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UNIVERSALLY UTILITY-MAXIMIZING PRIVACY MECHANISMS∗

ARPITA GHOSH† , TIM ROUGHGARDEN‡ , AND MUKUND SUNDARARAJAN§

Abstract. A mechanism for releasing information about a statistical database with sensitive
data must resolve a trade-off between utility and privacy. Publishing fully accurate information
maximizes utility while minimizing privacy, while publishing random noise accomplishes the opposite.
Privacy can be rigorously quantified using the framework of differential privacy, which requires that
a mechanism’s output distribution is nearly the same whether a given database row is included.
The goal of this paper is to formulate and provide strong and general utility guarantees, subject to
differential privacy. We pursue mechanisms that guarantee near-optimal utility to every potential
user, independent of its side information (modeled as a prior distribution over query results) and
preferences (modeled via a symmetric and monotone loss function). Our main result is the following:
for each fixed count query and differential privacy level, there is a geometric mechanism M∗—a
discrete variant of the simple and well-studied mechanism that adds random noise from a Laplace
distribution—that is simultaneously expected loss-minimizing for every possible user, subject to the
differential privacy constraint. This is an extremely strong utility guarantee: every potential user
u, no matter what its side information and preferences, derives as much utility from M∗ as from
interacting with a differentially private mechanism Mu that is optimally tailored to u. More precisely,
for every user u there is an optimal mechanism Mu for it that factors into a user-independent part
(the geometric mechanism M∗) and a user-specific postprocessing step that depends only on the
output of the geometric mechanism and not on the underlying database. The first part of our proof
of this result characterizes the optimal differentially private mechanism for a user as a certain basic
feasible solution to a linear program with a user-specific objective function and user-independent
constraints that encode differential privacy. The second part shows that all of the relevant vertices
of the feasible region (ranging over all possible users) are derivable from the geometric mechanism
via suitable remappings of its range.
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1. Introduction. Organizations including the U.S. Census Bureau, medical es-
tablishments, and Internet companies collect and publish statistical information [1,
23]. The census bureau may, for instance, publish the result of a query such as
“How many individuals have incomes that exceed $100,000?” An implicit hope in
this approach is that aggregate information is sufficiently anonymous so as not to
breach the privacy of any individual. Unfortunately, publication schemes initially
thought to be “private” have succumbed to privacy attacks [2, 20, 23], highlighting
the urgent need for mechanisms that are provably private. The differential privacy
literature [5, 6, 8, 12, 9, 11, 19, 21] has proposed a rigorous and quantifiable definition
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of privacy, as well as provably privacy-preserving mechanisms for diverse applications
including statistical queries, machine learning, and pricing. Essentially, for a param-
eter α ∈ [0, 1], a randomized mechanism is α-differentially private if changing a row
of the underlying database—the data of a single individual—changes the probability
of each mechanism output by at most an α factor. Larger values of α correspond to
greater levels of privacy. Differential privacy is typically achieved by adding “noise”
to a query result that scales with α.

It is trivial to achieve any level of differential privacy, for instance, by always
returning (data-independent) random noise. This “solution” obviously completely
defeats the original purpose of providing useful information. On the other hand,
returning fully accurate results yields privacy violations [12]. The goal of this paper
is to identify, for each α ∈ [0, 1], the optimal (i.e., utility-maximizing) α-differentially
private mechanism.

2. The model: Privacy, utility, and rational users.

2.1. Differential privacy. We consider databases with n rows drawn from a
finite set D. Every row corresponds to an individual. Two databases are neighbors
if they coincide in n − 1 rows. A count query f takes a database d ∈ Dn as input
and returns the result f(d) that is the number of rows that satisfy a fixed, nontrivial
predicate on D. Such queries are also called predicate or subset-sum queries; they
have been extensively studied in their own right [5, 6, 8, 11] and form a basic primitive
from which more complex queries can be constructed [5].

A mechanism is a probabilistic function from Dn to some range R. Typical ranges
include the real numbers, the integers, and the set N = {0, 1, 2, . . . , n} of the possible
true answers to a count query. For a mechanism X with a countable range, we use xdr

to denote the probability that the mechanism outputs the response r ∈ R when the
underlying database is d ∈ Dn. For such a mechanism X and a parameter α ∈ [0, 1],
the mechanism is α-differentially private if and only if the ratio xd1r/xd2r lies in
the interval [α, 1/α] for every possible output r ∈ R and pair d1, d2 of neighboring
databases, where we interpret 0/0 as 1.1 Intuitively, the probability of every response
of the privacy mechanism—and hence the probability of a successful privacy attack
following an interaction with the mechanism—is, up to a controllable α factor, inde-
pendent of whether a given user “opts in” or “opts out” of the database [9, 17].

With respect to a given query f , a mechanism is oblivious if, for all r ∈ R,
xd1r = xd2r whenever f(d1) = f(d2)—that is, if the output distribution depends only
on the query result. Most of this paper considers only oblivious mechanisms; this
assumption is natural and, for optimal privacy mechanism design, it is without loss
of generality in a precise sense (see section 6). The notation and definitions above
simplify for oblivious mechanisms and count queries. We can specify an oblivious
mechanism with a countable range via the probabilities xir of outputting a response
r ∈ R for each query result i ∈ N ; α-differential privacy is then equivalent to the
constraint that the ratios xir/x(i+1)r lie in the interval [α, 1/α] for every possible
output r ∈ R and query result i ∈ N \ {n}.

Example 2.1 (geometric mechanism). For a count query f and parameter value
α ∈ (0, 1), the α-geometric mechanism is an oblivious mechanism with range Z,

1The standard definition of differential privacy imposes these bounds for every subset of the
range [12]. When the range is countable, as in most of this paper, the two definitions are equivalent.
Also, for significant convenience, we parameterize our definition differently than the standard one,
with our parameter α corresponding to e−ε in [12].
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Input/Output . . . −1 0 1 2 3 4 5 6 . . .

0 . . . 1/6 1/3 1/6 1/12 1/24 1/48 1/96 1/192 . . .

1 . . . 1/12 1/6 1/3 1/6 1/12 1/24 1/48 1/96 . . .

2 . . . 1/24 1/12 1/6 1/3 1/6 1/12 1/24 1/48 . . .

3 . . . 1/48 1/24 1/12 1/6 1/3 1/6 1/12 1/24 . . .

4 . . . 1/96 1/48 1/24 1/12 1/6 1/3 1/6 1/12 . . .

5 . . . 1/192 1/96 1/48 1/24 1/12 1/6 1/3 1/6 . . .

(a) 1
2
-geometric mechanism with n = 5

Input/Output 0 1 2 3 4 5

0 2/3 1/6 1/12 1/24 1/48 1/48

1 1/3 1/3 1/6 1/12 1/24 1/24

2 1/6 1/6 1/3 1/6 1/12 1/12

3 1/12 1/12 1/6 1/3 1/6 1/6

4 1/24 1/24 1/12 1/6 1/3 1/3

5 1/48 1/48 1/24 1/12 1/6 2/3

(b) Truncated 1
2
-geometric mechanism with n = 5

Fig. 1. The defining probabilities of the geometric and truncated geometric mechanisms, for
α = 1

2
and n = 5. Rows correspond to query results i ∈ N , and columns to mechanism outputs r ∈ R.

defined as follows. When the true query result is f(d), the mechanism outputs f(d)+
Δ, where Δ is a random variable with a two-sided geometric distribution:

(1) Pr [Δ = δ] =
1− α

1 + α
α|δ|

for every integer δ. See also Figure 1(a). For convenience, we also define the 0-
geometric mechanism as that which always returns the true query result f(d), and the
1-geometric mechanism as that which always results in the answer 0 (say), independent
of the input database.

The α-geometric mechanism is α-differentially private because the result of a
count query differs by at most one on neighboring databases, and because, for each δ,
the probabilities Pr [Δ = δ + 1] and Pr [Δ = δ − 1] lie between αPr [Δ = δ] and
Pr [Δ = δ]/α. This mechanism is a discretized version of a well-known mechanism
that adds random noise from a Laplace distribution (with density ε/2 · e−ε|t| on R,
where ε = ln 1

α ); see, e.g., [9]. See Appendix A for further comparison of the geometric
and Laplace mechanisms.

Example 2.2 (truncated geometric mechanism). The α-geometric mechanism
outputs an “obviously wrong” output f(d) +Δ—one less than 0 or greater than n—
with nonzero probability. The truncated α-geometric mechanism has range N =
{0, 1, . . . , n} and addresses this drawback in the obvious way, by “remapping” all
negative outputs to 0 and all outputs greater than n to n. In other words, the
mechanism uses the following distribution of noise Δ when the query result is f(d):
Pr [Δ < −f(d)] = Pr [Δ > n− f(d)] = 0; Pr [Δ = −f(d)] = αf(d)/(1 + α); Pr [Δ =
n − f(d)] = αn−f(d)/(1 + α); and all other probabilities are as in Example 2.1. See
also Figure 1(b). This mechanism is again α-differentially private.

2.2. Utility model. A key contribution of this paper is a utility model that
enables strong and general utility guarantees for privacy mechanisms. Just as dif-
ferential privacy guarantees protection against every potential attacker, independent



1676 A. GHOSH, T. ROUGHGARDEN, AND M. SUNDARARAJAN

of its side information, we seek mechanisms that guarantee optimal utility to every
potential user, independent of its side information and preferences.

We now formally define preferences and side information. We model the prefer-
ences of a user via a loss function l defined on N ×N , where l(i, j) denotes the user’s
loss when the true query result is i and the user believes it to be j. We would obviously
prefer to assume as little as possible about a user’s preferences, so we permit quite
general loss functions, requiring only one symmetry and one monotonicity property.
Precisely, we call a loss function legal if the loss l(i, j) depends only on i and |j − i|,
and if the loss is nondecreasing in |j − i| for each fixed i ∈ N . For example, the loss
function l(i, j) = |j − i| measures mean error, the implicit measure of (dis)utility in
most previous literature on differential privacy. Two among the many other natural
possibilities are the squared error (j − i)2 and the binary loss function lbin(i, j), de-
fined as 0 if i = j and 1 otherwise. Most natural loss functions depend only on |j − i|
and not directly on i, but we do not require this additional property for our results.

We model the side information of a user as a prior probability distribution p over
the query results i ∈ N . This prior represents the beliefs of the user, which might
stem from other information sources, previous interactions with the mechanism, in-
trospection, or common sense. We emphasize that we are not introducing priors to
weaken the definition of differential privacy; we use the standard definition of differen-
tial privacy (which makes no assumptions about the side information of an attacker)
and use a prior only to discuss the utility of a (differentially private) mechanism to a
potential user.

Consider a user with a prior p and loss function l that interacts with an oblivious
mechanism X with range R. We assume that the implementation of X is publicly
known. Since the range R of X need not coincide with the set N of legitimate query
results, a user generally must reinterpret an output r ∈ R of the mechanism as some
query result j ∈ N . For example, a user that observes the output “−2” from the
α-geometric mechanism (Example 2.1) might guess that the actual query result is
most likely to be 0.

Our utility model thus motivates the concept of a remap of a mechanism X with
range R, which is a probabilistic function Y from R to N , with yrj denoting the
probability that a user reinterprets the mechanism’s response r ∈ R as the query
result j ∈ N . A mechanism X and a remap Y together induce a new mechanism
Z = Y ◦ X with zij = (Y ◦ X)ij =

∑
r∈R xir · yrj. For example, the truncated

α-geometric mechanism (Example 2.2) can be written as Y ◦ X , where X is the
(untruncated) α-geometric mechanism; yrj = 1 whenever r ≤ j = 0, r ≥ j = n,
or r = j ∈ {1, 2, . . . , n − 1}; and yrj = 0 otherwise. When the range R is finite, a
mechanism X and remap Y naturally correspond to matrices, and composition Y ◦X
is simply matrix multiplication. The next section details our assumptions about the
remaps employed by “rational” users, which arise from expected loss minimization
following a Bayesian update.

We can now define the expected loss of a user u with respect to a mechanism X
and a remap Y . For a given input d with query result i = f(d), let zij = (Y ◦X)ij
denote the probability that the user reinterprets the mechanism’s (random) output
as the query result j. The user’s expected loss for an input d with f(d) = i is

∑
j∈N

zij · l(i, j),

where the expectation is over the coin flips internal to the mechanism and the remap.
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The user’s prior provides a way to aggregate expected losses for different inputs,
thereby yielding a measure of the overall (dis)utility to the user under mechanism X
with remap Y :

(2)
∑
i∈N

pi
∑
j∈N

zij · l(i, j).

The quantity in (2) is simply the expected loss over the coin tosses of the mech-
anism X , the remap Y , and the prior p.2

2.3. User postprocessing and optimal privacy mechanisms. Simultane-
ous optimality of a single mechanism for every possible user would be an extremely
strong guarantee. To achieve it, it is necessary (and, as we show, sufficient) to dele-
gate postprocessing work to a user in the form of a suitable remap. To motivate this,
consider a user with prior p and loss function l that interacts with a mechanism X .
We have already seen the need for remaps (from R to N) when the mechanism’s
range does not correspond directly to legitimate query results. The next example
shows that, even for a mechanism with range R = N , an expected loss-minimizing
user might be motivated to reinterpret the mechanism’s outputs.

Example 2.3 (postprocessing decreases expected loss). Fix a database size n
that is odd. Consider a user with the binary loss function lbin, and prior p0 = pn =
1/2 and pj = 0 for j ∈ {1, 2, . . . , n − 1}. Suppose this user interacts with the α-
geometric mechanism X (Example 2.1). If the user accepts the mechanism’s outputs
“at face value,” in the sense that it uses the identity remap, then its expected loss (2)
is Pr [Δ �= 0] = 2α/(1 + α), where Δ denotes the random noise in the geometric
mechanism (1). If the user instead remaps outputs of the geometric mechanism that
are at least (n+1)/2 to n and all other outputs to 0—reflecting its certainty that the
true query result must be 0 or n—it effectively induces a new mechanism with the
much smaller expected loss of Pr [Δ ≥ (n+ 1)/2] = α(n+1)/2/(1 + α).

We assume that a (rational) user with prior p and loss function l, interacting
with a publicly known mechanism X , employs a remap Y that induces the mechanism
Z = Y ◦X that minimizes the user’s expected loss (2) over all such remaps. It is well
known (e.g., [18, Chapter 9]) and easy to prove that, among all possible (randomized)
remappings, the optimal one follows from applying Bayes rule and then minimizing
expected loss. For example, given an output r of a mechanism X with a countable
range, one computes the induced posterior distribution q over query results: For each
i ∈ N , qi = pi · xir/(

∑
i′∈N pi′ · xi′r). Then, for a query result j∗ ∈ N that minimizes

expected loss (over all j ∈ N) with respect to this posterior q, one sets yrj∗ = 1 and
yrj = 0 for j �= j∗. This remap Y is deterministic and simple to compute.

When we speak of the expected loss of a user u with respect to a mechanismX , we
assume that the user employs an optimal remap Y of X for u. We can then define an
optimal α-differentially private oblivious mechanism for a user as one that minimizes
the user’s expected loss (2) over all such mechanisms.

3. Main result and discussion. Our main results concern mechanisms that
are simultaneously optimal for all users in the following sense.

Definition 3.1 (universally utility-maximizing mechanism). Fix arbitrary val-
ues for n ≥ 1 and α ∈ [0, 1], and a count query. An oblivious α-differentially private

2The central theorem of choice theory (e.g., [18, Chapter 6]) states that every preference rela-
tion over mechanisms that satisfies reasonable axioms (encoding “rationality”) can be modeled via
expected utility, just as we propose. This theorem justifies the use of priors for expressing a rational
user’s trade-off over possible inputs.
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mechanism X is universally utility maximizing if and only if: for every user u with a
prior over N = {0, 1, 2, . . . , n} and a legal loss function on N ×N , the mechanism X
is optimal for u.

A mechanism that satisfies Definition 3.1—assuming, for the moment, that one
exists—provides an extremely strong utility-maximization guarantee. Every potential
user u, no matter what its side information and preferences, derives as much utility
from such a mechanism as it does from interacting with a differentially private mech-
anism that is optimally tailored to u. We reiterate that the prior from the utility
model plays no role in the definition of privacy, which is the standard, worst-case
(over adversaries with arbitrary side information and intent) guarantee provided by
differential privacy.

Our main result is a characterization of the universally utility-maximizing mech-
anisms.

Theorem 3.2 (main characterization). Fix arbitrary values for n ≥ 1 and α ∈
[0, 1], and a count query. A mechanism X is universally utility maximizing if and only
if there is a remap Y of X such that Y ◦X is the truncated α-geometric mechanism.

Of course, the most significant implication of Theorem 3.2 is that universally
utility-maximizing mechanisms exist. Recall from section 2.3 that the truncated α-
geometric mechanism is a remap of the α-geometric mechanism (and also a trivial
remap of itself).

Corollary 3.3 (implications for geometric mechanisms). For every n ≥ 1,
α ∈ [0, 1], and every count query, the corresponding α-geometric and truncated α-
geometric mechanisms are universally utility maximizing.

Our arguments also imply that the truncated α-geometric mechanism is the
unique universally utility-maximizing mechanism with range N , up to renaming.

Corollary 3.4 (uniqueness of the truncated geometric mechanism). Fix ar-
bitrary values for n ≥ 1 and α ∈ [0, 1], and a count query. A mechanism X with
range N is universally utility maximizing if and only if it has the form π ◦T , where π
is a permutation of N and T is the truncated α-geometric mechanism.

A universally utility-maximizing mechanism with range larger than N need not
have the form π ◦T , as shown by the α-geometric mechanism. We prove Theorem 3.2
and Corollary 3.4 in section 5.

We emphasize that while the geometric mechanism is user-independent—all users
see the same distribution over responses—different users remap its responses in dif-
ferent ways, as informed by their individual prior distributions and loss functions.
Rephrasing Corollary 3.3, for every user there is an optimal mechanism for it that
factors into a user-independent part—the α-geometric mechanism—and a user-specific
postprocessing step that depends only on the output of the geometric mechanism and
not on the underlying database or query result. See Figure 2 for an illustration of this
interpretation of Theorem 3.2 and Corollary 3.3.

Our results thus show how to achieve the same utility as a user-specific opti-
mal mechanism without directly implementing one. Direct user-specific optimization
would clearly involve several challenges. First, it would require advance knowledge
or elicitation of user preferences, which we expect is impractical in most applications.
And even if a mechanism was privy to the various preferences of its users, it would
effectively need to answer the same query in different ways for different users, which
in turn degrades its differential privacy guarantee (to αa, where a is the number of
different answers).

Finally, from a design perspective, our results strongly advocate using a random
perturbation drawn from a two-sided geometric distribution as the way to implement
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Fig. 2. Theorem 3.2. For every rational user u, the utility-maximizing mechanism for u
(shown in (a)) can be factored into a user-independent part (the α-geometric mechanism) followed
by a user-dependent postprocessing step (the optimal remap Y u).

a differentially private count query. Mechanisms that employ random noise from a
Laplace distribution, as done in several previous works, are not universally utility-
maximizing; Appendix A provides details and also proves approximation guarantees
for such mechanisms.

4. Related work. There are excellent surveys on differential privacy, such as
Dwork [13], so we restrict the discussion in this section to a small number of key
references and the papers in the literature that are most closely related to the present
work.

One motivation for the definition of differential privacy is the provable impos-
sibility of absolute privacy against attackers with arbitrary side information [12].
Differential privacy offers a weaker but compelling (and achievable) guarantee. One
interpretation of differential privacy is the following: No matter what prior distri-
bution over databases a potential attacker has, its posterior after interacting with a
differentially private mechanism is almost independent of whether a given user “opted
in” or “opted out” of the database [9, 17].

Another theme in differential privacy is the need to limit the number of queries
that can be answered. Dinur and Nissim [8] showed that for a database with n
rows, answering Θ(n log2 n) randomly chosen subset count queries with o(

√
n) error

allows an adversary to reconstruct most of the rows of the database (a blatant privacy
breach); see Dwork, McSherry, and Talwar [10] for a more robust impossibility result
of the same type. Most of the differential privacy literature circumvents these im-
possibility results by focusing on models where a mechanism supplies answers to only
a sublinear (in n) number of queries. Count queries (e.g., [8, 11]) and more general
queries (e.g., [9, 21]) have been studied from this perspective. More queries can be an-
swered if they come from a well-structured class (e.g., with low Vapnik–Chervonenkis
(VC) dimension) [6, 16, 22].

Our use of loss functions has a similar flavor to the abstract “utility functions”
in McSherry and Talwar [19], though the motivations and goals of their work and
ours are unrelated. Motivated by pricing problems, McSherry and Talwar [19] design
differentially private mechanisms for queries that can have very different values on
neighboring databases (unlike count queries); they do not consider users with side
information and do not formulate a notion of mechanism optimality (universal or
otherwise).
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Linear programming theory—the primary tool in our analysis—was also used in
a different way by Hardt and Talwar [15], to give tight upper and lower bounds on the
amount of noise needed to ensure differential privacy for d nonadaptive linear queries
for databases in R

n.
We conclude by discussing two papers that were directly motivated by a prelim-

inary version of the present work. First, Gupte and Sundararajan [14] extend the
main result of this work to “minimax users”—users that have no prior over query
results and seek to minimize the (dis)utility function maxi∈N

∑
j∈N zij · l(i, j), rather

than the function in (2). They show that the truncated α-geometric mechanism is
also optimal for rational minimax users. Unlike Bayesian users, who always employ
deterministic remaps, minimax users make use of randomized remaps. Gupte and
Sundararajan [14] use linear algebraic techniques to characterize the class of mecha-
nisms derivable from the truncated α-geometric mechanism via randomized remaps
and show that optimal mechanisms for minimax (and Bayesian) users fall into this
class. Second, Brenner and Nissim [7] show that the universal optimality guarantee
of Theorem 3.2 does not extend beyond a single count query. Their impossibility
result applies to sum queries with nonbinary individual values, histograms, and mul-
tiple count queries, and to Bayesian and minimax users. The key idea in [7] is to
represent a query by its “privacy constraint graph”—nodes are possible query results,
with edges corresponding to query result pairs that can be realized by neighboring
databases—and prove that paths are the only such graphs that admit universally
utility-maximizing mechanisms.

5. Proof of Theorem 3.2.

5.1. Overview and interpretations. This section proves Theorem 3.2. The
“only if” direction is relatively straightforward, and we prove it in section 5.7. The
proof of the “if” direction has three high-level steps.

1. For a given user u, we formulate the problem of minimizing expected loss over
the set of oblivious and differentially private mechanisms as a linear program
(LP). The objective function of this LP is user-specific, but the feasible region
is not.

2. We identify stringent necessary conditions met by every privacy mechanism
that is optimal for some user and is also a vertex solution of the aforemen-
tioned linear program.

3. For every privacy mechanism X meeting these necessary conditions, we con-
struct a remap Y of the truncated α-geometric mechanism T such that
Y ◦ T = X . Since for every user there is an optimal mechanism that is a
vertex solution, and since users employ optimal remaps, it follows that T is
optimal for every user.

From a geometric perspective, the second step identifies the subset of vertices of the
feasible region that can arise as optimal privacy mechanisms (for some user), and the
third step shows that all of these also arise as remaps of a single vertex (the truncated
α-geometric mechanism).3 From a linear algebraic perspective, our proof shows that,
for every possible optimal mechanism X that is also a vertex of the LP, the matrix
product XT−1 has an extremely simple form that corresponds to a remap.

3Vertices that do not correspond to the truncated α-geometric mechanism can be optimal for
certain users; see, e.g., Figure 3. Also, some vertices of the feasible region do not arise as remaps of
the truncated α-geometric mechanism (see Appendix B). Fortunately, the corresponding mechanisms
are not uniquely optimal for any user with a legal loss function.
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We now fix, for the rest of this section, a value of n ≥ 1, a value of α ∈ [0, 1], and
a count query f over databases with n rows. Theorem 3.2 is true but trivial if α is 0
or 1, so we assume henceforth that α ∈ (0, 1).

5.2. Linear programming formulation of a user-optimal mechanism.
This section implements the first step of the proof outline of section 5.1. We be-
gin with a definition.

Definition 5.1 (direct privacy mechanism). A mechanism X with range N is
direct for user u if the identity remap is an optimal remap of X for u.

In other words, direct mechanisms are those whose outputs the user u might as
well accept “at face value.”

We aim to characterize the optimal direct mechanisms for a given user—those
minimizing expected loss (2)—as the optimal solutions to a linear program. We first
show that restricting attention to direct mechanisms is without loss of generality for
optimal privacy mechanism design.

Lemma 5.2 (direct mechanisms suffice). For every mechanism X and user u,
there is a direct mechanism Z for u such that u’s expected loss is the same with X
and with Z.

Proof. Fix a user u and let X denote an α-differentially private mechanism for u.
Let Y denote an optimal remap of X for u. By linearity, the induced mechanism
Z = Y ◦ X is an α-differentially private mechanism with range N . Since Y is an
optimal remap of X for u, the identity remap of Z is optimal for u. Thus Z is a direct
mechanism for u, and its expected loss (for u) is the same as that of X .

Encouraged by Lemma 5.2, we now consider only direct mechanisms for a given
user. In the notation of sections 2.2 and 2.3, we are assuming thatX = Z. Fix a user u
with prior p over N and legal loss function l. Optimizing this user’s expected loss (2)
over all direct differentially private mechanisms can be expressed as the following
linear program.

User-specific LP:

minimize
∑
i∈N

pi
∑
j∈N

xij · l(i, j)(3)

xij − α · x(i+1)j ≥ 0 ∀i ∈ N \ {n}, ∀j ∈ N(4)

α · xij − x(i+1)j ≤ 0 ∀i ∈ N \ {n}, ∀j ∈ N(5) ∑
j∈N

xij = 1 ∀i ∈ N(6)

xij ≥ 0 ∀i ∈ N, ∀j ∈ N.(7)

Constraints (6) and (7) ensure that every feasible solution to this linear program
can be interpreted as a probabilistic function from N to N—i.e., as a mechanism
with range N . Constraints (4) and (5) enforce α-differential privacy for every feasible
solution. The objective function is precisely the expected loss (2) incurred by user u,
assuming that it employs the identity remap. Since this linear program has a bounded
and nonempty feasible region, it has at least one optimal solution. Lemma 5.2 implies
that every such optimal solution corresponds to an optimal mechanism for u (that is
also direct for u). Figure 3(a) displays an example of such an optimal mechanism for
a particular user.

5.3. Properties of user-optimal mechanisms. A fundamental difficulty that
our proof of Theorem 3.2 must resolve is to certify whether a remapped version Y ◦T
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Input/Output 0 1 2 3 4 5

0 2/3 0 1/4 1/24 1/48 1/48

1 1/3 0 1/2 1/12 1/24 1/24

2 1/6 0 1/2 1/6 1/12 1/12

3 1/12 0 1/4 1/3 1/6 1/6

4 1/24 0 1/8 1/6 1/3 1/3

5 1/48 0 1/16 1/12 1/6 2/3
(a) The mechanism X

Input/Output 0 1 2 3 4 5

0 ↓ 0 ↑ ↑ ↑ ↑
1 ↓ 0 S ↑ ↑ ↑
2 ↓ 0 ↓ ↑ ↑ ↑
3 ↓ 0 ↓ ↓ ↑ ↑
4 ↓ 0 ↓ ↓ ↓ ↑

(b) The corresponding signature Σ

Fig. 3. In (a), an optimal 1/2-differentially private mechanism when n = 5 for a user with prior
(1/4, 0, 1/4, 0, 1/4, 1/4) and loss function l(i, j) = |i− j|1.5. In (b), the signature of this mechanism.

of the truncated α-geometric mechanism T is an optimal direct mechanism for a
given user u. We approach this problem by focusing on the constraints of the linear
program (4)–(7) that are binding for different mechanisms. If we can show that the
same constraints are binding for a mechanism Y ◦T and for a direct optimal mechanism
for a given user u, and also there are enough such constraints that there is a unique
point at which all of them bind, then we can conclude that Y ◦T is an optimal direct
mechanism for u (and hence T is optimal for u).

We phrase our arguments about binding constraints in terms of the signature of a
feasible solution X to the user-specific linear program, which is a matrix that encodes
conveniently which of the linear programming constraints are binding at X and which
are slack. Formally, it is an (N \ {n})× N matrix Σ in which each entry σij lies in
the set {↓, ↑, S, 0}. Each row i of the signature corresponds to rows i and i+1 of the
corresponding mechanism, and the meaning of these symbols is as follows.

1. σij = ↓ if and only if xij and x(i+1)j are both positive and x(i+1)j = αxij—if
the probability of output j is decreasing as rapidly as possible (when moving
from input i to input i+ 1), subject to α-differential privacy.

2. σij = ↑ if and only if xij and x(i+1)j are both positive and x(i+1)j = xij/α—if
the probability of output j is increasing as rapidly as possible (when moving
from input i to input i+ 1), subject to α-differential privacy.

3. σij = S if and only if xij and x(i+1)j are both positive and αxij < x(i+1)j <
xij/α, so that both of the corresponding privacy constraints are slack.

4. σij = 0 if both xij and x(i+1)j are zero.
Under our standing assumption that 0 < α < 1, every feasible solution X to the
user-specific linear program has a well-defined signature Σ. Since α < 1, no entry
meets more than one of the four conditions. Since α > 0, a variable xij can be zero
only if x(i+1)j is also zero (by α-differential privacy), so each entry meets at least one
of the conditions. For example, Figure 3(b) shows the signature of the mechanism
listed in Figure 3(a), and Figure 4 shows the signature of the truncated geometric
mechanism when n = 5.

The next lemma states two obvious properties of signatures.
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Input/Output 0 1 2 3 4 5

0 ↓ ↑ ↑ ↑ ↑ ↑
1 ↓ ↓ ↑ ↑ ↑ ↑
2 ↓ ↓ ↓ ↑ ↑ ↑
3 ↓ ↓ ↓ ↓ ↑ ↑
4 ↓ ↓ ↓ ↓ ↓ ↑

Fig. 4. The signature of the truncated geometric mechanism when n = 5.

Lemma 5.3. For every feasible solution X to (4)–(7) and corresponding signa-
ture Σ:

(a) no column of Σ has both a zero entry and a nonzero entry;
(b) no row of Σ consists entirely of ↓ and 0 entries or entirely of ↑ and 0 entries.
Proof. Part (a) is immediate from α-differential privacy with α > 0: If xij = 0,

then x(i−1)j = x(i+1)j = 0 as well. Part (b) is equally simple: If row i consists entirely
of ↓ and 0 entries (respectively, ↑ and 0 entries), then the total probability mass in
row i+1 of the mechanismX is exactly α times (respectively, 1/α times) that in row i
of the mechanism. But α �= 1 and every row of mechanism X must have probability
mass 1 (as in constraint (6)), a contradiction.

By design, a signature encodes which privacy constraints (4) and (5) are tight and
which are slack. The signature also implicitly encodes the state of the nonnegativity
constraints (7): xij > 0 if and only if the jth column of the corresponding signature
has no 0 entries. We summarize this observation as a lemma.

Lemma 5.4. Two feasible solutions X and X ′ to (4)–(7) have the same signature
Σ if and only if the same set of constraints are binding at X and at X ′.

At this point in the proof of Theorem 3.2, we temporarily adopt two additional
assumptions about the preferences of a user; both will be discharged via a limiting
argument in section 5.6. First, we consider only users with a prior p that has full
support, meaning that pi > 0 for every i ∈ N . Second, we assume that the user’s loss
function l is strictly legal, meaning that the loss l(i, j) is a strictly increasing function
of |j−i| for each fixed i ∈ N . The next lemma makes use of our restriction to (strictly)
legal loss functions and is central in our proof of Theorem 3.2. To state it, we need
a definition: a row of a signature is unimodal if its nonzero entries form a sequence
that begins with zero or more ↓ entries, followed by zero or one S entries, followed by
zero or more ↑ entries. A signature is unimodal if each of its rows is unimodal. For
example, the signatures in Figures 3(b) and 4 are unimodal.

Lemma 5.5. For every user u with a full-support prior and a strictly legal loss
function, every optimal direct mechanism for u has a unimodal signature.

Proof. Fix a user u with full-support prior p and strictly legal loss function l.
Let X be an optimal direct mechanism for u with signature Σ. We only need to show
that there is no row h and columns k < m such that σhk is either S or ↑ and also σhm

is either S or ↓.
To obtain a contradiction, suppose such a row h and columns k < m exist. There

are two cases. First suppose that h is at most the average value (k+m)/2 of k and m.
We claim that we can obtain a superior mechanism X ′ from X by reassigning a small
γ fraction of the probability mass in rows 0 through h of column m to the same rows
of column k. Formally, for a parameter γ that is positive but close to zero, set x′

im =
(1−γ)xim and x′

ik = xik+γxim for all i ∈ {0, 1, . . . , h}; and x′
ij = xij in all other cases.

We first note that, if feasible for the linear program (3)–(7), then X ′ is superior
to the purported optimal solution X (the desired contradiction). Indeed, since h ≤
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(k+m)/2, |i− k| ≤ |i−m| for all i ≤ h. Also, this inequality is strict for i = 0. Since
the strictly legal loss function l(i, j) depends only on |j − i| for each i, and is strictly
increasing in this quantity, the expected loss under each input i ∈ {0, 1, 2, . . . , h}—
the inner sum in (3)—is no larger with X ′ than with X , and is strictly smaller for
the input i = 0. Since the prior p has full support, the objective function value of
mechanism X ′ is strictly smaller than that of X , for arbitrarily small positive values
of γ.

We now verify the feasibility ofX ′ for the linear constraints (4)–(7), for sufficiently
small positive values of γ. The nonnegativity constraints (7) remain satisfied for
small enough γ since, by the assumption that σhm �= 0 and Lemma 5.3(a), xim > 0
for every row i. The probability constraints (6) continue to hold because we only
shifted some mass from one column to another. The privacy constraints (4) and (5)
involving the unmodified rows {h+ 1, . . . , n} or the unmodified columns clearly still
hold. The privacy constraints involving only the rows {0, 1, . . . , h} in columns k andm
continue to hold by linearity. Finally, two of the four privacy constraints involving
rows h, h+ 1 and columns k,m are obviously still satisfied, while the other two (that
x′
hk ≤ x′

(h+1)k/α and x′
hm ≥ αx′

(h+1)m) hold for small enough γ because of our
assumption that σhk �=↓, 0 and σhm �=↑, 0.

The second case, in which the row index h exceeds the average index (k +m)/2
of the columns, is symmetric. Here, we obtain a superior mechanism X ′ from X by
reassigning a small enough fraction of the probability mass in rows h + 1 through n
of column k to the same rows of column m. The formal argument is identical to that
in the first case.

Define an ordering on the unimodal rows of a signature according to the number
of ↓ entries, so that “larger” rows have more such entries. The next lemma refines
Lemma 5.5 by identifying, under the same conditions, monotone structure in the
(unimodal) rows of a signature. Recall that a unimodal row has at most one S entry;
we call such a row strictly unimodal if it has no S entry.

Lemma 5.6. For every user u with a full-support prior and a strictly legal loss
function, every optimal direct mechanism for u has a signature Σ that satisfies:

(a) the rows i = 0, 1, 2, . . . , n− 1 of Σ are nondecreasing; and
(b) every strictly unimodal row i < n−1 is followed by a row that is either strictly

larger or that has an S entry.
Proof. We prove both parts of the lemma at once. Lemma 5.5 implies that every

optimal direct mechanism X for u has a unimodal signature Σ. Also, recall from
Lemma 5.3(a) that every column of Σ is either devoid of zero entries or comprises
only zero entries.

Consider a row i < n − 1 of Σ, corresponding to rows i and i + 1 of the mecha-
nism X . Let j∗ denote the smallest index such that σij is either S or ↑; such an index
exists by Lemma 5.3(b). Define a =

∑
j<j∗ xij , b = xij∗ , and c =

∑
j>j∗ xij . By the

probability constraint (6), a+ b+ c—the total probability mass in row i of X—equals
1. The total mass in row i+ 1 of X also equals 1. The entries of row i of Σ indicate
that the values in columns j < j∗ “contract” while those in columns j > j∗ “expand”
in row i+1 relative to row i, so the latter mass equals αa+b′+c/α, where b′ = x(i+1)j∗

is a number between αb and b/α. Express this mass as αa+γ(b+c) for an appropriate
γ ≤ 1/α. Note that γ ≥ 1 because α < 1 and a+ b+ c = 1 = αa+ γ(b+ c).

For a contradiction, assume that row i + 1 of the signature Σ is not larger than
row i and has no S entry. Intuitively, our goal is to show that the overall rate of
expansion moving from row i + 1 to row i + 2 of the mechanism X is then strictly
larger than that from i to i+ 1, which violates the property that all rows have equal
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probability mass. Formally, this assumption and the unimodality of the rows of Σ
imply that σ(i+1)j =↑ or 0 for all j ≥ j∗. The total mass in row i+2 of X is therefore
at least α2a+ γ

α (b+ c). We can derive

αa− α2a < a− αa = γ(b+ c)− (b+ c) ≤ γ2(b+ c)− γ(b+ c) ≤ γ

α
(b+ c)− γ(b+ c)

using the facts that α < 1, αa + γ(b + c) = a + b + c, γ ≥ 1, and γ ≤ 1/α. This
inequality implies that the probability mass in row i + 2 of X is at least

α2a+
γ

α
(b + c) > αa+ γ(b+ c) = 1,

which completes the contradiction.

5.4. Properties of user-optimal vertex mechanisms. To identify more de-
tailed properties of user-optimal privacy mechanisms, we restrict attention to optimal
mechanisms of a particular form. Recall that given a collection of linear inequalities,
every subset of them defines a face of the corresponding feasible region—the feasible
solutions that meet each of the distinguished inequalities with equality. A vertex is a
face that consists of a single point. We call a direct mechanism a vertex mechanism
if it corresponds to a vertex of the feasible region of the linear program (4)–(7). By
convexity and linearity, every linear program with a nonempty and bounded feasi-
ble region admits an optimal solution that is a vertex (e.g., [4]). The next lemma
translates this fact and Lemma 5.2 into the present context.

Lemma 5.7. For every user u, there is an optimal (direct) mechanism for u that
is a vertex mechanism.

For the next lemma, a zero column of a signature is a column comprising only 0
entries (recall Lemma 5.3(a)).

Lemma 5.8. For every user u with a full-support prior and a strictly legal loss
function, every optimal vertex mechanism for u has a signature Σ in which the number
of S entries is at most the number of zero columns.

Proof. Consider an optimal vertex mechanism X for the user u, with signature Σ.
There are (n+1)2 variables (or dimensions) in the user-specific linear program (4)–(7).
A vertex of the feasible region must satisfy at least (n+1)2 constraints with equality.

We now account for them. The n+1 constraints (6) are always met with equality.
Let ζ denote the number of zero columns of Σ. By Lemma 5.3(a), the mechanism X
meets precisely ζ(n+ 1) nonnegativity constraints with equality. Thus, at least (n+
1)(n− ζ) privacy constraints must bind at X . By the definition of a signature, every
such binding constraint corresponds to a unique ↓ or ↑ entry of Σ. As there must
be at least (n + 1)(n − ζ) such entries, and exactly ζn entries of Σ are 0, at most
n(n+ 1)− (n+ 1)(n− ζ)− ζn = ζ entries are S.

The next lemma uses the row structure of a unimodal signature and Lemma 5.8
to deduce structure about the columns. Call a column of a signature single-peaked if
it consists of zero or more ↑ entries (the incline), followed by zero or more S entries
(the peak), followed by zero or more ↓ entries (the decline), as one traverses the rows
in order i = 0, 1, 2, . . . , n − 1. For example, in Figure 3(b), the incline, peak, and
decline of column 2 are the row index sets {0}, {1}, and {2, 3, 4}, respectively.

Lemma 5.9. For every user u with a full-support prior and a strictly legal loss
function, every optimal vertex mechanism for u has a signature Σ that satisfies:

(P1) every nonzero column is single peaked;
(P2) the incline of the lowest-indexed nonzero column and the decline of the highest-

indexed nonzero column are ∅;
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(P3) the incline of every nonzero column after the first is the union of the incline
of the previous nonzero column, the peak of the previous nonzero column, and
one additional row.

Proof. Consider an optimal vertex mechanism X for the user u with signature Σ
with ζ zero columns. No two strictly unimodal rows of Σ are identical (by Lemma 5.6),
and every such row has at least one ↓ entry and one ↑ entry (by Lemma 5.3(b)). Thus
Σ contains at most n− ζ strictly unimodal rows. Since Σ has n rows and at most ζ
S entries (Lemma 5.8), it has exactly n − ζ (distinct) strictly unimodal rows: For
each k ∈ {1, 2, . . . , n−ζ}, there is a row rk with exactly k ↓ entries and (n+1−ζ−k)
↑ entries (and ζ 0 entries). Lemma 5.6 implies that these rows r1, . . . , rn−ζ appear
in increasing order in Σ, with r1 as the first row. That lemma also implies that, for
every k ∈ {1, 2, . . . , n− ζ}, all of the ck ≥ 0 (unimodal) rows that appear after row rk
and before row rk+1 in Σ are identical copies of an “interpolation” of them—the
sequence sk that agrees with rk, rk+1 in all but the (k + 1)th nonzero column, which
by definition is an S entry in sk.

Thus, for every m ∈ {1, 2, . . . , n − ζ + 1}, the sequence of entries in the mth
nonzero column is the following: ↑ entries in the first (m − 1) +

∑
j<m−1 cj rows,

corresponding to rows r1, . . . , rm−1 and all copies of s1, . . . , sm−2; S entries in the
next cm−1 rows, corresponding to the copies of of sm−1; and ↓ entries in the re-
maining rows, corresponding to rm, . . . , rn−ζ and all copies of sm, . . . , sn−ζ . All three
properties (P1)–(P3) asserted by the lemma now follow immediately.

5.5. The remap. This section essentially completes the proof of Theorem 3.2
for users with a full-support prior and a strictly legal loss function.

Lemma 5.10. For every user u with a full-support prior and a strictly legal
loss function, every optimal vertex mechanism for u is a deterministic remap of the
truncated α-geometric mechanism.

Proof. Let u be a user with a full-support prior and a strictly legal loss function,
and let Xu be an optimal vertex mechanism for u with signature Σ with ζ zero
columns.

We next use Σ to construct a deterministic remap Y u of T . Let j1, . . . , jn−ζ+1

denote the indices of the nonzero columns of Σ. For k ∈ {1, 2, . . . , n−ζ+1}, define ak
as the index (in {0, 1, . . . , n − 1}) of the first row of Σ in which column jk has an S
or ↓ entry, or as n if there is no such row; and bk as the index of the first row of Σ
in which column jk has a ↓ entry, or as n if there is no such row. Let Ik denote the
contiguous set {ak, . . . , bk} of integers, which corresponds to the peak of column jk
and the extra index bk. Properties (P1)–(P3) of Lemma 5.9 imply that the Ik’s form a
partition of N : (P3) guarantees that the Ik’s are disjoint and that there is no integer
strictly in between two consecutive Ik’s; and (P2) ensures that the union of the Ik’s
is all of N . Define Y u by mapping all inputs between ak and bk, inclusive, to the
output jk.

Consider the induced mechanism Z = Y u ◦ T , and let Σ∗ denote its signa-
ture. We claim that Σ∗ = Σ. Certainly, the definition of Y u ensures that the
nonzero columns of Σ∗ are precisely j1, . . . , jn−ζ+1, as in Σ. As for a nonzero col-
umn jk, in Z this column is the sum of columns ak, . . . , bk of T . Recall from Exam-
ple 2.2 that the jth column of T is a positive scalar multiple of the column vector
(αj , αj−1, . . . , α0, . . . , αn−j−1, αn−j). Summing such vectors for j = ak, . . . , bk, we
see that the ratio between the ith and (i + 1)th entry of column jk of Z is precisely
α whenever i ∈ {0, 1, . . . , ak − 1}; precisely 1/α whenever i ∈ {bk, . . . , n − 1}; and
strictly in between α and 1/α whenever i ∈ {ak, . . . , bk − 1}. Thus, column jk of
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the corresponding signature Σ∗ consists of ak entries that are ↑, followed by bk − ak
entries that are S, followed by (n− bk) entries that are ↓. This is identical to column
jk of Σ, so Σ∗ = Σ.

Finally, Lemma 5.4 implies that the same constraints of the user-specific linear
program (4)–(7) are binding at Z and at Xu. Since Xu is a vertex, these binding
constraints identify a unique α-differentially private direct mechanism, so we must
have Z = Xu. Since Xu is an optimal direct mechanism for u, T is an optimal
mechanism for u.

5.6. Generalization to arbitrary priors and legal loss functions. We now
prove the “if” direction of Theorem 3.2 in its full generality, by extending Lemma 5.10
via a straightforward limiting argument.

Lemma 5.11. Let X be a mechanism and Y a remap such that Y ◦ X is the
truncated α-geometric mechanism. Then the mechanism X is universally utility-
maximizing.

Proof. We consider only the case where X is the truncated α-geometric mech-
anism T ; the more general statement in the theorem follows by composing remaps.
For a user u, let λ(u) denote the optimal objective function value of the user-specific
linear program (3)–(7). Let μ(u) denote the minimum expected loss that user u can
obtain via an (optimal) remap of the truncated α-geometric mechanism.

Now consider a user u with prior p and legal loss function l. Let {pk} denote a
sequence of full-support priors that converges to p, and {lk} a sequence of strictly legal
loss functions that converges to l. (For example, one can use convex combinations
of p and the uniform prior, and of l and the mean error loss function.) Hypothesize a
user uk with prior pk and loss function lk. Lemma 5.10 implies that λ(uk) = μ(uk) for
each k. As both λ and μ are continuous functions of the user’s prior and loss function
(e.g., [4]), this equality also holds in limit: λ(u) = μ(u). Since user u was arbitrary,
the proof is complete.

5.7. The “only if” direction of Theorem 3.2. We finally complete the proof
of Theorem 3.2 by proving the easier “only if” direction. This will follow quickly from
the next lemma.

Lemma 5.12. There exists a user u for which the truncated α-geometric mecha-
nism is the unique optimal direct mechanism.

Proof. Let T be the truncated α-geometric mechanism and let γ > 0 be a small
positive parameter. Consider a user u with uniform prior p on N and the strictly
legal loss function l with l(i, j) = 0 if i = j and l(i, j) = 1 + γ · |j − i| otherwise.
Provided γ is very small, the expected loss of a direct mechanism for u is essentially
the probability that the mechanism output differs from the true query result. Direct
calculation of these probabilities shows that the unique optimal remap of T for u is
the identity map.

Now, if there are multiple optimal direct mechanisms for a user, then there are
also multiple optimal vertex mechanisms for it (by linearity and convexity). By
Lemma 5.10, every optimal vertex mechanism of a user is a deterministic remap
of T . Since every nonidentity remap of T yields a suboptimal direct mechanism for u,
T is the unique optimal direct mechanism for u.

To finish the proof of Theorem 3.2, suppose that a mechanism X is universally
utility maximizing. Consider the user u of Lemma 5.12, and let Y u denote an optimal
remap of X for u. The mechanism Zu = Y u ◦X is an optimal direct mechanism for u.
Lemma 5.12 implies that Zu must be the truncated α-geometric mechanism, and the
proof of Theorem 3.2 is complete.
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5.8. Proof of Corollary 3.4. We can also use Lemma 5.12 to give a quick
proof of the “only if” direction of Corollary 3.4—the “if” direction follows directly
from Theorem 3.2. Let u be the user asserted by Lemma 5.12. If a mechanism X
is universally utility maximizing and has range N , then there is an optimal (deter-
ministic) remap Y u : N → N of X such that Y u ◦ X is the truncated α-geometric
mechanism, the unique optimal direct mechanism for u. This can occur only if Y u is
surjective—that is, is a permutation π of N . Inverting this permutation shows that X
has the form π−1 ◦ T , which proves the corollary.

6. Beyond oblivious mechanisms. The definition of a universally utility-
maximizing mechanism (Definition 3.1) compares the expected loss of a mechanism
only to that of other oblivious mechanisms. Recall that in an oblivious mechanism,
with respect to a fixed query f , the output distribution depends only on the query re-
sult and not on more fine-grained information about the database itself. Many of the
mechanisms studied in the literature are oblivious [3, 5, 12, 9], though there are no-
table exceptions [19, 21]. We next give a sense in which, for utility-maximizing privacy
mechanism design, restricting to oblivious mechanisms is without loss of generality.

We need to define an optimal (nonoblivious) mechanism for a user. Recall that
a mechanism is a probabilistic function from databases to some range R. We use xdr

to denote the probability that such a mechanism X outputs r ∈ R when the input
database is d ∈ Dn. The obvious way to proceed is to assume that a user has a prior
over databases. Restricting attention to direct mechanisms X for a user—justified
by a suitable analog of Lemma 5.2—the natural objective is to minimize the user’s
expected loss

(8)
∑
d∈Dn

pd
∑
j∈N

xdj · l(f(d), j),

where the expectation is over both the user’s prior p (over databases) and also the
internal coin flips of the mechanism. Unfortunately, there is no single differentially
private mechanism that can be remapped (in user-specific ways) to be simultaneously
optimal for all users with different priors over databases (see Appendix C).

Instead, in the user-specific optimal mechanism design problem, we assume that a
user only has a prior over query results (as in our original model), rather than a richer
prior over databases. Under this assumption and with a nonoblivious mechanism, it
is not clear how to formulate a posterior distribution (even just over query results).
We therefore assume that, when interacting with a nonoblivious mechanism, a user
chooses a remap to minimize its worst-case expected loss over all priors over databases
that are consistent with its prior over query results. Precisely, consider a user with
prior {pi} over query results, a legal loss function l, a mechanism X (from Dn to a
range R), and a remap Y (from R to N). We write {pd} → {pi} to mean that the
prior {pd} over databases is consistent with the prior {pi} over results, in the sense
that pi =

∑
d : f(d)=i pd for every i ∈ N . We define the expected loss of this user for

the mechanism X and remap Y as

max
{pd}→{pi}

∑
d∈Dn

pd
∑
j∈N

l(f(d), j)
∑
r∈R

xdryrj.

We assume that a rational user with a prior over query results and a loss function
employs a remap Y that minimizes this quantity. As in Lemma 5.2, for optimal
privacy mechanism design we can then confine our attention to direct mechanisms for
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the user (where the identity remap is optimal), leading to our final objective function
of minimizing

(9) max
{pd}→{pi}

∑
d∈Dn

pd
∑
j∈N

xdj · l(f(d), j).

If X is an oblivious mechanism, then every extension {pd} of {pi} yields the same
expected loss. Thus, this objective function coincides with our original one (2) for
oblivious mechanisms.

We call a direct differentially private mechanism optimal for a user if it mini-
mizes (9) over all such mechanisms. Conceptually, this benchmark allows a mecha-
nism to take full advantage of all information in the input database, but precludes
correlation of nonoblivious behavior with detailed knowledge of a prior over databases.
We emphasize that the role of this benchmark is simply to provide further evidence
that geometric mechanisms offer robust solutions to privacy-preserving utility maxi-
mization, and not to model literally a privacy mechanism design problem or canonical
user behavior.

For every user, the objective function in (9) is minimized by an oblivious mecha-
nism.

Proposition 6.1. For every database size, privacy level, count query, and user u
with a prior over query results, there is an oblivious differentially private mechanism
that is optimal for u under (9).

Proof. Fix a privacy level α, a database size n, a count query f , a prior p over
query results, and a legal loss function l. Let X be an optimal (direct) mechanism for
this user. We define a mechanismX ′ that is oblivious and α-differentially private, and
with worst-case expected loss (under the identify remap) no larger than that of X .

We proceed by an averaging argument. For i ∈ N , let Si denote the databases d
with f(d) = i. For a database d∗ ∈ Dn and output j ∈ N , define x′

d∗j as the average
value of xdr over the databases d with the same query result: x′

d∗j =
∑

d∈Sf(d∗)

xdj/|Sf(d∗)|. This defines a mechanism X ′—for each input, we have specified a valid
probability distribution over N—and it is oblivious by construction.

We claim that X ′ is α-differentially private. To prove it, fix j ∈ N and i ∈
N \ {n} arbitrarily. Let V = Si, let W = Si+1, and let E denote all pairs (d1, d2) of
neighboring databases d1 ∈ V and d2 ∈ W . The neighbors in W of a database d1 ∈ V
are precisely the databases that can be obtained from d1 by changing the value of
a row that does not satisfy the given predicate to one that does. Thus, interpreting
(V,W,E) as a bipartite graph, it is left-regular with degree a = (n−i)·t, where t is the
number of elements of D that satisfy the predicate of the counting query f . Similarly,
(V,W,E) is right-regular with degree b = (i + 1) · (|D| − t). By the α-differential
privacy of X , xd1j lies between αxd2j and xd2j/α for each such pair. Summing over
all such pairs yields

a
∑
d1∈V

xd1j =
∑

(d1,d2)∈E

xd1j ≤
∑

(d1,d2)∈E

(xd2j/α) =
b

α

∑
d2∈W

xd2j ,

and dividing through by |E| = a|V | = b|W | gives x′
ij ≤ x′

(i+1)j/α. Similarly, x′
ij ≥

αx′
(i+1)j , completing the proof of the claim.

We now show that the worst-case expected loss of X ′ with the identity remap
(and hence also with an optimal remap) is no larger than that of X . Since X ′ is
oblivious, the value of the sum in (9) is the same for every prior distribution over
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databases that induces the prior {pi} and is equal to

(10)
∑
i∈N

pi
∑
j∈N

x′
ij · l(i, j) =

∑
i∈N

pi
∑
d∈Si

1

|Si| ·
⎛
⎝∑

j∈N

xdj · l(i, j)
⎞
⎠ .

Now consider the prior distribution over databases in which, for each i ∈ N , there is pi
probability mass on the database of Si that maximizes the quantity in parentheses
in (10), and zero mass on the rest of Si. The expected loss of the given mechanism X
on this prior over databases is at least the worst-case expected loss (9) of the oblivious
mechanism X ′ with the identity remap.

Combining Theorem 3.2 and Proposition 6.1, the truncated α-geometric mecha-
nism, and everything that can be remapped to it, is optimal among all (not necessarily
oblivious) mechanisms for every user with respect to the objective (9).

7. Future directions. We proposed a general model of user utility in which a
user is represented by a prior over query results (modeling side information) and a sym-
metric, monotone loss function (modeling preferences over possible perturbations of a
query result). Our main result (Theorem 3.2) singles out the truncated α-geometric
mechanism as universally utility maximizing, in the sense that it is simultaneously op-
timal for all users. This result strongly advocates using random perturbations drawn
from a two-sided geometric distribution as the best way to implement a differentially
private count query.

An obvious and important research agenda is to study utility maximization for
privacy mechanisms with multiple and more complex queries. A second research
direction is to consider alternative notions of privacy—and more generally, abstract
design constraints—such as the relaxation of differential privacy that accommodates
both additive and relative changes in output probabilities (see [13]). Another open
question is whether Theorem 3.2 holds for asymmetric loss functions, such as users
that are more sensitive to underestimation than overestimation, or vice versa.

We do not expect a guarantee as strong as Theorem 3.2 in these more general
contexts; indeed, Brenner and Nissim [7] prove impossibility results for most queries
other than counting queries. The main point of further research on this topic should
be to identify privacy mechanism design techniques that, in some rigorous sense, are
robustly good for user utility. Additional assumptions should be adopted as needed
in service of this overarching goal. For example, the class of allowable queries could
be restricted in a way orthogonal to the present work; the set of potential users could
be limited; approximate optimality could replace full optimality; and the “obvious”
benchmark for (approximate) optimality could be weakened to enable positive results
(cf. Proposition 6.1).

Appendix A. Approximation guarantees for Laplace noise. The canonical
differentially private mechanism for counting queries (e.g., [12]) uses random noise Δ
drawn from a Laplace distribution, with density ε/2 ·e−ε|t| on R, where ε = ln 1

α . This
mechanism is not universally utility maximizing.

Example A.1 (Laplace noise is not universally utility maximizing). Take α = 1/2
and n = 1. Consider a user with uniform prior on {0, 1} and the binary loss function
(see section 2.2). The truncated α-geometric mechanism leads to an expected loss
of 1/3 for this user. Using random noise from a Laplace distribution with density
ε/2 · e−ε|t|, where ε = ln 1

α , leads to an expected loss of 1/2
√
2 ≈ 0.35.

The Laplace and two-sided geometric distributions are similar, however, so we
can prove the following approximation guarantee for the Laplace mechanism.
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Input/Output 0 1 2 3
0 1/3 1/3 1/3 0
1 2/3 1/6 1/6 0
2 1/3 1/3 1/3 0
3 1/6 1/6 2/3 0

(a) A vertex of the feasible region (4)–(7)

Input/Output 0 1 2 3
0 1 0 0 1
1 0 1 1 0
2 0 0 1 1
3 1 1 0 1

(b) An illegal loss function

Fig. 5. A mechanism that is a vertex of the user-specific linear program with n = 3 and
α = 1/2. It is not derivable from the truncated α-geometric mechanism via a remap. The mechanism
is optimal for a user with the (illegal) loss function shown in (b) and a uniform prior on {0, 1, 2, 3}.

Theorem A.2. Fix arbitrary values for n ≥ 1 and α ∈ (0, 1], and a count query.
The ln(1/α)-Laplace mechanism is 1+α

2
√
α
-approximately universally utility maximizing.

Proof. Let ε = ln(1/α). Fix a user, and suppose that this user remaps the output
of the Laplace mechanism as follows: It first rounds the result to the nearest integer,
and then employs an optimal remap for the α-geometric mechanism. We show an
approximate utility guarantee for this remap; the user’s optimal remap of the Laplace
mechanism can only be better.

Consider two random variables: Δ, distributed according to the two-sided geo-
metric distribution; and Δ′, which is drawn from the Laplace distribution and then
rounded to the nearest integer. Elementary calculations show that, for every nonzero
integer i, Pr [Δ′ = i] = 1+α

2
√
α
·Pr [Δ = i]. (And Δ′ is less likely to be 0 than Δ.) This

implies that the user’s expected loss (2) under the above remap of the Laplace mech-
anism is at most 1+α

2
√
α

times that of an optimal remap of the truncated α-geometric

mechanism. The guarantee then follows immediately from Theorem 3.2.
The approximation factor in Theorem A.2 is unbounded at α = 0 but rapidly

approaches 1 as α approaches 1. For example, the approximation factor is 1.06 for
α = 0.5. Thus the Laplace mechanism is approximately universally utility maximizing
for most interesting privacy levels.

Appendix B. Necessity of legal loss functions in Theorem 3.2. Figure 5
demonstrates that Theorem 3.2 does not hold if the restriction to monotone loss
functions is dropped. From a geometric perspective, this example gives a vertex of
the feasible region of the user-specific linear program (4)–(7) that is not a remap of
the truncated α-geometric mechanism.

Appendix C. Impossibility of universal utility maximization with non-
oblivious mechanisms. Recall from section 6 that a universally utility-maximizing
nonoblivious and differentially private mechanism X for users with priors over data-
bases satisfies the following guarantee: For every user u with a prior p over databases
and a legal loss function l, there is a (user-specific and optimal) remap Y of X such
that the induced mechanism Y ◦ X minimizes (8) over all direct mechanisms for u.
This section demonstrates that no such mechanism exists.

Take D = {0, 1}, n = 3, and α = 1
2 . The query f counts the number of “1” rows.

Consider two users, both with legal loss function l(i, j) = |j − i|1−δ for small δ > 0.
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Input DB/Output 1 2
{1} 11/12 1/12
{2} 2/3 1/3

{1, 3} 5/6 1/6
{2, 3} 1/3 2/3

(a) Optimal mechanism for user #1

Input DB/Output 1 2
{1} 2/3 1/3
{2} 11/12 1/12

{1, 3} 1/3 2/3
{2, 3} 5/6 1/6

(b) Optimal mechanism for user #2

Fig. 6. The unique optimal direct mechanisms for the two users of the example. Unshown
outputs occur with probability zero. Unshown inputs have prior probability zero and can be ignored.

The first has the following prior distribution over databases: The subset of the three
rows that are “1” is {1} with probability 1/4, {2} with probability 1/4, {1, 3} with
probability ε, and {2, 3} with probability 1

2 − ε. (Here ε is sufficiently small.) The
second user’s prior is the same except with the probabilities of the subsets {1, 3} and
{2, 3} exchanged. The unique optimal direct mechanisms for these users are shown
in Figure 6.

Suppose that X is a universally utility-maximizing mechanism. Let Y1 and Y2

be remaps such that Y1 ◦ X and Y2 ◦ X are the mechanisms shown in Figures 6(a)
and 6(b), respectively. We use the notation xd,jk to denote the probability that X ,
with the input database d, outputs a result that is mapped to j ∈ {1, 2} by Y1 and
to k ∈ {1, 2} by Y2. Thus, for example, if {1} denotes the database that has a “1”
only in the first row, these probabilities obey the equations x{1},11 +x{1},12 = 11

12 and

x{1},11 + x{1},21 = 2
3 .

Constraints of this type imply that x{1},12 = 1
3−x{1},22 and x{2},12 = 1

12−x{2},22.
Since X is 1

2 -differentially private and the databases {1} and {2} differ in only two
rows, x{1},12 ≤ 4x{2},12 and hence 4x{2},22 ≤ x{1},22. The analogous argument using
x{1},21, x{2},21 in place of x{1},12, x{2},12 implies that 4x{1},22 ≤ x{2},22 and hence

x{1},22 = x{2},22 = 0. SinceX is 1
2 -differentially private, x{1,3},22 = 0 as well. Solving,

we can obtain x{1},11 = 7
12 and x{1,3},11 = 1

6 . Since databases {1} and {1, 3} differ in

only one row, this contradicts the assumption that X is 1
2 -differentially private.
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