets (see, e.g., [15, 16]
and references therein). It is well known [11], e.g., that in a single-good free
market, oligopolies (two or a few competing firms) lead to a socially-optimal
equilibrium3. On the other hand, a monopoly can cause an inefficient allocation
by selfishly maximizing its own profit. Fortunately the extent of this inefficiency
is bounded by a logarithmic factor in the (multiplicative) disparity between
consumer values, as well as by a logarithmic factor in the number of consumers.

These classical economic models ignore the combinatorial aspects of network
pricing, namely that consumers have different geographic sources and destina-
tions for their traffic, and goods (i.e., edges) are not pure substitutes, but rather
are a complex mix of substitutes and complements, as defined by the network
topology. So a timely and basic research question is: which properties of stan-
dard price equilbrium models carry over to network/combinatorial settings? For
example, are equilibria still guaranteed to exist? Are equilibria fully efficient?
Does the answer depend in an interesting way on the network/demand struc-
ture? The network model captures the classical single-item setting in the form of
a single-source single-sink network with a single edge (modeling a monopoly), or
multiple parallel edges (modeling an oligopoly). In addition, we investigate these
questions in general single-source single-sink networks, as well as multiple-source
single-sink networks. Our work can we viewed as a non-trivial first step toward
understanding price competition in general combinatorial markets.

Our results. We study the price of anarchy, or the ratio of the performance of
the worst Nash equilibrium to that of an optimal state, for the network pricing
game with respect to social value and profit. We give matching upper and lower
bounds, as a function of the degree of competition in the network, and the
ratio L of the maximum and minimum customer valuations. For instances with
a high price of anarchy, a natural question is whether there exist any good
equilibria for the instance. We provide a negative answer in most such cases,
giving strong lower bounds on the price of stability, which quantifies the ratio
of the performance of the best Nash equilibrium to that of an optimal solution.

3 To be precise, there are two models of competition in an oligopolistic market—
Bertrand competition, where the firms compete on prices, and Cournot competition,
where they compete on quantity. The former always leads to a socially-optimal
equilibrium; the latter may not. In this paper we will focus on the Bertrand model.
See the full version [4] of this paper for a brief discussion of the Cournot model.



For single-source single-sink networks, we provide tight upper and lower
bounds on the prices of anarchy and stability (see Section 3). Although in a
network with a single monopolistic edge, these quantities are O(logL) for social
value, both become worse as the number of monopolies increases. The price of
stability, for example, increases exponentially with the number k of monopo-
lies, as Θ(Lk−1) for k > 1. The equilibrium prices in these instances are closely
related to the min-cut structure of the instances.

With respect to profit, as is expected, networks that contain no monopolies
display a large price of anarchy and stability because competition hurts the prof-
its of all the firms, while networks with a single monopoly perform very well.
One may suspect that as competition decreases further (the number of monop-
olies gets larger), collective profit improves. We show instead that the price of
stability for profit also increases exponentially with the number of monopolies.

In multiple-source single-sink networks, the behavior of Nash equilibria changes
considerably (see Section 4). In particular, equilibria do not always exist even
in very simple directed acyclic networks. When they do exist, some instances
display a high price of stability (polynomial in L) despite strong competition in
the network. In addition to the presence of monopolies, we identify other prop-
erties of instances that cause such poor behavior: (1) an uneven distribution of
demand across different sources, and (2) congested subnetworks (congestion in
one part of the network can get “carried over” to a different part of the network
in the form of high prices due to the selfishness of the edges). We show that in a
certain class of directed acyclic networks with no monopolies, in which equilibria
are guaranteed to exist, the absence of the above two conditions leads to good
equilibria. Specifically, the price of stability for social value in such networks
is at most 1/α where α is the sparsity of the network. Once again, we use the
sparse-cut structure of the network to explicitly construct good equilibria.

Related work. The literature on quantifying the inefficiency of equilibria is too
large to survey here; see [14] and the references therein for an introduction.

Recently, several researchers have studied the existence and inefficiency of
equilibria in network pricing models where consumers face congestion costs from
other traffic sharing the same bandwidth [9, 1, 2, 13, 17]. In these other works,
the routing cost faced by each consumer has two components: the price charged
by each edge on the path, and the latency faced by the consumer’s flow owing to
congestion on the path. In addition to selfish pricing, this congestion-based exter-
nality among consumers leads to highly inefficient outcomes even in very simple
networks (such as single-source single-sink series-parallel networks [2]). The cost
model considered by us is a special case of this latency-based cost function, in
which the latency faced by a flow is 0 as long as all capacity constraints along the
path are satisfied, and ∞ otherwise. Furthermore, in our model, latency (con-
gestion) costs are paid by edges, rather than by consumers, and therefore force
the edges to raise their prices just enough for the capacity constraints to be met.
Owing to the generality of the latency functions they consider, these other papers
study extremely simple network models. Acemoglu and Ozdaglar [1, 2], for exam-
ple, consider single-source single-sink networks with parallel links and assume



that all consumers are identical and have unbounded values (i.e. they simply
minimize their total routing cost). Hayrapetyan et al. [9] consider the same class
of networks but in addition allow different values for different consumers. In
contrast, we consider general single-source single-sink as well as multiple-source
single-sink topologies with the simpler capacity-based cost model. In effect, our
work isolates the impact of selfish pricing on the efficiency of the network in
the absence of congestion effects. Although capacity constraints in our model
mimic some congestion effects, we see interesting behavior even in the absence
of capacity constraints when the market contains monopolies.

Another recent work closely related to ours is a network formation model
introduced by Anshelevich et al. [3] in which neighboring agents form bilateral
agreements to both buy and sell bandwidth simultaneously. The game studied in
[3] can be thought of as a meta-level game played by agents when they first enter
the network and install capacities based on anticipated demand. Furthermore,
in their model there are no latencies or capacity constraints, instead there is a
fixed cost for routing each additional unit of flow.

2 Model & notation
A network pricing game (NPG) is characterized by a directed graph G = (V, E)
with edge capacities {ce}e∈E , and a set of users (traffic matrix) endowed with
values. Each edge is owned by a distinct ISP. (Many of our results can be easily
extended to the case where a single ISP owns multiple edges.) The value as-
sociated with each chunk of traffic represents the per-unit monetary value that
the owner of that chunk obtains upon sending this traffic from its source to its
destination. User values are represented in the form of demand curves4, D(s,t),
for every source-destination pair (s, t), where for every ℓ, D(s,t)(ℓ) represents the
amount of traffic with value at least ℓ. When the network has a single source-sink
pair, we drop the subscript (s, t). We use D to denote the “demand suite”, or
the collection of these demand curves, one for each source-sink pair. Without
loss of generality, the minimum value is 1, that is, D(s,t)(1) = Ftot

s,t for all pairs
(s, t), and we use L to denote the maximum value—L = sup{ℓ|D(s,t)(ℓ) > 0}.

We extend the classic Bertrand model of competition to network pricing. The
NPG has two stages. In the first stage, each ISP (edge) e picks a price πe. In the
second stage each user picks paths between its source and destination to send
its traffic. We assume that users can split their traffic into infinitesimally small
chunks, and spread it across multiple paths, or send fractional amounts of traffic.
Each user picks paths to maximize her utility, u = v−minP

∑

e∈P πe, where the
minimum is over all paths P from the user’s source to its destination, and v is
its value (or sends no flow if the minimum total price is larger than its value v).
This selection of paths determines the amount of traffic fe on each edge. ISP e’s
utility is given by feπe if fe ≤ ce, and −∞ otherwise. ISPs are selfish and set
prices to maximize their utility.

A given state in a game (in this case consisting of a set of prices and flow) is
called a Nash equilibrium if no agent wants to deviate from it unilaterally so as
to improve its own utility. Note that in the NPG, users are price-takers, that is,

4 We aggregate these curves over all users with the same source and destination pairs.



they merely follow a best response to the prices set by ISPs, and the responses
of different users are decoupled from each other. Therefore, given the first stage
strategies, the second stage strategies always form a Nash equilibrium, and the
dynamics of the system is determined primarily by the first stage game.

Note that by sending fractional flow, or splitting their traffic across multiple
paths, users effectively mimick randomized strategies. ISPs, on the other hand,
always pick a deterministic strategy (committing to a fixed price). Therefore,
(pure strategy) equilibria do not always exist in these games (indeed in the full
version of this paper [4] we present an example that admits no pure strategy
equilibria). Nevertheless we identify some cases in which equilibria do exist, and
characterize their performance in those cases.

Note also that if the flow f resulting from the users’ strategies in the second
stage is such that the capacity constraint on an edge e is violated, users using
e still obtain their value from routing their flow, while e incurs a large penalty.
Intuitively, the edge e is forced to compensate those users that are denied service
due to capacity constraints, for not honoring its commitment to serve them at
its declared price. This situation cannot arise at an equilibrium – any edge with
a violated capacity can improve its profit by increasing the price charged by it.

We evaluate the Nash equilibria of these games with respect to two objectives—
social value and profit. The social value of a state S of the network, Val(S), is
defined to be the total utility of all the agents in the system, specifically, the
total value obtained by all the users, minus the prices paid by the users, plus
the profits (prices) earned by all the ISPs. Since prices are endogenous to the
game, this is equivalent to the total value obtained by all the users, and we will
use this latter expression to evaluate it throughout the paper. The worst such
value over all Nash equilibria is captured by the price of anarchy: the price of
anarchy of the NPG with respect to social value, POAVal, is defined to be the
minimum over all Nash equilibria S ∈ N of the ratio of the social value of the
equilibrium to the optimal achievable value Val∗:

POAVal(G,D) =
minS∈N (G,D) Val(S)

Val∗

Here, Val∗ is the maximum total value achievable while satisfying all the capacity
constraints in the network (this can be computed by a simple flow LP). Likewise,
POAPro denotes the price of anarchy with respect to profit:

POAPro(G,D) =
minS∈N (G,D) Pro(S)

Pro∗

Here Pro(S) is the total utility of all the ISPs, or the total payment made by
all users. The optimal profit Pro∗ is defined to be the maximum profit over all
states in which users are at equilibrium, and capacity constraints are satisfied.

In instances with a large price of anarchy, we also study the performance of
the best Nash equilibria and provide lower bounds for it. The price of stability
of a game is defined to be the maximum over all Nash equilbria in the game
of the ratio of the value of the equilibrium to the optimal achievable value. We
use POSVal and POSPro to denote the price of stability with respect to social
value and profit respectively.



3 The network pricing game in single-source single-sink

networks

In this section we study the network pricing game in single commodity networks,
that is, instances in which every customer has the same source and sink. As
the single-item case suggests, the equilibrium behavior of the NPG depends
on whether or not there is competition in the network. However, the extent
of competition, specifically the number of monopolies, also plays an important
role. In the context of a network (or a general combinatorial market), an edge
monopolizes over a consumer if all the paths (bundles of items) desired by the
customer contain the edge.

Definition 1. An edge in a given network is called a monopoly if its removal

causes the source of a commodity to be disconnected from its sink.

No monopoly. In the absence of monopolies, the behavior of the network is
analogous to competition in single-item markets. Specifically, competition drives
down prices and enables higher usage of the network, thereby obtaining good
social value but poor profit.

Theorem 1. In a single commodity network with no monopolies, POAVal = 1.
Furthermore, there exist instances with POSPro = Θ(L).

Proof. We first note that an equilibrium supporting the optimal flow (w.r.t.
social value) always exists: consider an optimal flow of amount, say, f in the
network; let p = D−1(f) if the flow saturates the network, and 0 otherwise; pick
an arbitrary min-cut, and assign a price of p to every edge in the min-cut. These
prices, along with the flow f form an equilibrium: edges cannot improve their
profits by increasing prices unilaterally, because their customers can switch to a
different cheaper path, and, edges with non-zero prices are saturated and cannot
gain customers by lowering their price.

For a bound on the price of anarchy, consider any equilibrium in the given
instance, and suppose that the network is not saturated. If all the traffic is
admitted, then POAVal = 1. Otherwise, there exists an unsaturated edge, say
e, with non-zero price that does not carry all of the admitted flow (if there exists
a zero-price unsaturated path, then some users are playing suboptimally). Then
there is a source-sink path P carrying flow with e 6∈ P . Edge e can then improve
its profit by lowering its price infinitesimally and grabbing some of the flow on
path P which is not among the cheapest paths any more. This contradicts the
fact that the network is in equilibrium.

For the second part, we consider a network with unbounded capacity. Our
argument above (that POAVal = 1) implies that in any equilibrium all the
traffic is admitted. Therefore the price charged to each user is at most 1 (the
minimum value), and the total profit of the network is Ftot

s,t . On the other hand,
suppose that all but an infinitessimal fraction of the users have value L, then a
solution admitting only the high-value set of users (and charging a price of L to
each user) has net profit almost LFtot

s,t .

Single monopoly. As we show below, the best-case and worst-case performance
of single monopoly networks is identical to that of single-link networks.



Theorem 2. In a single commodity network with 1 monopoly, POAPro = 1 and

POAVal = O(logL). Moreover, there exist instances with POSVal = Θ(logL).

Proof. The second part follows by considering the 1/x demand curve from 1 to
L in a single link unbounded capacity network. The single link then behaves like
a monopolist, and w.l.o.g. charges a price of L, resulting in a social value of 1.
Adding an infinitesimal point mass in the demand curve at L breaks ties among
prices and ensures that this is the only equilibrium. The optimal social value,

on the other hand, is the total value of all users
∫ L

1 1/xdx = logL.
For the first part of the theorem, we first note that in a single-link net-

work (i.e. a single-item market), the above example is essentially the worst.
Specifically, if at equilibrium an x amount of flow is admitted, and each user
pays a price of p, then for each value q < p, D(s,t)(q) ≤ px/q. Therefore, the
total value foregone from not routing flow with value less than p is at most
∫ p

1 (px/q − x)dq < px log p < px logL. With respect to profit, a single-link net-
work is optimal by definition. We omit the straightforward extension to general
single commodity networks (see [4]).

Multiple monopolies. The performance of the game with multiple monopolies
degrades significantly – the price of anarchy can be unbounded even with 2
monopolies. As we show below, the best Nash equilibrium behaves slightly better
but is still a polynomial factor worse than an optimal solution.

Theorem 3. For every B, there exists a single-source single-sink instance of

the NPG containing 2 monopolies, with L = 2, and POAVal,POAPro = Ω(B).

Proof. Consider a network with a single source s, a single sink t, an intermediate
node v, and two unit-capacity edges (s, v) and (v, t). Ftot

s,t = 1; all but a 1/B
fraction of the traffic has a value of 1; the rest has a value of 2. We claim
that πe = 1 for each of the edges is an equilibrium: there is no incentive to
increase price (and lose all customers), and, in order to get more customers,
unilaterally any edge must decrease its price to 0. The social value and profit of
this equilibrium are both 2/B, whereas the optimal social value (with πe = 1/2
for both the edges) is 1 + 1/B and the optimal profit is 1.

Theorem 4. There exists a family of single-commodity instances with POSVal,

POSPro = Ω(Lk−1), where k is the number of monopolies. Moreover, in all

single-commodity graphs with k > 1 monopolies, POSVal,POSPro = O(Lk−1).

Proof. For the first part of the theorem, we consider a graph containing a single
source-sink path with k edges and unbounded capacities. There are n users,
each endowed with a unit flow. The ith user has value vi with vi recursively
defined: v1 = 2, v2 = (1 − 1

n ) 2k
2k+1 , vi+1 = (1 − 1

n ) ik
ik+1vi for i ∈ [3, n]. (That is,

vi+1 = (1− 1
n )i
∏

j≤i
kj

kj+1 for i > 1.) This network contains a single equilibrium,

one at which each edge charges a price of v1/k = 2/k, and admits a single user.
Since the network has unbounded capacity, the optimal solution (for social

value) admits the entire flow. Some algebra shows that vn = Θ(n−1/k). So, the
social value of the optimum is

∑

i vi = Ω(n1−1/k) = Ω(Lk−1), as L = v1/vn =
Θ(n1/k). The total achievable profit is also at least nvn = Ω(n1−1/k) = Ω(Lk−1).



On the other hand, the social value of the equilibrium, as well as its profit, is
v1 · 1 = 2. This concludes the proof of the first part of the theorem.

For the second part, let D denote the inverse-demand curve for the network,
i.e., for every x, an x amount of flow has value at least D(x). Without loss of
generality, D(0) = L, D(F ) = 1, where F = Ftot

s,t is the total optimal amount

of flow. Let x∗ = argmaxx≤F {x
1/kD(x)}. We claim that the following is an

equilibrium: each monopoly charges a price of p∗ = D(x∗)/k, and each non-
monopoly charges 0. It is obvious that the non-monopolies have no incentive to
increase their price. So, for the rest of the proof, we focus on the monopolies.

Suppose that a monopoly wants to deviate and change its price to p′ =
p∗ − D(x∗) + D(x′) ≥ 0, for some x′ ∈ [0, F ]. Then, the total price of any
source-sink path is D(x′), and the total amount of flow admitted is no more
than x′. The profit of the monopoly goes from p∗x∗ to at most p′x′, which can
be simplified as follows:

p′x′ =

(

D(x∗)

k
− D(x∗) + D(x′)

)

x′ ≤
D(x∗)x∗

k

(

x′

x∗
(1 − k) + k

(

x′

x∗

)1−1/k
)

<
D(x∗)x∗

k

(

x′

x∗
(1 − k) + k + (k − 1)

x′

x∗
− (k − 1)

)

= p∗x∗

Here we used (1 + ǫ)α < 1 + αǫ for all ǫ > −1 and for all α ∈ (0, 1). This proves
that the agent has no incentive to deviate. It remains to show that this equi-
librium achieves good social welfare. First note that D(F )F 1/k ≤ D(x∗)(x∗)1/k.
Therefore, F ≤ x∗(D(x∗))k. Likewise, ∀y ∈ [0, F ], D(y) ≤ D(x∗)(x∗/y)1/k. So
the total value of flow not admitted by the equilibrium is
∫ y=F

y=x∗

D(y)dy ≤

∫ y=F

y=x∗

D(x∗)(x∗/y)1/kdy =
D(x∗)(x∗)1/k

(1 − 1/k)
(F 1−1/k − (x∗)1−1/k)

≤ (1 − 1/k)−1(D(x∗)kx∗ − D(x∗)x∗) < 2(D(x∗))kx∗

So, the maximum social welfare achievable is strictly less than 2(D(x∗))kx∗ plus
the social value of the above equilibrium, while the equilibrium achieves at least
D(x∗)x∗. The price of stability is therefore no more than 2(D(x∗))k−1 + 1 ≤
3Lk−1. It is easy to see that the same bound holds for profit as well.

4 Networks with multiple sources

Next we study the NPG in graphs with more general traffic matrix. Specifically
different users have different sources, but a common sink. We assume that the
network is a DAG with a single sink, and focus on instances that contain no
monopolies5. Theorem 1 already shows that the price of stability with respect
to profit can be quite large in this case. The main question we address here
is whether competition drives down prices and enables a near socially optimal
equilibrium just as in the single-commodity case.

The results are surprisingly pessimistic. We find that there are networks with
no pure equilibria. (See [4] for proofs of the next two theorems.)
5 We mainly give strong lower bounds on the price of stability. Naturally, the same

bounds hold for instances containing monopolies.



Theorem 5. There exists a multi-source single-sink instance of the NPG with

no monopolies that does not admit any pure Nash equilibria.

In networks that admit pure equilibria, the price of stability for social value can
be polynomial in L. This can happen (Theorem 6 below) even when the network
in question satisfies a certain strong-competition condition, specifically, (1) there
is sufficient path-choice – from every node in the graph, there are at least two
edge-disjoint paths to the sink, and (2) no edge dominates over a specific user in
terms of the capacity available to that user – removing any single edge reduces
the amount of traffic that any user or group of users can route by only a constant
fraction. We therefore attempt to isolate conditions that lead to a high price of
stability, and find two culprits:

1. Variations in demand curves across users—a very high value low traffic user
can pre-empt a low value high traffic user.

2. Congestion in the network—congestion in one part of the network (owing to
low capacity), can get “carried over” to a different part of the network (in
the form of high prices) due to the ISPs’ selfishness.

Each condition alone can cause the network to have a high price of stability.

Theorem 6. There exists a family of multiple-source single-sink instances sat-

isfying strong competition and containing uniform demand such that POSVal =
Ω(poly L, poly N), where N is the size of the network. There exists a family

of multiple-source single-sink instances satisfying strong competition and with

sparsity 1 such that POSVal = Ω(poly L, poly N).

Here uniformity of demand and sparsity defined as follows.

Definition 2. An instance of the NPG, (G,D), with multiple commodities and

a single sink t is said to contain uniform demand if there exists a demand curve

D such that for all s, D(s,t) is either zero, or equal to a scalar Fs,t times D.

Definition 3. Given a capacitated graph and a demand matrix, the sparsity of

a cut in the graph with respect to the demand is the ratio of the total capacity

of the cut to the total demand between all pairs (s, t) separated by the cut. The

sparsity of the graph is the minimum of these sparsities over all cuts in the graph.

Fortunately, in the absence of the two conditions above, the network behaves
well. In particular, we consider a certain class of DAGs called traffic-spreaders
in which equilibria are guaranteed to exist, and show that when demand is
uniform, the price of stability with respect to the social value is at most 1/α,
where α is the sparsity of the network. We conjecture that this bound on the
price of stability holds for all DAGs that admit pure equilibria.

Definition 4. A DAG with sink t is said to be a traffic spreader if for every

node v in the graph, and every two distinct paths P1 and P2 from v to t, any

maximal common subpath of P1 and P2 is a prefix of both the paths.

Theorem 7. Let (G,D) be a uniform-demand instance of the NPG where G
is a traffic spreader and contains no monopolies, and all sources in the graph

are leaves, that is, their in-degree is 0. Then (G,D) always admits a pure Nash

equilibrium, and POSVal ≤ 1/α, where α is the sparsity of G with respect to D.



We remark that for Theorem 7, we do not require the instance to satisfy strong
competition. This indicates that the amount of competition in the network has
lesser influence on its performance compared to its traffic distribution.
Proof of Theorem 7. We begin with some notation. Given a graph G and a flow
f in G satisfying capacity constraints, G[f ] is the residual graph with capacities
c′e = ce − fe. For a graph G = (V, E), set S of nodes, and set E′ of edges, we use
G \ S to denote (V \ S, E[V \ S]), and G \ E′ to denote (V, E \ E′).

Given an instance (G,D), G = (V, E), satisfying the conditions in the theo-
rem, we construct an equilibrium using the algorithm below. Let Fv denote the
total traffic at source v, and D be a demand curve defined such that Dv,t = FvD
for all v. The algorithm crucially exploits the sparse-cut structure of the network.
In particular, we use as subroutine a procedure for computing the maximum con-
current flow in a graph with some “mandatory” demand. We call this procedure
MCFMD (for Maximum Concurrent Flow with Mandatory Demand).

MCFMD takes as input a DAG G with single sink t, a set of sources A with
demands Fv at v ∈ A, and a set of mandatory-demand sources B with demands
Mv at v ∈ B. It returns a cut C and a flow f . Let VC denote the set of nodes
from which t is not reachable in G \ C. The cut C minimizes “sparsity with
mandatory demand” defined as follows:

αM (C) =

∑

e∈C ce −
∑

v∈B∩VC
Mv

∑

v∈A∩VC
Fv

The flow f routes the entire demand Mv of sources v ∈ B to t, and an αM (C)
fraction of demands Fv at sources v ∈ A to t. The next lemma asserts the
correctness of this procedure (see [4] for a proof): sparsity is equal to maximum
concurrent flow in DAGs with a single sink, even with mandatory demands.

Lemma 1. Let (G, A, B) be an instance for MCFMD, and α = αM (C) be the

sparsity of the cut C produced by the procedure. Then, there exists a flow in G
that satisfies all capacity constraints, routes an Mv amount of flow from every

v ∈ B to t, an αFv amount of flow from every v ∈ A to t, and saturates C.

Armed with this procedure, our algorithm for constructing an equilibrium is as
follows. (Note that we do not care about computational efficiency here.)

1. Set G1 = G, V1 = V , C = ∅, B1 = ∅, i = 1. Let A1 = A be the set of
all sources in the instance. Let f denote a partial flow in the graph at any
instant; initialize f to 0 at each edge.

2. Repeat until Ai is empty:
(a) Run the procedure MCFMD on Gi with demands Ai and mandatory

demands Bi. Let Ci be the resulting cut and f ′
i be the resulting flow.

Let αi = αM (Ci), Xi = Ai ∩VCi
, Yi = Bi ∩VCi

, and C = C ∪Ci. Define
Vi+1 to be the set of nodes with paths to t in G \ C, and Si to be the
subset of V \ Vi+1 reachable from Xi or Yi in G.

(b) Construct a partial flow from f ′
i as follows. Let B′ = {v : ∃u with (u →

v) ∈ Ci}, and for all v ∈ B′ let Mv =
∑

u:(u→v)∈Ci
c(u,v). Let fi be a

partial flow of amount αiFv from each v ∈ Xi, and amount Mv from each
v ∈ Yi to B′, given by the prefices of some of the flow paths in f ′

i . Let
f = f + fi, Ai+1 = Ai \Xi, and Bi+1 = (B \ Yi)∪B′. Set ℓi = D−1(αi).



(c) Let Gi+1 = Gi \ Si; repeat for i = i + 1.
3. Route all the flow from Bi to t in Gi satisfying capacity constraints. Call

this flow fi, and set f = f + fi.
4. Assign a “height” to every node v in the graph as follows: if there exists an

i such that v ∈ Si, then h(v) = mini:v∈Si
{ℓi}; if there is no such i, then

h(v) = 0. Furthermore, h(t) = 0 for the sink t.
5. For every edge e = (u → v), let πe = max{h(u) − h(v), 0}.

Let I be the final value of the index i. Recall that VI is the set of nodes that can
reach t in GI . We will show that (π, f) is a Nash equilibrium. This immediately
implies the result, because as we argue below, f admits an αi ≥ α fraction of the
most valuable traffic from all sources in Xi. We first state some facts regarding
the heights h(v) and the flow f (see [4] for the proofs of these lemmas).
Lemma 2. f is a valid flow and routes an αi fraction of the traffic from all

v ∈ Xi to t. Furthermore, for every i, 1 < i < I, in the above construction,

αi ≥ αi−1, and α1 > α, where α is the sparsity of the graph G.

Lemma 3. V (Gi) = Vi for all i ≤ I, and h(v) = 0 if and only if v ∈ VI . For

any source v with v ∈ Xi, h(v) = ℓi.

Lemma 4. For every pair of nodes u and v with h(u), h(v) > 0 such that there

is a directed path from u to v in G, h(u) ≥ h(v). Furthermore, for every node v
with h(v) > 0, every path from v to t is fully saturated under the flow f .

Lemma 5. For every source v with v ∈ Xi, every path from v to t has total

price at least ℓi. Furthermore, there exist at least two edge-disjoint paths P1 and

P2 from v to t such that
∑

e∈P1
πe =

∑

e∈P2
πe = ℓi.

Lemma 6. Let P be a flow carrying path from v ∈ Xi to t. Then
∑

e∈P πe = ℓi.

Finally, we claim that (π, f) is an equilibrium. First observe that we route an
αiFv amount of flow for every v in Xi. Each chunk of traffic originating at v
that gets routed has value at least D−1(αi) = ℓi. Therefore, Lemmas 5 and 6
imply that users follow best response. Next, consider any edge e = (u → v).
Note that e has no incentive to increase its price – Lemma 5 ensures that all the
traffic on this edge has an alternate path of equal total price. Finally, if the edge
has non-zero price, it can gain from lowering its price only if this increases the
traffic through it. Let C′ be the mincut between u and t. Note that h(u) > 0.
Lemma 4 implies that the cut C′ is saturated. Suppose that e has non-zero
residual capacity (i.e. e 6∈ C′) and by lowering its price, the edge gains extra
traffic without violating the capacity of the cut C′. This means that the extra
traffic on e was previously getting routed along a path that crosses the cut C′,
and furthermore shares a source with the edge e. This contradicts the fact that
the network is a traffic spreader. Therefore, no edge has an incentive to deviate.

5 Discussion and Open Questions

We consider a simplistic model for network pricing. A more realistic model should
take into account quality of service requirements of the users, which may be
manifested in the form of different values for different paths between the same
source-destination pairs. In general combinatorial markets it would also be in-
teresting to consider the effect of production costs on the pricing game, and



this may change the behavior of the market considerably. Finally, an alternate
model of competition in two-sided markets is for the sellers to commit to produc-
ing certain quantities of their product, and allowing market forces to determine
the demand and prices. This two-stage game, known as “Cournot competition”,
may lead to better or worse equilibria compared to Bertrand competition. We
include a brief discussion of these extensions in the full version of this paper [4].
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N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, editors, Algorithmic

Game Theory, chapter 17, pages 443–459. Cambridge University Press, 2007.
15. A. M. Spence. Entry, capacity, investment and oligopolistic pricing. The Bell

Journal of Economics, 8(2):534–544, 1977.
16. K. Srinivasan. Multiple market entry, cost signalling and entry deterrence. Man-

agement Science, 37(12):1539–1555, 1991.
17. G. Y. Weintraub, R. Johari, and B. Van Roy. Investment and market structure in

industries with congestion. Unpublished manuscript, 2007.


