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Abstract

We analyze the price of anarchy (POA) in a simple and practical non-truthful combinatorial
auction when players have subadditive valuations for goods. We study the mechanism that
sells every good in parallel with separate second-price auctions. We first prove that under
a standard “no overbidding” assumption, for every subadditive valuation profile, every pure
Nash equilibrium has welfare at least 50% of optimal — i.e., the POA is at most 2. For the
incomplete information setting, we prove that the POA with respect to Bayes-Nash equilibria
is strictly larger than 2 — an unusual separation from the full-information model — and is at
most 2 ln m, where m is the number of goods.

1 Introduction

Theoretical work in algorithmic mechanism design has championed mechanisms with dominant
strategies, where each player has a “foolproof” strategy that is optimal no matter what strategies
the other players choose. The appeal of such mechanisms is clear: they impose little decision-
making burden on the participants and have a predictable outcome. For example, in the Vickrey
(second-price) single-item auction, truthful bidding is a dominant strategy for each player. Under
the relatively weak assumption that bidders play these dominant strategies, the Vickrey auction is
guaranteed to allocate the item to the bidder who values it the most.

Dominant strategies are expendable in practice, and many important real-world mechanisms do
not have them. One recurring theme is that designing for dominant strategies leads to mechanisms
that are overly “complex” for practical implementations. For instance, in sponsored search auctions,
the Vickrey-Clarke-Groves (VCG) mechanism has an intuitively more complicated payment formula
than that of the Generalized Second Price (GSP) auction that is used in practice (see e.g. [7]). The
combinatorial auctions that are used in practice — for example, government auctions to sell wireless
spectrum — are carefully crafted to achieve a number of economic and computational design goals,
but the existence of dominant strategies is not one of them [16].

If mechanisms without dominant strategies are important to analyze, how should we do it? An
obvious idea is to use an equilibrium concept to predict a mechanism’s plausible outcomes, and to
identify the performance of a mechanism with that of its equilibria. For example, a typical goal
in classical mechanism design is to prove that one or all equilibria of a mechanism implement a
given social choice rule. Here, we take a quantitative approach and ask how well the equilibrium
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performance of a mechanism approximates that of a socially optimal outcome. Thus our work
applies the “price of anarchy” framework to the analysis of mechanisms without dominant strategies.

1.1 Combinatorial Auctions with Item Bidding

Our most basic results are for the following model. There are n players and m goods. Each player i
has a private valuation vi that describes its value for each of the 2m − 1 non-empty bundles of
goods. Every valuation vi is subadditive, meaning that vi(S ∪T ) ≤ vi(S)+vi(T ) for every pair S, T
of subsets of goods. The objective is to maximize the social welfare

∑n
i=1 vi(Si) over all allocations

S1, . . . , Sn of the goods to the players. This goal can be achieved using the VCG mechanism, in
which each player has a dominant strategy that is to truthfully reveal its entire valuation to the
mechanism. There are numerous challenges to implementing this mechanism (see e.g. [1]), such
as the exponential amount of information that each player needs to communicate up front. By
contrast, in a combinatorial auction with item bidding, each player submits one bid for each good
— m bids instead of 2m − 1 — and each good is sold separately using a Vickrey auction.

There are at least three different motivations for studying combinatorial auctions with item
bidding. The most obvious one is as a simple and practical alternative to combinatorial auctions
with dominant strategies. The second, noted in [5], is that combinatorial auctions with item
bidding are, in effect, already being used: a bidder that is trying to buy a bundle of goods in
parallel on eBay (say) is implicitly participating in such an auction. The third motivation is
theoretical, and suggests a general approach to welfare maximization when players have high-
dimensional type spaces. Suppose players’ valuations lie in the set V . The VCG mechanism
has dominant strategies and is welfare-maximizing, but if V is very rich then asking a player to
describe fully its valuation is unrealistic. A natural alternative is to accept bids only from a smaller
set W ⊆ V of easily describable valuations and to run the VCG mechanism as if bidders’ true
valuations lie in W . Truthfulness is obviously lost — the true valuations may lie in V \W — but
there is hope for good performance at equilibrium if W is a “good enough approximation” of V .
Our results substantiate this hope for the case where V and W are the sets of subadditive and
additive valuations, respectively — with additive valuations, the VCG mechanism is equivalent to
a separate Vickrey auction for each good.

1.2 Our Results

We prove worst-case bounds on the welfare of equilibria in combinatorial auctions with item bidding
when players have subadditive valuations. While there is no hope of proving a non-trivial bound
on the welfare of every equilibrium, even for the single-item Vickrey auction1, our guarantees apply
to every equilibrium with “no overbidding”, meaning that the sum of a player’s bids on a subset
of goods is at most the player’s value for that subset.2

Our first result is for the full information model, in which players’ valuations are commonly
known.

Result 1 The welfare of every pure Nash equilibrium with no overbidding in a combinatorial
auction with item bidding and subadditive valuations is at least 1/2 times that of the welfare-
maximizing allocation.

This bound is tight in the worst case.
1Consider two bidders with valuations 1 and 0 and equilibrium bids 0 and 1, respectively.
2Similar assumptions are made (by necessity) and economically justified in the related works discussed in Sec-

tion 1.4.
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Our second result is for the incomplete information model, where each player’s valuation is
drawn independently from a (player-specific) distribution over subadditive valuations. The distri-
butions are commonly known but the actual valuations are private. Note that the full information
model is the special case in which every distribution is a point mass.

We show that there can be Bayes-Nash equilibria with no overbidding with expected welfare
less than half of the expected welfare of an optimal allocation. Nevertheless, we prove the following
guarantee.

Result 2 The expected welfare of every Bayes-Nash equilibrium with no overbidding in a com-
binatorial auction with item bidding and subadditive valuations is at least 1/2Hm times that of
the welfare-maximizing allocation, where Hm = 1 + 1

2 + 1
3 + · · · + 1

m ≈ lnm is the mth Harmonic
number.

We also extend this second guarantee to the expected welfare of every coarse correlated equilibrium3

— and hence to the special cases of mixed Nash and correlated equilibria — in the full information
model.

Finally, we prove that both of our bounds degrade gracefully as we relax the subadditivity and
“no overbidding” constraints. For example, if we assume only that every player overbids by at most
some constant factor, then our upper bounds grow only by constant factors.

1.3 Our Techniques

We prove our first result in two parts. The interface between the two parts is the following single-
player “game”, which essentially models the best-response problem faced by a player in a combi-
natorial auction with item bidding. An adversary assigns each good j a non-negative price p(j).
The player chooses a bid vector a, subject to no overbidding with respect to its valuation v. The
player wins good j if and only if a(j) ≥ p(j). The player’s payoff in this game under strategy a is,
by definition, v(S) +

∑
j /∈S p(j), where S is the set of goods that it wins.

The first part of our proof is a reduction, from proving a guarantee for equilibria in combinatorial
auctions with item bidding to proving a guarantee for this single-player game. Let V be a class of
valuations. Suppose that for every valuation v ∈ V and price vector p, the player has a countering
bid vector a with payoff at least v(M)/α, where M is the set of all goods. (Note that if prices
are high, the player cannot win all the goods without overbidding.) We prove that, in this case,
every pure Nash equilibrium with player valuations in V and no overbidding has welfare within a
2α factor of optimal. The second part of our proof provides, for every subadditive valuation v and
price vector p, a bid vector a with payoff at least v(M).

Our second result requires a different approach. One concrete reason is that, as we show, the
guarantee of 2 for pure Nash equilibria does not hold for Bayes-Nash equilibria. Intuitively, the
proof approach above fails because, in the incomplete information model, players best respond to
distributions over price vectors rather than to fixed price vectors. Our solution is to reverse the order
of the player and the adversary in the single-player game above: a player with a valuation v ∈ V
first chooses a bid vector a without overbidding, and then the adversary picks a price vector p to
minimize the player’s payoff. We prove that if for every v ∈ V the player has a bid vector that
guarantees a payoff of at least v(M)/β for every price vector, then every Bayes-Nash equilibrium
with player valuations in V and no overbidding has expected welfare within a 2β factor of optimal.
This argument applies also to coarse correlated equilibria in the full information model. Finally,

3Equivalently, to sequences of repeated play in which every player has vanishing time-averaged regret — see the
“price of total anarchy” defined by Blum et al. [3].
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we prove that β ≤ Hm for the class of subadditive functions. Our proof uses a greedy Set Cover-
style argument to show that all subadditive functions are “Hm-approximations” of fractionally
subadditive functions, a class of valuations for which β = 1.4

1.4 Related Work

Our work is closely related to that of Christodoulou, Kovács, and Schapira [5], who were the first to
study what we are calling combinatorial auctions with item bidding, and who proved special cases
of our two main results for submodular valuations.5 Their approximation guarantee for Bayes-Nash
equilibria is a factor of 2 (like for pure Nash equilibria), in contrast to our bound of 2 lnm.

Subadditive valuations are much more expressive, and hence technically more challenging, than
submodular valuations. For example, for the problem of computing a welfare-maximizing allo-
cation, a simple greedy algorithm produces a 2-approximation with submodular valuations [12],
while the only known polynomial-time constant-factor approximation algorithm with subadditive
valuations is the ingenious LP rounding scheme by Feige [8]. Thus our first result, that every pure
Nash equilibrium with no overbidding is already a 2-approximation with subadditive valuations, is
arguably surprising.6 Also, our lower bound that rules out an approximation guarantee of 2 for
Bayes-Nash equilibria with subadditive valuations offers a formal separation between the submodu-
lar and subadditive cases. This lower bound also implies that no proof of our first result can follow
the “smoothness paradigm” of [17] and hence must be novel in some sense. In contrast, the proofs
in [5] can be recast as smoothness proofs in the sense of [17].

Since the work of Christodoulou, Kovács, and Schapira [5], several other papers applied the
price of anarchy framework to mechanisms without dominant strategies [2, 4, 9, 11, 13, 14, 15]. We
describe a few closest to our work. First, Lucier and Borodin [14] study conditions under which an
α-approximation algorithm for welfare maximization can be combined with the VCG payment rule
to obtain a mechanism with equilibria that are (close to) α-approximate. The results in [14] do not
seem to have any interesting implications for combinatorial auctions with subadditive valuations
(with item bidding or otherwise). A series of papers [4, 13, 15] prove that, under a no overbidding
assumption, the welfare of all Nash and Bayes-Nash equilibria in the GSP sponsored search auction
are within a constant factor of optimal. Like the present work, most of the proofs in these papers
do not follow the smoothness paradigm in [17], and the bounds for pure Nash, mixed Nash and
Bayes-Nash equilibria are different. However, these works do not give a lower bound that proves
an unavoidable separation between these guarantees (as we do here).

After the conference version of this work [?], Hassidim, Kaplan, Mansour and Nisan [11] studied
combinatorial auctions with item bidding where each good is sold using a first-price auction. Among
many other results, they prove two that are related to ours here: pure Nash equilibria in their model
have optimal welfare (when they exist); and for bidders with subadditive valuations, the expected
welfare of every Bayes-Nash equilibrium is Ω(1/ log m) times that of an optimal allocation, where m
is the number of goods.

4A similar result to this last step was proved earlier by Dobzinski [6].
5Their results hold for the somewhat more general class of XOS (i.e., “XOR-of-OR-of-singletons” [12]) or, equiv-

alently, “fractionally subadditive” [8] valuations. These are a strict subclass of the subadditive valuations [?].
6To be clear, our work does not seem to imply any new algorithmic results for the problem.
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2 Preliminaries

2.1 Combinatorial Auctions

In a combinatorial auction (CA), there is a set of n players and a set M of m goods (or items).
Each player i has a valuation vi : 2M → R+ that describes its value for each subset of the goods.
We always assume that vi(∅) = 0 and vi(S) ≤ vi(T ) for all i and S ⊆ T . The social welfare SW (X)
of an allocation X := {X1, X2, . . . , Xn} of the goods to the players is

∑n
i=1 vi(Xi). For a valuation

profile v = {v1, v2, . . . , vn}, we denote the welfare-maximizing outcome by OPT (v).
We consider CAs with item bidding. Each player i submits m bids, one for each good. Letting

b = (b1, b2, . . . , bn) denote the bid profile, each good j is allocated to the highest bidder i at a price
equal to the second-highest bid maxk 6=i bk(j) for that item. Ties are broken arbitrarily. We use
Xi(b) to denote the goods allocated to player i in bid profile b and SW (b) =

∑n
i=1 vi(Xi(b)) the

social welfare of the resulting allocation. Player i’s utility from bid profile b is defined as

ui(b) = vi(Xi(b))−
∑

j∈Xi(b)

max
k 6=i

bk(j).

As noted in the Introduction, no welfare guarantees are possible, even for the single-item Vickrey
auction, without restricting players from using bids that are much larger than their valuations. For
a valuation v and parameter γ ≥ 1, call a bid vector b γ-conservative if∑

j∈S

b(j) ≤ γ · v(S) (1)

for every subset S ⊆ M of goods. The strategy space of a γ-conservative player is, by definition,
the set of bid vectors that are γ-conservative for its valuation. We sometimes call such bid vectors
feasible for the player.

2.2 The Full Information Model

Players generally have no dominant strategies in a CA with item bidding, so we consider several
types of equilibria. In the simplest full information model, players’ valuations are commonly known.
For a fixed valuation profile v = {v1, v2, . . . , vn}, a bid profile b = {b1, b2, . . . , bn} is a pure Nash
equilibrium if ui(b) ≥ ui(b′i,b−i) for every player i and (feasible) deviation b′i, where (b′i,b−i)
denotes the bid profile when player i bids b′i and all other players bid according to b.

The pure price of anarchy (POA) is the ratio of the social welfare of the optimal outcome and
that of the worst pure Nash equilibrium:

pure POA := max
b: a pure Nash eq.

SW (OPT (v))
SW (b)

. (2)

If there is no pure Nash equilibrium (Example :pure-examples), then the POA is undefined.
We next review three standard and more permissive equilibrium concepts for the full information

model: mixed Nash, correlated, and coarse correlated equilibria. A mixed strategy for player i is a
distribution Bi over bid vectors. Let B denote the product of the players’ distributions and B−i

the analogous product for the players other than i. The mixed profile {B1, B2, . . . , Bn} is a mixed
Nash equilibrium if for each player i and bid vector b′i,

E
b∼B

[ui(b)] ≥ E
b−i∼B−i

[ui(b′i,b−i)].
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We note that, by linearity, the equilibrium conditions above only need to be stated for deviations
to pure strategies. Also, every pure Nash equilibrium is also a mixed Nash equilibrium.

A distribution B over bid profiles — which now need not be a product distribution — is a
correlated equilibrium if

E
b∼B

[ui(b)|bi] ≥ E
b∼B

[ui(b′i,b−i)|bi]

for every player i, bid vector bi belonging to a profile b in the support of B, and feasible bid vector
b′i. Such a distribution B is a coarse correlated equilibrium if

E
b∼B

[ui(b)] ≥ E
b∼B

[ui(b′i,b−i)]

for every player i and bid b′i. Every mixed Nash equilibrium is a correlated equilibrium and
every correlated equilibrium is a coarse correlated equilibrium. For each of these three equilibrium
concepts, the corresponding price of anarchy is defined analogous to (2), where the denominator
is the worst-case expected social welfare of an equilibrium. See Young [19], for example, for more
details on and interpretations of these three equilibrium concepts.

2.3 The Incomplete Information Model

When players’ valuations are not commonly known, the standard model is a Bayesian game [10].
Let Vi denote the possible valuations of player i. For each player i, there is a commonly known prior
distribution Di over the valuations in Vi. Let D = D1 ×D2 · · · ×Dn denote the induced product
distribution over the set V = V1×V2 · · ·×Vn of all valuation profiles. A mixed strategy for player i
is then a mapping Bi of each valuation vi ∈ Vi to a distribution Bi(vi) over bid vectors feasible for
vi. A mixed Bayes-Nash equilibrium is a strategy Bi for each player i such that no player i can
increase its expected utility by a unilateral deviation:

E
v−i∼D−i,b∼B(v)

[ui(b)|vi] ≥ E
v−i∼D−i,b−i∼B−i(v−i)

[ui(b′i,b−i)|vi]

for every valuation vi ∈ Vi and every (pure) deviation b′i that is feasible for vi. The expected
optimal social welfare is Ev∼D[SW (OPT (v))] and the POA is the ratio of this quantity and the
worst expected social welfare of a Bayes-Nash equilibrium:

Bayes-Nash POA := max
B:a Bayes-Nash eq.

Ev∼D[SW (OPT (v))]
Ev∼D,b∼B(v)[SW (b)]

.

We have defined the incomplete information model only for bidders with independent, not
necessarily identical, valuation distributions. While the model extends to correlated valuation
distributions in the natural way, the Bayes-Nash POA can be quite large for such distributions
(Section 4.4).

2.4 Existence of Equilibria

There are CAs with item bidding and subadditive valuation profiles with no pure Nash equilibrium
exists.7

7When every player’s valuation is submodular, or more generally XOS, there is always a pure Nash equilibrium [5].
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Example 2.1 (Pure Nash Equilibria Need Not Exist) Suppose there are two 1-conservative
players and three items, with the players’ subadditive valuation functions defined as follows:

Player 1 : v1(M) = 3.2, v1(S) = 1.6 for S 6= M, ∅;
Player 2 : v2(M) = 2, v2(S) = 1 for S 6= M, ∅.

Suppose there is a pure Nash equilibrium. First suppose that the second player wins some items
in this equilibrium. Then, the first player does not win the whole set M and its utility is at most
1.6. Let x, y, z denote the second player’s respective bids for the three items. Since the player is
1-conservative, each pair of of these bids sums to at most 1, and x + y + z ≤ 1.5. Then, the first
player can submit a 1-conservative bid of the form x + ε, y + ε, z + ε for small enough ε, obtaining
utility at least 3.2− 1.5 > 1.6.

Second, suppose that the first player wins all three goods in the Nash equilibrium, with bids
x, y, z. Since the player uses a 1-conservative bid, either x or y (x, say) is less than 1. The second
player then has a 1-conservative bid on x that increases its utility, from zero to a positive amount.

Existence of mixed equilibria, in both the complete and incomplete information models, is a
subtle issue. XXX NEED TO FINISH

3 Upper Bound on the Pure POA

This section presents our first result, an upper bound on the pure POA in CAs with item bidding.
Recall from (1) that a γ-conservative player with valuation v only uses bid vectors b such that∑

j∈S b(j) ≤ γ · v(S) for every subset S of goods. Also, a valuation v is α-subadditive if for all
subsets S1, S2, . . . , Sk of goods,

v(S1 ∪ S2 ∪ · · · ∪ Sk) ≤ α [v(S1) + v(S2) + · · ·+ v(Sk)] . (3)

Note that a valuation is subadditive in the usual sense if and only if it is 1-subadditive.

Theorem 3.1 (Upper Bound on the Pure POA) For every CA with item bidding that has γ-
conservative players with α-subadditive valuations and at least one pure Nash equilibrium, the pure
POA is at most α(γ + 1).

In particular, the pure POA is at most 2 when players have subadditive valuations and do not
overbid on any subset. Before proving this theorem, we show by example that this upper bound is
tight in the worst case for subadditive valuations for all values of γ.

Example 3.2 (Theorem 3.1 Is Tight) Consider two goods (A and B) and two players with the
following valuations:

v1({A}) = 1, v2({A}) = γ + 1,

v1({B}) = γ + 1, v2({B}) = 1,

v1({A,B}) = γ + 1 v2({A,B}) = γ + 1.

These valuations are submodular and hence subadditive. The optimal allocation — with goods A
and B assigned to players 2 and 1, respectively — has social welfare 2(γ + 1).

On the other hand, suppose players 1 and 2 bid (γ, 0) and (0, γ), respectively. These bids are
γ-conservative. The social welfare of the corresponding allocation is 2. A simple case analysis
shows that this bid profile is a Nash equilibrium, and hence the pure POA of this example is at
least γ + 1.
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We now turn to the proof of Theorem 3.1. We first prove a crucial lemma that concerns the best
response of a single player against “posted prices” on the goods. More precisely, for a γ-conservative
player with an α-subadditive valuation v and a vector p of nonnegative prices on the goods, we use
u(a, p) to denote the utility the player gets with the bid vector a:

u(a, p) = v(S)−
∑
j∈S

p(j), (4)

where S = {j ∈ M : a(j) ≥ p(j)} is the set of goods that the player wins. In our proof of
Theorem 3.1, we apply this lemma to each player, where the prices p are set by the other players’
bids.

Lemma 3.3 (How To Bid Against Fixed Posted Prices) Let O be a set of goods and p(j) a
price for the good j ∈ O. Let v : 2O → R be an α-subadditive valuation function on this set. There
is a 1-conservative bid vector a such that

u(a, p) ≥ v(O)
α

−
∑
j∈O

p(j).

Proof: For convenience, we define the “translated utility” by ũ(a, p) = u(a, p) +
∑

j∈O p(j). This
quantity was called the “player payoff” in the summary in Section 1.3. We show that there is a
1-conservative bid vector a with ũ(a, p) ≥ v(O)/α.

The proof is by induction on the number of goods. Our inductive hypothesis is: for every set O
of ` goods, prices p on O, and α-subadditive valuation v, there exists a 1-conservative bid vector a
and a partition S1, S2, . . . , Sk of O such that ũ(a, p) ≥ v(S1) + v(S2) + · · ·+ v(Sk).

For the base case (when ` = 1), let p denote the price of the good. If v(O) ≥ p, then for every
(1-conservative) a between p and v(O), ũ(a, p) = v(O). If p > v(O), then for every 1-conservative
bid a ≤ v(O), ũ(a, p) = p ≥ v(O).

For the inductive step, let O be a set of ` > 1 goods. There are now two cases, depending on
whether or not there is a set A for which∑

j∈A

p(j) > v(A). (5)

If not, then setting a = p yields a 1-conservative bid that wins the entire set O and hence achieves
ũ(a, p) = v(O).

For the second case, choose an arbitrary (non-empty) subset A that satisfies (5). By the
inductive hypothesis, there is a 1-conservative bid vector a on O \A and a partition S1, S2, . . . , Sk

of the goods O \A such that

ũ(a, p) = v(U) +
∑

j∈O\(A∪U)

p(j) (6)

≥ v(S1) + v(S2) + · · ·+ v(Sk),

where U is the goods of O \A won with the bid vector a.
Extend a to a bid vector on all of O by padding it with zeros on A; it remains 1-conservative.

Applying inequalities (5) and (6) completes the inductive step:

ũ(a, p) ≥ v(U) +
∑

j∈O\(A∪U)

p(j) +
∑
j∈A

p(j)

≥ v(S1) + v(S2) + · · ·+ v(Sk) + v(A).
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Finally, using the definition of translated utility and α-subadditivity (3), we conclude that our
bid vector a satisfies u(a, p) ≥ v(O)/α−

∑
j∈O p(j), as desired. �

We next establish another lemma that is used in all of our price of anarchy bounds. The lemma
shows how to use the conservative bidding assumption to charge the sum of the maximum bids on
items to the social welfare of the corresponding allocation.

Lemma 3.4 For every γ-conservative bid profile b = {b1, b2, . . . , bn},∑
j∈M

max
k

bk(j) ≤ γ · SW (b).

Proof: The maximum bid on an item is the bid by the player who won that item in the corresponding
allocation X(b). The γ-conservative assumption implies that the sum of a player’s bids on the goods
allocated to it is at most γ times the player’s value for these goods. Hence,

∑
j∈M

max
k

bk(j) =
n∑

i=1

∑
j∈Xi(b)

bi(j)

≤
n∑

i=1

γ · vi(Xi(b))

= γ · SW (b).

�

We now prove our upper bound on the pure POA of CAs with item bidding (Theorem 3.1).

Proof of Theorem 3.1: Fix a valuation profile v = {v1, v2, . . . , vn} and let OPT = {O1, O2, . . . , On}
denote an optimal allocation for it. Suppose the bid profile b = {b1, b2 . . . , bn} is a pure Nash
equilibrium, with the corresponding allocation X(b) = {X1(b), X2(b), . . . , Xn(b)}.

Fix a player i and define pi(j) = maxk 6=i bk(j) for each good j. Invoking Lemma 3.3, there is a
feasible bid vector ai such that

ui(ai, pi) ≥
vi(Oi)

α
−

∑
j∈Oi

pi(j),

where ui is defined as in (4). Combining this inequality with the Nash equilibrium condition we
derive

ui(b) ≥ ui(ai,b−i)
= ui(ai, pi)

≥ vi(Oi)
α

−
∑
j∈Oi

pi(j)

≥ vi(Oi)
α

−
∑
j∈Oi

max
k

bk(j), (7)
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where in the last step we replace maxk 6=i bk(j) with the only larger quantity maxk bk(j). Using the
fact that vi(Xi(b)) ≥ ui(b) for every player i, inequality (7), and Lemma 3.4, we have

SW (b) =
n∑

i=1

vi(Xi(b))

≥
n∑

i=1

ui(b)

≥
n∑

i=1

vi(Oi)
α

−
∑
j∈Oi

max
k

bk(j)


≥ SW (OPT )

α
− γ · SW (b).

Rearranging terms completes the proof. �

4 The Bayes-Nash POA

This section treats the incomplete information model. Section 4.1 shows by example that the
guarantee of Theorem 3.1 does not carry over to this more general model. Section 4.2 covers two
important lemmas. Section 4.3 proves the main result of this section (Theorem 4.6): the Bayes-
Nash POA in every CA with item bidding and γ-conservative bidders with α-subadditive valuations
is at most α(γ + 1)Hm, where Hm = 1 + 1

2 + · · · + 1
m is the mth Harmonic number. Section 4.4

shows that, when bidders’ valuations are not independent, the Bayes-Nash POA can be polynomial
in the number of goods.

4.1 Separation of the Pure POA and Bayes-Nash POA

The following example shows that the Bayes-Nash POA of CAs with item bidding and 1-conservative
bidders with subadditive valuations is larger than 2, the pure POA (Theorem 3.1). This separation
stands in contrast to many previous works, where the worst-case pure POA coincides with that of
several more general equilibrium concepts (including the Bayes-Nash POA); see also the discussion
before Lemma 4.3.

Example 4.1 (The Bayes-Nash POA Is Larger Than 2) Consider 2 players and 8 goods, di-
vided into two sets X0 and X1 with 4 goods each. Let a = 0.24, b = 0.521, and p = 0.97.

Each player i = 0, 1 has a deterministic valuation on the set Xi+1 and a distribution over
additive valuations on the set Xi. (All additions to indices are interpreted modulo 2.) Precisely,
for each player i and good j ∈ Xi, vi({j}) is a with probability p and is b with probability 1 − p.
The full valuation is then

vi(S) =


1 for ∅ 6= S ⊂ Xi+1

2 S = Xi+1∑
j∈S vi({j}) for S ⊆ Xi

max{vi(S ∩X0), vi(S ∩X1)} otherwise.

Every valuation in the support is subadditive. Since one possible allocation is to award set X0 to
player 1 and set X1 to player 0, E[SW (OPT )] ≥ 4.
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Now consider the strategy profile in which player i bids vi(j) for every j ∈ Xi and 0 for every
j ∈ Xi+1. These bids are 1-conservative. The expected welfare of this strategy profile is

E[v0(X0)] + E[v1(X1)] =
∑

i

∑
j∈Xi

E[vi(j)]

= 2× 4× (ap + b(1− p))
= 1.98744.

We next verify that this strategy profile is a Bayes-Nash equilibrium, which proves that the Bayes-
Nash POA is larger than 2.

By symmetry, we only need to check the equilibrium conditions for player 0. Player 1’s bids
act as posted prices for player 0. We show that for each fixed valuation of player 0, the maximum
expected utility the player can achieve, given the distribution over posted prices induced by player
1’s strategy, is achieved by the suggested strategy profile.

Fix a valuation v0 for player 0. In the proposed strategy file, this player’s expected utility is
v0(X0) ≥ 4a = 0.96. Since v0(S) = max{v0(S ∩ X0), v0(S ∩ X1)} for each set S and player 0
currently wins all of X0 without paying anything, we can focus on deviating bids that are non-zero
only on goods of X1.

First, suppose that player 0 bids at least b on some good of X1. Since deviating bids must be
1-conservative, 2b > 1, and 2a + b > 1, player 0 bids at least b on only one good and at least a on
at most one other good of X1. If the player bids at least b on one good and at least a (but less
than b) on another, then its expected utility is at most (1 − p)2(1 − b) + (1 − p)p(1 − a) + p(1 −
p)(1− a− b) + p2(1− 2a) = 1− 2pa− b(1− p). If it bids at least b on one good and less than a on
the rest, then its expected utility is at most (1− p)(1− b) + p(1− a) = 1− ap− b(1− p). In either
case, its expected utility is at most 1− ap− b(1− p) = 0.75157 < 0.96. Second, if player 0 bids at
least a but less than b on a strict subset of the goods in X1, and less than a on the rest, then its
expected utility is at most 1 − a < 0.96. Finally, if player 0 bids at least a but less than b on all
four goods in X1, then its expected utility is at most 2p4 +(1− (1− p)4− p4)− 4ap = 0.954 < 0.96.

4.2 Two Lemmas on Fractionally Subadditive Valuations

This section provides the two main ingredients for our upper bound on the Bayes-Nash POA of
CAs with item bidding. Both are stated in terms of fractionally subadditive valuations, defined
next.

Definition 4.2 (Fractionally Subadditive Valuation) A valuation v on a set M of goods is
β-fractionally subadditive if for each subset T ⊆ M there is a bid vector a that satisfies:

(i)
∑

j∈S a(j) ≤ v(S) for every subset S ⊆ T ;

(ii)
∑

j∈T a(j) ≥ v(T )/β.

Put differently, Definition 4.2 asserts that for each target set T of goods, there is a 1-conservative
bid vector with sum of bids at least v(T )/β on the target set.8

The first lemma in this section plays a role analogous to that of Lemma 3.3. Because the
Bayes-Nash POA is larger than 2 (Example 4.1), we need a more general statement that applies

8By strong duality, a valuation is fractionally subadditive if and only if for every “fractional cover” of a subset T of
goods — meaning nonnegative coefficients λ1, . . . , λk for sets S1, . . . , Sk such that

P
i : j∈Si

λi ≥ 1 for every good j ∈ T

— the value of
Pk

i=1 λiv(Si) is at least v(T )/β. When β = 1, these are precisely the XOS (“XOR-of-OR-of-singletons”)
valuations [8].
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beyond pure Nash equilibria. Essentially, our upper bound on the pure POA (Theorem 3.1) does
not extend to the incomplete information model because it is not — and, by Example 4.1, cannot
be — a “smoothness proof” in the sense of [17]. Unlike in [17], the Nash equilibrium hypothesis
is invoked for player i in the proof of Theorem 3.1 with a candidate deviation ai that depends
on the bid vectors b−i of the other players. The next lemma differs from Lemma 3.3 in that we
exhibit a suitable bid vector for a player that is independent of the goods’ prices — albeit only for
β-fractionally subadditive valuations, rather than α-subadditive ones.

Lemma 4.3 (How To Bid Against All Posted Prices) Let O be a set of goods. Let v : 2O →
R+ be a β-fractionally subadditive valuation function on this set. There is a 1-conservative bid
vector a such that, for every set of prices p on O,

u(a, p) ≥ v(O)
β

−
∑
j∈O

p(j). (8)

Proof: Let a denote the bid vector guaranteed by Definition 4.2 for the valuation v and target
set O. We can assume that a is zero outside of the set O. Let p be an arbitrary price vector. Let X
be the goods of O that the player wins when it bids a. Using the two conditions of Definition 4.2
and the fact that a(j) ≤ p(j) for every good j that the player does not win, we have

u(a, p) ≥ v(X)−
∑
j∈X

p(j)

≥
∑
j∈X

a(j)−
∑
j∈X

p(j)

≥
∑
j∈X

a(j)−
∑
j∈X

p(j) +
∑

j∈O/X

(a(j)− p(j))

=
∑
j∈O

a(j)−
∑
j∈O

p(j)

≥ v(O)
β

−
∑
j∈O

p(j).

�

Lemma 4.3 applies to fractionally subadditive valuations, but how do these relate to subadditive
valuations? The next lemma answers this question: every valuation that is α-subadditive in the
sense of (3) is αHm-fractionally subadditive, where Hm ≈ lnm is the mth Harmonic number. This
result is tight up to a constant factor (Example 4.5).

Lemma 4.4 (α-Subadditive Implies αHm-Fractionally Subadditive) For every α ≥ 1 and
set M of m goods, every α-subadditive valuation v over M is also αHm-fractionally subadditive,
where Hm = 1 + 1

2 + · · ·+ 1
m .

Proof: Given an α-subadditive valuation v and a target set T ⊆ M of goods, we exhibit a bid
vector a satisfying conditions (i) and (ii) of Definition 4.2, with β = αHm. We use a variation of
the greedy Set Cover algorithm (Algorithm 1) for this purpose.

To verify that the output a of Algorithm 1 satisfies condition (i) of Definition 4.2, fix S ⊆ T .
Consider the iteration of Algorithm 1 in which the `th good of S is added to C. The algorithm

12



Algorithm 1 Certifying (αHm)-fractional subadditivity

Input: α-subadditive valuation v on a set M of goods. Target set T ⊆ M .
Initialization: C = ∅, a(j) = 0 for all j in M .
While C 6= T ,

• A = arg minA′⊆T
v(A′)
|A′\C| ;

• for j ∈ A \ C, a(j) = v(A)
|A\C|·Hm

;

• C = C ∪A;

Output: the bid vector a.

could have chosen the set S in this iteration; by its greedy criterion, it chose a set A satisfying

v(A)
|A \ C|

≤ v(S)
|S \ C|

≤ v(S)
(|S| − ` + 1)

.

Thus, ∑
j∈S

a(j) ≤ v(S)
Hm

(
1 +

1
2

+ · · ·+ 1
|S|

)
≤ v(S),

as required.
To show that condition (ii) of Definition 4.2 holds with β = αHm, let A1, A2, . . . , At denote the

sets chosen by Algorithm 1. By the definition (3) of α-subadditivity, we have∑
j∈T

a(j) =
t∑

k=1

∑
j∈Ak

a(j) =
t∑

k=1

v(Ak)
Hm

≥ v(T )
αHm

,

which completes the proof. �

Example 4.5 (Lemma 4.4 Is Tight) Adapting a known lower bound for the worst-case inte-
grality gap of Set Cover linear programs (see e.g. [18, Example 13.4]) shows that Lemma 4.4 is
tight, in the worst case, up to a constant factor. In more detail, for a positive integer k we con-
struct a valuation function on a set of m = 2k − 1 goods. Number the goods from 1 to m and
let i denote a k-bit binary vector representing the integer i. We interpret i as a k-dimensional
vector over GF [2] and use i · j to denote the dot product of the two vectors (modulo 2). Define
Si = {j : i · j = 1}. Each such set contains (m+1)/2 goods and each good is contained in (m+1)/2
sets.

Define a valuation v by setting v(S) to be the smallest number of sets of the form Si whose
union contains S. This valuation is subadditive. We show that every 1-conservative bid vector a
satisfies

∑
j∈M a(j) ≤ 2v(M)/ log2 m.

The problem of maximizing the sum of bids subject to no overbidding can be formulated as a
linear program

max
∑
j∈M

a(j)

subject to
∑
j∈S

a(j) ≤ v(S) ∀S ⊆ M ;

a(j) ≥ 0 ∀j,
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with dual linear progam

min
∑

S⊆M

λSv(S)

subject to
∑

S : j∈S

λS ≥ 1 ∀j;

λS ≥ 0 ∀S ⊆ M.

For the valuation v defined above, setting λSi = 2/(m + 1) for every i = 1, 2, . . . ,m and λS = 0
otherwise yields a feasible dual solution with objective value 2m/(m+1) ≤ 2. Linear programming
duality implies that

∑
j∈M a(j) ≤ 2 for every 1-conservative bid vector a.

On the other hand, we claim that v(M) is at least k = log2(m + 1). Consider p < k
sets Si1 , . . . , Sip . Let A be the matrix formed by the vectors i1, i2, . . . , ip. This matrix has rank
less than k, so its null space has rank at least one. Thus, there is a vector j such that it · j = 0 for
each t. By definition, j does not belong to any of the sets Si1 , . . . , Sip , so these sets do not cover M .
As k sets are required to cover M , v(M) ≥ k and the subadditive valuation v is not β-subadditive
for any β < (log2 m)/2.

4.3 Upper Bound on the Bayes-Nash POA

We now prove our main result for the incomplete information model.

Theorem 4.6 For every CA with item bidding that has γ-conservative players with α-subadditive
valuations, the Bayes-Nash POA is at most α(γ + 1)Hm.

Proof: Let D = D1×D2 · · ·×Dn denote the common prior over players’ valuations. The Bayes-Nash
equilibrium strategy for each player i is a mixed strategy Bvi for each vi ∈ Vi. Let B

v−i

−i denote the
joint distribution of mixed strategies of all players other than i for the valuation profile v−i.

We fix a valuation profile for all players v = {v1, v2, . . . , vn}. Let Ov = {Ov
1 , Ov

2 . . . , Ov
n} be a

corresponding optimal allocation. Set β = αHm. By Lemmas 4.3 and 4.4, for each player i there
is a bid vector ai such that, for every price vector p on Ov

i ,

ui(ai, p) ≥ vi(Ov
i )

β
−

∑
j∈Ov

i

p(j).

In particular, if the prices are set equal to the maximum bids by other players in any bid profile then
the above guarantee holds. So, if player i considers deviation ai in the Bayes-Nash equilibrium, for
each bid bi in the mixed Bayes-Nash strategy Bvi of player i, the Bayes-Nash condition implies:

E
w−i|vi,b−i∼B

w−i
−i

[ui(bi, b−i)] ≥ E
w−i|vi,b−i∼B

w−i
−i

[ui(ai, b−i)]

≥ E
w−i|vi,b−i∼B

w−i
−i

vi(Ov
i )

β
−

∑
j∈Ov

i

max
k 6=i

bk(j)


=

vi(Ov
i )

β
− E

w−i|vi,b−i∼B
w−i
−i

 ∑
j∈Ov

i

max
k 6=i

bk(j)
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The subscript w−i|vi indicates that w−i is drawn from the distribution D conditioned on vi. Finally
combined with the fact that for any bid profile, vi(Xi(b)) ≥ ui(b),

E
w−i|vi,b−i∼B

w−i
−i

[vi(Xi(b))] ≥ vi(Ov
i )

β
− E

w−i|vi,b−i∼B
w−i
−i

 ∑
j∈Ov

i

max
k 6=i

bk(j)


The next expression is obtained in two steps. First consider all possible bids bi for player i

and take expectation according to Bvi . The right hand side does not depend on bi hence remains
unchanged. On the left hand side, we now consider expected value to player i as bi varies. We
can obtain similar expressions for each player, sum these over all players and take expectation as
valuation profile v is drawn from D.

E
v

[
n∑

i=1

Ew−i|vi,b∼Bvi,w−i [vi(Xi(b))]

]

≥ E
v

[
n∑

i=1

vi(Ov
i )/β

]
− E

v

 n∑
i=1

E
w−i|vi,b−i∼B

w−i
−i

 ∑
j∈Ov

i

max
k 6=i

bk(j)

 (9)

To keep things simple, we will process each term in the above expression independently.
Let’s look at the first term.

E
v

[
n∑

i=1

E
w−i|vi,b∼Bvi,w−i

[vi(Xi(b))]

]

=
n∑

i=1

∑
vi,w−i|vi

∑
v−i|vi

D(w−i|vi)D(vi)D(v−i|vi) E
b∼Bvi,w−i

[vi(Xi(b))]

=
n∑

i=1

∑
vi,w−i|vi

D(w−i, vi) E
b∼Bvi,w−i

[vi(Xi(b))] = Ew,B[SW (b)]

The simplification follows as none of the summands depend on v−i. The second term in (9) is just
E[SW (OPT )]. Finally we simplify the last expression in (9). Here, in the second step we use the
fact that the distributions Di are independent.

E
v

 n∑
i=1

E
w−i|vi,b−i∼B

w−i
−i

 ∑
j∈Ov

i

max
k 6=i

bk(j)


= E

v

 n∑
i=1

∑
w−i|vi

D(w−i|vi) E
b−i∼B

w−i
−i

 ∑
j∈Ov

i

max
k 6=i

bk(j)


= E

v

 n∑
i=1

∑
w−i

D(w−i) E
b−i∼B

w−i
−i

 ∑
j∈Ov

i

max
k 6=i

bk(j)


= E

v

 n∑
i=1

∑
w

D(w−i)D(wi) E
b∼Bw

 ∑
j∈Ov

i

max
k 6=i

bk(j)
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In the last step we introduce a new copy for player i’s valuation along with the corresponding
mixed strategy bids. Currently nothing depends on these hence is without loss. Continuing with
the simplification,

E
v

 n∑
i=1

E
w−i|vi,b−i∼B

w−i
−i

 ∑
j∈Ov

i

max
k 6=i

bk(j)


≥ E

v

 n∑
i=1

∑
w

D(w) E
b∼Bw

 ∑
j∈Ov

i

max
k 6=i

bk(j)


≥ E

v

 n∑
i=1

∑
w

D(w) E
b∼Bw

 ∑
j∈Ov

i

max
k

bk(j)


= E

v

∑
w

D(w) E
b∼Bw

 n∑
i=1

∑
j∈Ov

i

max
k

bk(j)


= E

v

[∑
w

D(w) E
b∼Bw

[γSW (b)]

]

= E
v

[
γ E

w,b∼Bw
[SW (b)]

]
= γ E

w,B
[SW (b)]

Note that the expression maxk 6=i bk(j) only grows when replaced by maxk bk(j). The second-last
step follows from lemma 3.4. Expression (9) now becomes,

E
w,B

[SW (b)] ≥ E[SW (OPT )]
β

− γ E
w,B

[SW (b)]

Reorganizing we obtain the bound of β(γ + 1). �

4.4 The Bayes-Nash POA with Correlated Valuations

An assumption in the proof of theorem 4.6 was the player’s valuations were independent. This
assumption is crucial. In the example below, where player valuations are correlated, any Bayes-
Nash equilibrium of the one-conservative CA with Item Bidding has POA Ω(n1/4).

Example 4.7 There are n +
√

n total items and 2n players. Players occur in pairs. Each pair
contains one player each of types I and II. A valuation from the correlated distribution D is drawn
as follows. First

√
n items are picked at random, this is the ”common pool”. The remaining n

items are randomly matched with the n pairs of players. For each pair, this is the ”reserve item”.
A player of type I values any non-empty subset of the

√
n+1, common pool plus one reserve item,

iitems at one. Player of type II values only the corresponding reserve item at n−1/4.
First note that we can assume in a Bayes-Nash equilibrium a player of type II always bids

n−1/4. If the player is bidding lower than n−1/4, then bidding higher can only tilt the outcome in
its favor. But since this is an equilibrium raising its bid should not change its expected utility; and
since it has a single minded valuation also not change the outcome. Hence raising his bid to n−1/4

is without loss.
A player of type I when bidding in an equilibrium sees a set of

√
n + 1 items where each item

is equally likely to be the reserve item. Note that it has to bid more than n−1/4 to win the reserve
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item. Moreover, due to the 1-conservative condition, it can bid more than n−1/4 on at most n1/4

items. Thus only with probability n1/4/(
√

n + 1) ≈ n−1/4, it will win the reserve item. In all the
other cases the reserve item is picked up by the type II player. Hence we conclude:

Ev∼D[SW (X(b))] ≤
√

n + n · n−1/4 + n · n−1/4

The social welfare in the Bayes-Nash is O(n3/4). While in the optimal, all players of type I will snag
their reserve items yielding a social welfare of at least n. Hence the Price of Anarchy is Ω(n1/4).

5 PoA Bound for Coarse-Correlated Equilibria

A proof similar to that of Theorem 4.6 establishes the same upper bound of β(γ + 1) on the
worst-case POA of coarse correlated equilibria in the full information model. Due to the inclusion
properties of the equilibrium concepts the same bound applies to the mixed POA and correlated
POA.

Theorem 5.1 If all players have valuation functions vi that are β-fractionally subadditive and all
players are γ-conservative, then the coarse correlated POA of a combinatorial auction with item
bidding is β(γ + 1).

Proof: Let B be the distribution over different bid profiles in the coarse correlated equilibrium.
Let O = {O1, O2, . . . , On} be the optimal allocation for the players’ valuation profiles. The coarse
correlated equilibrium condition for a player i is

E
B
[ui(b)] ≥ E

B
[ui(a′i,b−i)].

Fix a player i. From Lemma 4.3 there exist a 1-conservative deviation ai such that for every bid
profile b, setting highest bids by players other than i as prices on the items we have,

ui(ai, b−i) ≥
vi(Oi)

β
−

∑
j∈Oi

max
k 6=i

bk(j)

Applying the coarse-correlated equilibrium condition for player i, with deviation ai,

E
B
[ui(b)] ≥ E

B
[ui(ai, b−i)] ≥

vi(Oi)
β

− E
B

∑
j∈Oi

max
k 6=i

bk(j)


Summing this over all players and using the fact that for each bid profile b and player i,

vi(Xi(b)) ≥ ui(b) we obtain,

E
B
[SW (b)] ≥

n∑
i=1

E
B
[ui(b)]

≥
n∑

i=1

vi(Oi)
β

− E
B

∑
j∈Oi

max
k 6=i

bk(j)


≥ SW (O)

β
− E

B

 n∑
i=1

∑
j∈Oi

max
k

bk(j)


≥ SW (O)

β
− γ · E

B
[SW (X(b))]
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In the second step we replace maxk 6=i bk(j) with maxk bk(j) which is clearly larger. The last step
follows from lemma 3.4. Reorganizing the above inequality establishes that the POA is at most
β(γ + 1). �

6 Conclusion

Our work suggests a number of interesting open questions.

• What is the POA of Bayes-Nash equilibria in combinatorial auctions with item bidding and
subadditive valuations? There is a significant gap between our upper and lower bounds.

• Identify necessary and sufficient conditions for the existence of a pure Nash equilibrium in a
combinatorial auction with item bidding and subadditive valuations. (Cf., Example 2.1.)

• As outlined in the Introduction, our results quantify the equilibrium efficiency loss that re-
sults from forcing bidders with subadditive valuations to submit additive bids. Is there a
more general theory about the equilibrium efficiency loss caused by this type of “valuation
compression”?
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