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Abstract. We show a formal duality between certain equilibrium con-
cepts, including the correlated and coarse correlated equilibrium, and
analysis frameworks for proving bounds on the price of anarchy for such
concepts. Our first application of this duality is a characterization of the
set of distributions over game outcomes to which “smoothness bounds”
always apply. This set is a natural and strict generalization of the coarse
correlated equilibria of the game. Second, we derive a refined definition
of smoothness that is specifically tailored for coarse correlated equilibria
and can be used to give improved POA bounds for such equilibria.

1 Introduction

A rigorous way to argue that a system with self-interested participants has good
performance is to prove that every “plausible outcome” of the system has ob-
jective function value close to that of an optimal outcome. For example, one
could model a system as a one-shot game, identify “plausible outcomes” with
the pure-strategy Nash equilibria (PNE) — outcomes in which each player deter-
ministically picks one strategy so that it has no incentive to unilaterally deviate
from it — and prove a relative approximation bound for the PNE of the game.

Such price of anarchy (POA) bounds become increasingly robust and com-
pelling as one increases the set of “plausible outcomes”. For example, a POA
bound that applies only to the pure-strategy Nash equilibria of a game presumes
that the system reaches such a state. This can be a bold assumption, for example
in contexts where it is computationally difficult to compute a PNE (see e.g. [7]).
A POA bound that applies more generally to “easily learned” outcomes, such as
the correlated equilibria [1] or coarse correlated equilibria [8] of a game, presumes
far less about the game’s participants [2, 3]. Of course, worst-case approximation
bounds typically degrade as the assumptions about play are weakened — for ex-
ample, the expected performance of the worst coarse correlated equilibrium of a
game is typically worse than that of the worst pure-strategy Nash equilibrium.
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This paper shows a precise duality between certain equilibrium concepts,
including correlated and coarse correlated equilibria, and analysis frameworks for
proving POA bounds for such concepts. This duality makes formal the intuitive
trade-off between the plausibility of the rationality assumptions imposed on the
game participants and the quality of the corresponding worst-case approximation
bound. We offer two applications.

1. Roughgarden [11] showed that every POA bound proved using a “smooth-
ness argument” (see Definition 1) — the most frequently employed method
for establishing POA bounds (e.g. [5, 6, 9, 10, 12]) — applies automatically to
(at least) all CCE of the game. A basic problem is to characterize the distri-
butions over outcomes to which smoothness bounds always apply. We solve
this problem (Theorem 1) and show that the answer is a generalization of
CCE in which the average regret of players is non-positive, as opposed to the
CCE condition that every player has non-positive regret (see Definition 2).

2. Applying the duality result in the opposite direction yields analysis frame-
works that are guaranteed to be tight for the corresponding equilibrium
concepts. We illustrate this idea with the set of CCE, where the correspond-
ing multi-parameter analysis framework refines the simpler two-parameter
smoothness paradigm in [11]. This more flexible analysis framework is, by
definition, specifically tailored for CCE and can be used to give improved
POA bounds for such equilibria.

2 The Primal-Dual Framework

Section 2.1 reviews standard definitions of cost-minimization games, equilibrium
concepts, and the price of anarchy. Section 2.2 presents our first contribution and
shows that, for every equilibrium concept that can be expressed as the proba-
bility distributions over outcomes that are solutions to a set of homogeneous
inequalities, there is a corresponding analysis framework that is guaranteed to
prove tight bounds on the price of anarchy for that concept. Our second con-
tribution, described in Section 2.3, is an application of this framework: POA
bounds proved using the “smoothness paradigm” introduced in [11] apply pre-
cisely to a generalization of coarse correlated equilibria that we call “average
coarse correlated equilibria”. Section 2.4 demonstrates how a sharper analysis
method tailored specifically for coarse correlated equilibria, which follows di-
rectly from our primal-dual framework, can be used to prove bounds superior to
those that follow from the standard smoothness paradigm.

2.1 Preliminaries

Cost-minimization games. We denote a cost-minimization game by a tuple Γ =
(N, {Si}i∈N , {Ci}i∈N ), where N = {1, . . . , n} is the set of n players, Si is the
set of actions of player i, and ci : S 7→ R++ is player’s i positive cost function,
where S = S1×S2×· · ·×Sn is the joint action set.1 We use ∆(S) to denote the

1 Our results can be reworked without difficulty for payoff-maximization games.



set of probability distributions over S and s−i to denote the strategies played
in s by the players other than i.

Equilibrium concepts and the price of anarchy. In this paper, we consider equilib-
rium concepts that can be described as subsets of ∆(S). In particular, recall that
a correlated equilibrium (CE) is a joint probability distribution σ over outcomes
of Γ with the property that E s∼σ[Ci(s)|si] ≤ E s∼σ[Ci(s

′
i, s−i)|si] for every i and

si, s
′
i ∈ Si. Thus a distribution σ over outcomes is a CE if the following holds

for a random sample s ∼ σ: for each player i and “recommended strategy” si,
the player minimizes its expected cost, conditioned on the recommendation si
and assuming that other players play according to s−i, by playing si. CE are
also the limits of sequences of repeated play in which each player has vanishing
per-step swap or internal regret (see [4]). The mixed Nash equilibria of a game
are precisely the CE that are also product distributions.

A coarse correlated equilibrium (CCE) is a joint probability distribution σ
over outcomes of Γ with the property that E s∼σ[Ci(s)] ≤ E s∼σ[Ci(s

′
i, s−i)] for

every i and s′i ∈ Si. These equilibrium constraints consider only player deviations
that are independent of the recommendation si, so every CE is also a CCE (and,
generally, the converse fails). CCE are also the limits of sequences of repeated
play in which each player has vanishing per-step external regret (see [4]).

We assume that the objective function is to minimize the total cost C(s) =∑
i∈N Ci(s), and use s∗ to denote an optimal outcome. The price of anarchy

(POA) of a game for an equilibrium concept EQ ⊆ ∆(S) is the ratio between
the expected total cost of the worst (i.e., highest-cost) equilibrium σ ∈ EQ and
the social cost of s∗.

2.2 A Primal-Dual Framework for POA Bounds

This section describes our primal-dual framework, which formalizes a duality be-
tween equilibrium concepts that can be represented as solutions of homogeneous
inequalities and analysis methods that are necessary and sufficient to prove tight
bounds on the POA for such concepts.

Fix a game Γ , and an equilibrium concept EQ that can be written as EQ =
{σ ∈ ∆(S) : Aσ ≤ 0}, where A ∈ R|S|×m is a matrix that can depend on players’
cost functions in Γ . For example, the equilibrium concepts CE and and CCE
can be described in this way:

Example 1 (Correlated Equilibria). We can express the CE of a cost-minimization
game as the probability distributions over outcomes that satisfy

CE =

{
σ :

∑
s:si=si

σs(C(s′i, s−i)− C(s)) ≤ 0, for every i ∈ N, and si, s
′
i ∈ Si, σs ≥ 0

}
.

Example 2 (Coarse Correlated Equilibrium). We can express the CCE of a cost-
minimization game as the probability distributions that satisfy

CCE =

{
σ :
∑
s

σs(C(s′i, s−i)− C(s)) ≤ 0, for every i ∈ N, and s′i ∈ Si, σs ≥ 0

}
.



A third example will arise naturally in Section 2.3.
We now develop our simple primal-dual framework. We can formally write

the POA of a game Γ and an equilibrium concept EQ as

POAEQ(Γ) = sup
σ∈EQ

{
E s∼σ[C(s)]

C(s∗)

}
.

After scaling by C(s∗), this maximization problem can be expressed as the so-
lution of the following linear program:

PRIMAL-EQ : Maximize
∑

s∈S σsC(s)
subject to

∑
s∈S σsC(s∗) = 1

Aσ ≤ 0, σs ≥ 0

The dual problem of PRIMAL-EQ is

DUAL-EQ : Minimize p
subject to C(s∗)p · 1n + zAT ≥ 0,

z ≥ 0, p ≥ 0, p ∈ R, z ∈ Rm

where 1n is the n dimensional vector with all entries 1, and m is the number of
inequalities in A.

We say that a game is p-bounded for the equilibrium concept EQ if there
exists a vector z ∈ Rm such that the pair (p, z) is feasible for DUAL-EQ, or
simply p-bounded when the equilibrium concept is clear. We refer to z as a dual
certificate for Γ and EQ.

Strong linear programming duality immediately implies the following.

Proposition 1. For every cost-minimization game Γ and equilibrium concept EQ
representable as the solution of homogeneous inequalities, POAEQ(Γ) ≤ p if and
only if Γ is p-bounded for EQ.

The following example instantiates Proposition 1 for correlated equilibria.
The next two sections provide further examples.

Example 3 (Primal-Dual Framework for Correlated Equilibria). For a cost-minimization
game Γ , the quantity POACE(Γ) is, by definition, the optimal solution to the
problem PRIMAL-CE:

PRIMAL-CE : Maximize
∑

s∈S σsC(s)/C(s∗)
subject to

∑
s∈S σs = 1∑
s:si=a

σs(C(b, s−i)− C(s)) ≤ 0, for every i ∈ N,
and a, b ∈ Si

σs ≥ 0.

The corresponding DUAL-CE problem is then

DUAL-CE : Minimize p
subject to pC(s∗) +

∑
i

∑
b∈Si

zisi,b (Ci(s)− Ci(b, s−i)) ≥ C(s),

for all s ∈ S
z ≥ 0, p ≥ 0.



Hence, to prove an upper bound of p on the POA for correlated equilibrium, it
suffices to show that the game is p-bounded for CE — that is, to find a dual
certificate z = {zia,b}i∈N,a,b∈Si so that (p, z) is feasible for DUAL-CE.

2.3 The Limits of (λ, µ)-Smoothness

Roughgarden [11] defined a smooth game as follows.

Definition 1 (Smooth Games). A cost-minimization game with minimum-
cost outcome s∗ is (λ, µ)-smooth if

k∑
i=1

Ci(s
∗
i , s−i) ≤ λ · C(s∗) + µ · C(s) (1)

for every outcome s.

One of the main results in [11] is that POACCE(Γ) ≤ λ/(1 − µ) whenever Γ is
(λ, µ)-smooth.2 In addition, many known POA bounds — often stated only for
pure or mixed Nash equilibria — are or can be recast as smoothness bounds
(see [11]), and thus these bounds “extend automatically” to the more general
concept of CCE.

This section addresses the basic question of characterizing the distributions
over outcomes to which a (λ, µ)-smoothness bound applies. The answer, which
we derive via the primal-dual framework in the previous section, turns out to be a
strict generalization of CCE that we call an average coarse correlated equilibrium,
with respect to s∗ (ACCE∗).

Definition 2 (ACCE∗). For a fixed game and an outcome r ∈ S

ACCEr = {σ ∈ ∆(S) : Es∼σ[C(s)] ≤ Es∼σ[
∑
i

Ci(ri, s−i)]}.

When r is the minimum-cost outcome s∗, we abbreviate ACCEs∗ by ACCE∗.

Conceptually, there are two differences between a CCE and an ACCE∗. In a
CCE, the expected cost incurred by a player is at most that of unconditionally
deviating to an any fixed action — i.e., every player has non-positive “regret”.
ACCE∗ is a more permissive equilibrium concept. First, we measure the regret of
a player i by comparing its expected cost only to that incurred under a deviation
to s∗i , rather than to an arbitrary (or best) strategy. Second, in an ACCE∗, some
players i can have negative regret with respect to s∗i as long as the average (over
players) such regret is non-positive. Unsurprisingly, many games have ACCE∗

that are not CCE; the proof of Proposition 2 provides one concrete example.

2 In [11] the definition of (λ, µ)-smoothness requires that inequality (1) holds for every
pair s, s∗ outcomes. The weaker requirement stated here still translates, via the same
proofs, to an upper bound on the POA for CCE.



The next theorem shows that every (λ, µ)-smoothness argument bounds the
worst-case expected cost of precisely the set of ACCE∗. This characterization has
both positive and negative implications. First, even the ACCE∗ distributions of
a (λ, µ)-smooth game have good expected cost (and not only the CCE, as proved
in [11]). Second, conversely, the worst-case ACCE∗ constrains the best-possible
upper bound that can be proved via a (λ, µ)-smoothness argument.

Theorem 1 (Duality Between (λ, µ)-Smoothness and ACCE∗). For every
cost-minimization game Γ , the best smoothness upper bound for Γ equals its POA
for the equilibrium concept ACCE∗:

inf

{
λ

1− µ
: (λ, µ) s.t. the game Γ is (λ, µ)-smooth

}
= POAACCE∗(Γ).

Proof. We prove that the (λ, µ)-smoothness requirements are equivalent to the
constraints of the DUAL problem for the equilibrium concept ACCE∗. We con-
sider the linear fractional problem for obtaining the best (i.e., least) upper bound
using (λ, µ)-smoothness:

(LFP) : Minimize λ
1−µ

subject to
∑
i∈N Ci(s

∗
i , s−i) ≤ λC(s∗) + µC(s), for all s ∈ S

µ < 1.

By rearranging terms in the first inequality of problem (LFP) and dividing
through by 1− µ > 0 we obtain

(LFP2) : Minimize λ
1−µ

subject to λ
1−µC(s∗) + 1

1−µ
(
C(s)−

∑
i∈N Ci(s

∗
i , s−i)

)
≥ C(s)

for all s ∈ S
µ < 1.

Now, re-writing (LFP2) with a change of variables p = λ
1−µ , and z = 1

1−µ gives

the following linear program (LP):

(LP) : Minimize p
subject to pC(s∗) + z (C(s)−

∑
i Ci(s

∗
i , s−i)) ≥ C(s), for all s ∈ S

z > 0.

The dual problem of (LP) is:

(D): Maximize
∑

s∈S σsC(s)
subject to

∑
s∈S σsC(s∗) ≤ 1∑
s σ(s) (

∑
i C(s∗i , s−i)− C(s)) ≥ 0

σs ≥ 0, for all s ∈ S.

We can replace the first inequality in (D) with an equality since the social cost
function is positive by assumption. Then, after scaling by C(s∗) we get an equiv-



alent linear program that corresponds to the POA for ACCE∗:

(PRIMAL-ACCE∗) : Maximize
∑

s∈S σs
C(s)
C(s∗)

subject to
∑

s∈S σs = 1∑
s σ(s) (

∑
i C(s∗i , s−i)− C(s)) ≥ 0

σs ≥ 0, for all s ∈ S.

2.4 Better Dual Certificates Give Better POA Upper Bounds

Theorem 1 shows that the smoothness analysis framework in [11] corresponds
precisely to worst-case upper bounds on the set of ACCE∗. In this section we
assume that the goal is to prove upper bounds on the quantity POACCE(Γ), and
view the fact that (λ, µ)-smoothness bounds the expected cost of a strictly larger
set of outcome distributions as an “accident”. Motivated by this perspective,
this section uses the primal-dual framework of Section 2.2 to derive a condition
tailored for CCE that is sharper than (λ, µ)-smoothness and that can be used
to prove better upper bounds on POACCE(Γ).

Let CCE∗ denote the equilibrium concept where each player’s expected cost
is at most that of deviating to its action in s∗, i.e., σ ∈ CCE∗, if and only if

E s∼σ[Ci(s)] ≤ E s∼σ[Ci(s
∗
i , s−i)]

for every i ∈ N . Obviously, CCE ⊆ CCE∗ ⊆ ACCE∗.
Proposition 1 shows that every equilibrium concept that is the solution to

homogeneous inequalities, such as CCE∗, has a corresponding tight analysis
framework. To bound the POA for CCE∗, we only need to find a suitable dual
certificate. The DUAL-CCE∗ problem is

(DUAL-CCE∗) : Minimize p
subject to pC(s∗) +

∑
i∈N zi (Ci(s)− Ci(s∗i , s−i)) ≥ C(s),

for all s ∈ S
zi ≥ 0, for all i ∈ N.

Thus, a dual certificate for CCE∗ is an n-dimensional vector z such that
pC(s∗) +

∑
i∈N zi (Ci(s)− Ci(s∗i , s−i)) ≥ C(s), for all s ∈ S. This is evidently

more flexible than the single-parameter dual certificate one is forced to use for
ACCE∗. Can this flexibility lead to better worst-case upper bounds? The follow-
ing proposition gives an affirmative answer.

Proposition 2. There is a game Γ such that POACCE(Γ) < POAACCE∗(Γ).

Proof (sketch): Consider a load balancing game with two jobs J1, J2, with weights
2 and 1 respectively, and two machines M1,M2 with latency functions

`1(1) = 1, `1(2) = 2, `1(3) = 3;
`2(1) = 1 + ε, `2(2) = 2, `2(3) = 4.



The optimal outcome s∗ assigns J1 to M1 and J2 to M2, and has a social cost
3. For small enough ε, the best ACCE∗ dual certificate3 is z ≈ 7/9 which cor-
responds to a POA of 16/9 ≈ 1.77. For CCE∗ a dual certificate (z1, z2) ≈
(23/24, 5/12) exists, for a better POA bound of 49/30 ≈ 1.63. �

Remark 1. There are games with an arbitrary gap between POACCE∗ and POAACCE∗ ,
e.g., by changing the latency function `2 in the proof of Proposition 2 to `2(3) =
H, for a large enough H.

Remark 2. In contrast to Proposition 2, in symmetric games — where all play-
ers have the same strategy set and each player’s cost depends only on its own
strategy and the number of players that choose each strategy — the POA for
ACCE∗ is equal to the POA for CCE∗. We omit the easy argument.
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