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Abstract

We initiate the systematic study of algorithmic issues
involved in finding equilibria (Nash and correlated) in
games with a large number of players; such games, in
order to be computationally meaningful, must be pre-
sented in some succinct, game-specific way. We develop
a general framework for obtaining polynomial-time algo-
rithms for optimizing over correlated equilibria in such
settings, and show how it can be applied successfully to
symmetric games (for which we actually find an exact
polytopal characterization), graphical games, and con-
gestion games, among others. We also present complex-
ity results implying that such algorithms are not possi-
ble in certain other such games. Finally, we present a
polynomial-time algorithm, based on quantifier elimina-
tion, for finding a Nash equilibrium in symmetric games
when the number of strategies is relatively small.

1 Introduction

The Complexity of Equilibria A fundamental prob-
lem on the increasingly active interface of game the-
ory and theoretical computer science is determining
the computational complexity of computing equilibria.
For example, the most popular equilibrium concept in
noncooperative game theory is the Nash equilibrium—a
“stable point” among n strategic players from which
no player has a unilateral incentive to deviate. A
polynomial-time algorithm for computing a Nash equi-
librium is arguably the “holy grail” in this research area
(see [32]), and much progress has been made on this [5,
10, 20, 26, 27, 36] and related problems [7, 8, 9, 18, 28]
by the theoretical computer science community in the
last few years.
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Multi-player Games In this paper, we will study
the complexity of computing equilibria in games with
many players. While two-player games are the most
classical [39] and well-studied type of game, and are
possibly the most tractable from a complexity-theoretic
perspective, we nevertheless believe that multi-player
games demand immediate study. Indeed, much of
the current research on game theory in theoretical
computer science is motivated by large networks, such
as the Internet, where games are obviously being played
by a large number of players. While multi-player
games have been extensively studied in the game theory
literature (see [22] and the references therein), and their
importance has long been recognized by the artificial
intelligence community (see e.g. [37]), even less is known
about computing equilibria in multi-player games than
in the (still mysterious) special case of two-player games.

There is an immediate obstacle to discussing com-
plexity results for general n-player games: massive input
complexity. For example, to specify a general game in
which n players each have to make a binary decision,
n2™ numbers are required—for each of the 2™ possible
outcomes of the game, a payoff to each player. This ex-
ponential input complexity is worrisome in two respects.
Most obviously, it threatens to render all positive algo-
rithmic results moot—who cares about a polynomial-
time algorithm, when the input size is already expo-
nential in “natural” parameters, such as the number of
players? Secondly, it illustrates a potential disconnect
between our complexity theory of games and the games
that we actually want to study—rare is the game that
models an application of interest and yet lacks sufficient
structure to be specified with a reasonable number of
parameters.

Compact Representations The exponential input
complexity of general multi-player games motivates
an important research direction: the complexity of
computing equilibria in multi-player games that admit
a compact representation. Many recent papers in the
theoretical computer science literature are in essence
applying this philosophy to concrete applications, such
as load-balancing (see [6, 12] and the references therein),



network routing (see [35]), facility location [38], and
congestion games [11]. In this paper, we are aiming
for a more systematic investigation—what properties
of a compact representation permit polynomial-time
algorithms for computing equilibria? To illustrate our
results, we will focus on the following three broad classes
of structured multi-player games.

Symmetric Games In a symmetric game, all players
are identical and indistinguishable. They have the
same strategy sets, their utility functions are the same
function of their own strategy and the other players’
actions, and this function is symmetric in the other
players’ actions. This function thus depends only on the
number of players choosing each strategy, and on the
player’s strategy. Symmetric games have been widely
studied since the dawn of game theory; together with
zero-sum games, they form one of the most classical
subclasses of games. For example, Nash [30] proved
that every symmetric game must have a symmetric
equilibrium—an equilibrium in which all players play
the same strategy. Several of the papers in the first
volume of Contributions to the Theory of Games [24]
are devoted to symmetric games. Symmetric games’
long tenure in the spotlight is due in large part to the
famous examples they have provided: the Prisoner’s
Dilemma, Chicken, coordination games, and so on.
More recently, symmetric games have played a central
role in evolutionary game theory (see e.g. [40]). Despite
this long history, little is known about the complexity
of computing equilibria of symmetric games.

Multi-player symmetric games admit a compact
representation. Specifically, a symmetric game can,
by definition, be specified by giving the payoff of each
strategy, given how many players choose each strategy.
If there are n players who choose among k strategies,
then there are ("/*") distinct distributions of n players
among k strategies (equivalently, ordered partitions of
n into k parts), and the game can be summarized with
only k(" *,") numbers. This is always smaller than the
nk™ numbers required for the standard representation,
exponentially so if £k = O(n).

Graphical Games Graphical Games were first pro-
posed by Kearns, Littman, and Singh [20]. (See also
Koller and Milch [23] and the references therein for re-
lated concepts.) In a graphical game, the players are
the vertices of a graph, and the payoff of each player
only depends on its strategy and those of its neighbors.
Algorithms that run in time polynomial in the obvi-
ous compact representation have recently been devel-
oped for computing Nash [20, 27] and correlated equi-
libria [19] for graphical games defined on trees.

Congestion Games Congestion games are an abstrac-
tion of network routing games and were first defined by
Rosenthal [33, 34]. In a congestion game, there is a
ground set of elements, and players choose a strategy
from a prescribed collection of subsets of the ground
set. The cost of an element is a function of the num-
ber players that select a strategy that contains it, but
this cost is independent of the identities of these play-
ers. The cost (negative payoff) to a player is then the
sum of the costs of the elements in its strategy.

Congestion games enjoy a flexibility useful for mod-
eling diverse applications, as well as enough structure to
allow non-trivial theoretical analyses, and for these rea-
sons have been extensively studied in the last 10 years;
see [35, §4.4] for a survey and [11] for recent results
concerning pure-strategy Nash equilibria.

Correlated Equilibria While we also give algorithms
for computing Nash equilibria, our widest-ranging the-
ory concerns correlated equilibria. Correlated equilibria
were first defined by Aumann [1], and we will describe
them in detail in Section 2. For now, suffice it to say that
every Nash equilibrium is a correlated equilibrium and
that the set of all correlated equilibria of a game can be
described by a system of linear inequalities whose size is
polynomial in the length of the game’s standard descrip-
tion. Unfortunately, the size of this system is generally
exponential in that of the compact representations of all
of the games mentioned above. Hence correlated equi-
libria, currently the only known tractable solution con-
cept in game theory, long appeared beyond the power
of polynomial-time computation for these fundamental
classes of games.

Our Results For computing correlated equilibria in
multi-player games with a compact representation, we
prove the following.

e For symmetric games we explicitly describe the set
of all correlated equilibria with a linear system that
has size polynomial in the natural compact repre-
sentation of the game. A correlated equilibrium—
in fact, one that optimizes an arbitrary linear func-
tion, such as the expected sum of player payoffs—
can thus be found efficiently.

o We present a general framework, based on dimen-
sionality reduction of natural linear programming
formulations, for optimizing over the correlated
equilibria of a game in time polynomial in the size of
a compact representation. In addition to the class
above, this framework applies to certain congestion
games and to graphical games defined on trees (or
more generally, graphs of bounded treewidth).



e For two important classes of games not covered by
our general framework—general congestion games
and general graphical games—we prove that there
is no algorithm that optimizes over the set of
correlated equilibria in time polynomial in the size
of the natural compact representation (assuming
P # NP).

None of these results were previously known, with the
exception of the tractability of optimizing over the
correlated equilibria of a graphical game defined on
a tree, which was first proved by Kakade et al. [19].
Here, we rederive this result from a much more general
perspective, and also give the first complexity-theoretic
justification of restricting the topology of graphical
games.

Finally, we present a polynomial-time algorithm,
based on the theory of real closed fields, for finding
a Nash equilibrium in n-player, k-strategy symmetric
games with k = O(logn/ loglogn).

2 Preliminaries

Games A normal form game, or simply a game, is
a collection Si,...,S, of finite strategy sets and a
collection wu1,...,un of real-valued utility functions,
each defined on S1 x --- x S,,. We identify a strategy
set S; and utility function u; with player i. A element
sof Sy x--- xS, is called a strategy profile. The set of
all strategy profiles is the state space of the game. For
a strategy profile s, s; is the strategy of player ¢, s_;
denotes the (n — 1)-vector of strategies of players other
than 4, and the value u;(s) will be called the payoff to
player .

Symmetric, Congestion, and Graphical Games
A game is symmetric if S} = --- = S, u;(s) depends
only on s; and the other players’ strategies (but not
on i), and u;(s) is a symmetric function of s_;. In
other words, the payoff to a player depends only on
its strategy and on the number of players choosing each
of the different strategies. A symmetric game can be
specified by giving, for each ordered partition of the
number of players, the payoffs of each player—F& ("}*7")
numbers, where k is the number of strategies. This
expression is ©(n*~1) when k = O(1), polynomial in n*
when k = O(logn/loglogn), and is super-polynomially
smaller than k™ unless k = Q(n!*€) for some € > 0.

A graphical game is compactly described by an
undirected graph G = (V, E), where each vertex is a
player with an arbitrary strategy set. The payoffs to
a player are an arbitrary function of its strategy and
the strategies of the adjacent players. The number of
parameters needed to specify the payoffs of a graphical

game is therefore exponential in the maximum degree
but polynomial in the number of players.

Finally, in a congestion game there is a ground set
E of elements, k collections S, ...,Sk of subsets of E,
and, for ¢ = 1,...,k, a positive integer number n; of
players with strategy set S;. Each element e € E has
a real-valued cost function c., defined on the positive
integers, which describes its cost given the number of
players that select strategies that include it. The cost
(negative payoff) to a player is the sum of the costs
of the elements in its strategy. In a congestion game
with n = ), n; players and m = |E| ground elements,
payoffs can thus be completely summarized with only
nm real numbers.

Nash Equilibria Let G = ({S;}, {u:}) be an n-player
game and p1, ..., p, a collection of probability distribu-
tions on the strategy sets. Distributions py,...,p, are a
Nash equilibrium if, for each player ¢, picking a strategy
from S; according to the distribution p; maximizes i’s
expected payoff, assuming that each player j # i picks
a strategy according to the distribution p;. Nash [29]
showed that every game admits a Nash equilibrium. In a
subsequent paper [30], he showed that every symmetric
game admits a symmetric Nash equilibrium, meaning a
Nash equilibrium in which p; = --- = p,,. (A symmetric
game can also have other Nash equilibria.)

Correlated Equilibria Let G = ({S;},{u;}) be an
n-person game. Let ¢ be a probability distribution on
S1 X --- x S,. Distribution q is a correlated equilibrium
if for each player ¢ and each pair £, £’ of strategies in S;,

Y aui(s)> Y als)uils),

s:8;=L

(2.1)

s:8;=L

where s’ is obtained from s by reassigning i’s strategy to
be £'. One interpretation of a correlated equilibrium is
as follows. A trusted authority picks a strategy profile s
at random according to ¢, and “recommends” strategy
s; to each player 7. Fach player ¢ is assumed to know
only its recommended strategy, and not those for other
players. Player i then compares the conditional ex-
pected payoffs of its strategies, assuming that the other
players follow their recommendations (conditioning on
the strategy recommended to 7). Inequality (2.1) states
that this conditional expectation should be maximized
by the recommended strategy. If this holds for all play-
ers, then no player has a unilateral incentive to deviate
from the trusted authority’s recommendation. The in-
equalities (2.1) evidently describe the set of all corre-
lated equilibria, and this linear system has size polyno-
mial in the normal form description of the game. Since
every Nash equilibrium, viewed as a product distribu-



tion, is a correlated equilibrium, Nash’s theorem [29]
implies that this system is always feasible. A popular
concrete example of a correlated equilibrium is a traffic
signal that recommends “red” (stop) or “green” (go) to
drivers (see e.g. [31]). For more applications and inter-
pretations of correlated equilibria, see [2, 13, 14].

of

3 Explicit Correlated

Equilibria

Descriptions

In this section, our ambition will be to explicitly de-
scribe the correlated equilibria of a game that is rep-
resented compactly. Put differently, we will aim for a
characterization that is equally powerful and complete
as the classical one, while at the same time demand-
ing that the linear system be just as economical as the
game’s compact description. We will accomplish this
goal for the class of symmetric games. As a consequence,
every linear function can be efficiently optimized over
the set of correlated equilibria—and in particular, one
can be found.

For simplicity, we will work primarily in the k = 2
case; this suffices to illustrate most of our proof tech-
niques. In Subsection 3.2 we make a few comments
about what is required to extend the analysis to arbi-
trary k-strategy symmetric games.

3.1 Symmetric Games with Two Strategies Let
G = (S ={1,2},u4,...,u,) be an n-player, 2-strategy
symmetric game. An explicitly represented correlated
equilibrium of G must specify a probability ¢(s) for each
of the 2™ strategy profiles s. The variables in our com-
pact representation of the correlated equilibria of G will
be of the form p;(j) (basic variables) and p(j) (auziliary
variables) for 7 € {1,2,...,n} and j € {0,1,...,n}. We
intend the basic variable p;(j) to represent the aggre-
gate probability assigned to the strategy profiles S;(j)
in which exactly j players, including player ¢, choose
strategy 1. Similarly, p(j) represents the total proba-
bility of the strategy profiles S(j) in which exactly j
players choose strategy 1. We will sometimes refer to
subsets of S™ of the form S;(j) and S(j) as basic and
auziliary sets, respectively. The constraints are as fol-
lows:

(3:2) > pi()ui(i, 1) 2D pi()ui(i — 1,2)
=0 =0
for alli € {1,2,...,n};

(3.3)

for alli € {1,2,...,n};

(3.4) o) =1
j=0
(3.5) > pild) =3 -p()
=1

for all j € {0,1,...,n}; and

(3.6) 0<pi(j) <p(h) <1

for all 4 € {1,2,...,n} and j € {0,1,...,n}. In the
above constraints, u;(j, £) denotes the payoff to player ¢
in a strategy profile in which player ¢ chooses strategy
£ and a total of j players choose strategy 1. This
payoff is well defined—i.e., independent of the strategy
profile meeting the above criteria—by the definition of
a symmetric game.

With respect to an n-player, 2-strategy game G =
({1,2},u1,...,u,), we will call the equations and in-
equalities (3.2)—(3.6) the basic linear system of G. The
size of this system is polynomial in that of the com-
pact representation of G. We will sometimes refer to
equations (3.5) as the covering equations. Since con-
straints (3.2)—(3.3) are effectively aggregated versions of
the correlated equilibrium constraints (2.1), every cor-
related equilibrium of an n-player, 2-strategy symmet-
ric game G (defined on all of S™) induces a solution to
G’s basic linear system via the intended aggregations of
probability.

The interesting direction is the converse. Let p be
a solution to the basic linear system of a 2-strategy
symmetric game G = (S,u1,...,u,). We say that p
extends to S™ if there is a function ¢ : S™ — Rt with
2sesi(j) 408) = pi(§) and 3 55 als) = p(j) for all i
and j. It is easy to check that if p extends to S™, then
the extension is a correlated equilibrium of G. It is not
at all obvious, however, that such an extension must
exist; this is our main result in this section.

Theorem 3.1 Let G be a 2-strategy symmetric game.
Then every solution to G’s basic linear system can be
extended to a correlated equilibrium of G.

We will prove Theorem 3.1 in two parts. The glue
that holds the two parts together is the notion of a
uniform solution to a game’s basic linear system.

Definition 3.2 Let G = (S = {1,2},u1,...,u,) be
a 2-strategy symmetric game. Let {S;(j)} denote the
basic sets and {S(j)} the auxiliary sets of G.



(a) A j-basic cover is a function =

{51(5), .-+, Sn(4)} = R+ with

D

Si(j) : s€S:i(4)

for all s € S(j), where we have written z;(j) for
z(Si(4))-

(b) A solution p to G’s basic linear system is uniform

if for all j € {0,1,...,n},
> pili)zi(i) =D pi(h) = -p(j)
=1 =1

for every j-basic cover z. (The equality is the jth
covering equation (3.5).)

Definition 3.2 is justified by the following two
lemmas, which immediately imply Theorem 3.1.

Lemma 3.3 Let G be a 2-strategy symmetric game.
Then every uniform solution to G’s basic linear system
can be extended to a correlated equilibrium of G.

Lemma 3.4 Let G be a 2-strategy symmetric game.
Then every solution to G’s basic linear system is uni-
form.

Lemma 3.3 is essentially a consequence of strong
linear programming duality, and we omit its proof.
Before proving Lemma 3.4, we establish a preliminary
lemma. In its statement, we will use the notation [z]"
to denote max{0,z} for a real number z.

Lemma 3.5 Let G = (S = {1,2},u1,...,up) be a 2-
strategy symmetric game, and p o solution to G’s basic
linear system.

(o) If j € {0,1,...,n}, C is a collection of £ < j
distinct j-basic sets, and C' is a collection of r <
n — £ distinct j-basic sets not in C, then some
element in NcS;(j) lies in only [r + j — n]t sets
of C'.

(b) If C is a collection of r distinct j-basic sets, then
Ysiiyee Pild) = [r+ 5 —n]" - p(h).

Proof. Part (b) follows
straints (3.5) and (3.6). To prove part (a), rela-
bel the players so that C = {S1(j),...,S5¢(j)} and
C'" = {Sp—r+1(4),.--,Sn(4)}. Let s be the strategy
profile in which the first j players choose strategy 1 and
the last n — j players choose strategy 2. The profile s
then lies in all sets of C but only in [r + j — n]" sets of
C'.

immediately from con-

Proof of Lemma 3.4: Let G = (S = {1,2},u1,...,up)
by a symmetric game and p a solution to G’s basic linear
system. We need to show that p is uniform in the sense
of Definition 3.2.

For 7 € {0,1,...,n} and a function =z
{51();---,S.(j)} — R, define the function C; by
Ci(z) = Y i pi(j)zi(j) (as usual, z;(j) is shorthand
for x(S;(j))). For every j € {0,1,...,n}, setting
z;(j) = 1for all i € {1,2,...,n} yields a j-basic cover
with Cj(z) = Y7, pi(j). We call this cover the uni-
form j-cover. Proving that p is uniform is tantamount
to showing that, for each j € {0,1,...,n}, the uniform
j-cover minimizes Cj(x) over all j-basic covers z.

Toward this end, let £ be a non-uniform j-basic
cover for some j € {0,1,...,n}. Let U denote the
indices of the sets underused by = (z;(j) < 1) and O
the indices of the sets overused by z (z;(j) > 1). We
can assume that U is non-empty (else clearly C;(x) is
no smaller than in the uniform solution). Since z is a
feasible j-basic cover, O is then non-empty as well.

We first claim that the number |U| of underused sets
is at most j — 1. To see why, note that every j basic sets
of the form S;(j) have exactly one point in common—
the strategy profile s in which s; = 1 if and only if S;(j)
is one of the sets—and this point is contained in no other
basic set. Thus if s is in the common intersection of j
sets S;(j) with i € U, then 37, .. ;) %i(j) <J, and z
is not a j-basic cover.

Without loss of generality, z1(j) > z2(j) > --- >
zn(§). Let O = {1,2,...,m} and U = {¢,...,n} for
1 <m <t <n. The contribution of underused sets to
the sum >, g ;) @i(j) for elements s in their (non-
empty) common intersection is ¢ = Y, (1 —x;(j)) less
than in the uniform solution. Since z is a j-basic cover,
the extra contribution from the overused sets, relative
to the uniform solution, must be at least ¢ for all such
elements.

Let 2m(j) = zm(j) — 1 and 2.(j) = 2,(j) — 2,-1(j)
for r € {1,2,...,m — 1}. The z-variables should
be regarded as a decomposition of the z-values that
permits the application of Lemma 3.5. We can express
the previous inequality in terms of the z-variables as
follows:

Yo > aG)

1:5€85;(j),i<m r=t

> =) -1

1:8€85;(j),i<m

>

(r,4):8€8:(5),i<r<m

2:(5)

(3.7)

Y

C.

By Lemma 3.5(a), for every r € {1,2,...,m} there



is an element s in all underused sets for which

>

i<r:seSi(j)

(3.8) %(j) < [r+j—n]" - 20).

The proof also shows that, since the set {i : i < r}is
increasing in r, there is a single strategy profile s in all
underused sets for which (3.8) holds simultaneously for
allr € {1,2,...,m}. Summing over all r and combining
with (3.7), we find that

(3.9 er(j) e n]Jr > c.

We can now complete the proof. Let u be the

uniform solution. Write

Cj(x) = Cj(u)+ Y [z — Upi(j)
i=1

(3.10) - 2[1 — zi]pi(J)-

Since p;(j) < p(j) for all 4, the last term is at most
p(j) Y, (1 —2;) = ¢+ p(j). To lower bound the second
term on the right-hand side of (3.10), use Lemma 3.5(b)
and (3.9) to write

Dz —Upi() = Y z(0) ) pid)
=1 r=1 =1
> Y 5+ —nl"p()
(3.11) > c-p(j)-

The inequality C;(z) > C;(u) now follows from (3.10)
and (3.11), and the proof is complete. B

3.2 Symmetric Games with Many Strategies It
is straightforward to extend the definition of a basic
linear system to k-strategy symmetric games. There
are variables p;(4,£) and p(j), where j is now an ordered
partition of n into k non-negative integers, and £ € S =
{1,2,...,k}, with 3°,pi(4,£) = p(j) for every player i.
Analogs of constraints (3.2)—(3.6) are straightforward
to describe. As in the previous subsection, we have the
following theorem.

Theorem 3.6 Let G be a symmetric game. Then p is
a solution to G'’s basic linear system if and only if it can
be extended to a correlated equilibrium of G.

The proof of Theorem 3.6 proceeds as for the 2-
strategy case, hinging on an extension of the notion

of uniformity (Definition 3.2) to k-strategy symmetric
games. For a fixed ordered partition j, the j-basic
sets are now indexed by both a player ¢ and a strategy
£. This causes no difficulty for extending Lemma 3.3,
but extending Lemma 3.4 to these richer collections
of basic sets requires more sophisticated combinatorial
arguments. We omit further details.

Remark 3.7 Nowhere in the proofs above did we use
the fact that the utility functions are equal. Thus our
results apply more generally to symmetric-like games
where different players have different (but symmetric
w.r.t. other players) utility functions.

4 Finding Correlated Equilibria of General
Compact Games

In this section, we continue to devise algorithms for
finding and optimizing over correlated equilibria that
run in time polynomial in the size of a game’s compact
representation. We will, however, relax our previous
ambition of explicitly describing the set of correlated
equilibria. As our reward, we will be able to work in
a very general setting, with essentially arbitrary com-
pact representations. In Subsection 4.1, we will present
a general result that shows that the tractability of opti-
mizing over the correlated equilibria of a game in time
polynomial in a compact representation is controlled by
an optimization problem related to the representation.
In Subsection 4.2, we will see that for all of the classes
of games studied in this paper, their natural compact
representations give rise to combinatorial optimization
problems with easily determined computational com-
plexity. As a result, we will be able to derive numerous
positive and negative results with minimal effort.

4.1 A General Framework At the highest level the
algorithmic approach of this section will be similar to
that of the previous one. We will formulate a linear
program where the number of variables is comparable
to the size of the given compact representation, and will
then hope that solutions to the linear program can be
extended to correlated equilibria defined explicitly on
the set of all strategy profiles. At the bare minimum,
to implement this idea we will require equilibrium
constraints analogous to (3.2)—(3.3). In turn, the
essentially minimal assumptions needed to define such
constraints are given in the next definition.

Definition 4.1 Let G = (Sy,...,Sn,u1,...,uy) be a
game in normal form. For i = 1,2,...,n, let P; =
{P},...,P"} be a partition of S_; into m; classes,

where S_; denotes the (n — 1)-fold product of strategy
sets other than S;.



(a) For a player i, two strategy profiles s and s’ are
i-equivalent if s; = s}, and both s_; and s’_; belong
to the same class of the partition P;.

(b) Theset P ={P,...,P,} of partitions is a compact
representation of G if u;(s) = u;(s') whenever s and
s' are i-equivalent.

The motivation of Definition 4.1 is that it per-
mits a reasonable definition of the correlated equilib-
rium constraints. To see this, let P = {P/} be a com-
pact representation for a game G. For a player 4, a
class P/ in player i’s partition, and a strategy ¢ € S;,
let w;(j,£) denote the payoff to player i in a strategy
profile s with s; = £ and s_; € P}; this is well de-
fined by Definition 4.1. We can then write the corre-
lated equilibrium constraints as Z;"Zl (4, 0u;(j,£) >
S pi(4, Oui (5, €') for all i and all £,£' € S;, where
Di (j, ?) is the aggregate probability assigned to strategy
profiles s with s; = ¢ and s_; € P;.

In Definition 4.1, there is one partition of (most of)
the state space for each player. In some applications,
there will be an obvious partition of the state space that
cuts across player types. For example, the state space
of an n-player, k-strategy symmetric game admits an
obvious global partition, with one class of the partition
for each ordered partition of n into k parts. Such a
global partition easily defines a compact representation
in the sense of Definition 4.1 that has comparable
size. In the symmetric game example, the partition
corresponding to player ¢ has one class for each ordered
partition of n — 1 (the other players) into k parts (the
distribution of their strategies).

We need one further definition. As our main re-
sult in this section, we will show that the tractability
of optimizing over the correlated equilibria of a com-
pactly represented game is controlled by the compu-
tational complexity of a related optimization problem.
As we will see in Subsection 4.2, this general reduction
will have immediate consequences for symmetric, con-
gestion, and graphical games. We next define the rele-
vant optimization problem corresponding to a compact
representation.

Definition 4.2 Let P = {P/} be a compact represen-
tation of a game G. The separation problem for P is the
following algorithmic problem:

Given rational numbers y;(j,¢) for all 4, j, and
¢ € S;, is there a strategy profile s with

Z(id,f):s;:l,s—iePf yi(4,£) <07

We will see several concrete examples of such sep-
aration problems in Subsection 4.2. 'We now conclude

this subsection by proving that a tractable separation
problem is all that is required for the efficient compu-
tation of a correlated equilibrium. We will state this
result in terms of the size of a compact representation,
which is defined in the obvious way (total number of
classes in its partitions, plus the number of bits needed
to describe player payoffs).

Theorem 4.3 Let P be a compact representation of a
game. If the separation problem for P can be solved in
polynomial time, then a correlated equilibrium of G can
be computed in time polynomial in the size of P.

Proof. Let G = (S1,...,5n,4,...,u,) be a game and
P a compact representation such that the separation
problem for P is solvable in polynomial time. Define
u;(j,£) as in the discussion following Definition 4.1,
and consider the following system of equations and
inequalities:

(4.12) pri(j, Oui(, ) > Z’m 0w, )

for all i, £,¢' € S;;

(4.13)
j=1¢€S;
for all 4; and
(4.14) PG, 0) >0

for all i,5 € {1,2,...,m;},¢ € S;. Every correlated
equilibrium naturally induces a feasible solution to
this linear system. In contrast to Theorem 3.1, the
converse need not hold unless the system is augmented
by additional inequalities. We explore this idea next.

By Farkas’s Lemma, there is a matrix A, with
columns indexed by the exponentially many strategy
profiles, so that a solution p to (4.12)—(4.14) can be
extended to a correlated equilibrium of G if and only
if for every y with yTA > 0, yTp > 0. Note that the
vector y is indexed by the variables in (4.12)—(4.14).

This observation suggests extra inequalities to add
to (4.12)-(4.14): for every vector y with yTA4 > 0,
include the inequality y”p > 0. Every such inequality is
valid in the sense that every correlated equilibrium of G
induces a solution to (4.12)—(4.14) that also satisfies this
extra inequality. Naively, there are infinitely many such
extra inequalities to add. Fortunately, we need only
include those inequalities that can arise as an optimal
solution to the following problem:

(*) Given p satisfying (4.12)-(4.14), minimize y’p
subject to yT A > 0.



Since problem (*) is a linear program, the minimum
is always attained by one of the finitely many basic
solutions [4]. Moreover, in all such basic solutions,
the vector y can be described with a number of bits
polynomial in P [17, §6.2].

We have therefore defined a linear system, which
we will call the full linear system for P, so that p is a
solution to the full linear system if and only if p can be
extended to a correlated equilibrium of G. While this
full linear system has many inequalities, each inequality
has size polynomial in P. We can therefore efficiently
compute a solution to the full linear system via the
ellipsoid algorithm [17, 21], provided we can define a
polynomial-time separation oracle—an algorithm that
takes as input a candidate solution and, if the solution
is not feasible, produces a violated constraint.

Such a separation oracle is tantamount to a
polynomial-time algorithm for problem (*), a linear pro-
gram with exponentially many constraints (indexed by
strategy profiles). We can solve problem (*) with a sec-
ond application of the ellipsoid method. Here, the sep-
aration oracle required is precisely the separation prob-
lem for P (Definition 4.2) which, by assumption, admits
a polynomial-time algorithm. The proof is therefore
complete.

More generally, the proof of Theorem 4.3 shows that
every linear function can be efficiently optimized over
the set of correlated equilibria of such a game.

4.2 Applications We now demonstrate the power of
Theorem 4.3. We begin by revisiting symmetric games,
and then proceed to congestion and graphical games.

Symmetric Games and Extensions We begin by
reconsidering symmetric games. This will illustrate the
definitions and results of Subsection 4.1 in a familiar
setting. As we have noted, n-player, k-strategy sym-
metric games admit a natural compact representation
P = {P/} in the sense of Definition 4.1, where the
classes of P are indexed by a player ¢ and an ordered
partition j of n — 1 into k parts corresponding to a
distribution of the other n — 1 players among the k
available strategies. The separation problem for P is
then: given rational numbers y;(j,£) for each player i,
each ordered partition j of n — 1 into k parts, and each
choice £ for player i’s strategy, is there a strategy pro-
file s with E(z’,j,z):sizl,s_iePZ yi(j,€) < 0?7 This prob-
lem can be solved in polynomial time, for example by a
straightforward application of min-cost flow, and hence
Theorem 4.3 implies the following.

Corollary 4.4 A correlated equilibrium of a symmetric
game can be found in time polynomial in its natural

compact representation.

While Corollary 4.4 is weaker than Theorems 3.1
and 3.6 in that it does not give an explicit description
of the set of correlated equilibria, we derived it with
considerably less work. As in Remark 3.7, Corollary 4.4
also holds when different players have different (sym-
metric) utility functions.

Graphical Games For a graphical game, its natural
compact representation P = {P/} has a class P] for
each player i and for each assignment j of strategies
to the players that are neighbors of i. The separation
problem for this representation is then the following:
given rational numbers y;(j, £) for each player 7, each set
7 of strategy choices of ¢’s neighbors, and each choice ¢
for player 7’s strategy, is there a strategy profile s with
E(z‘,j,e):size,s_ier yi(4,€) < 0? For graphical games
defined on trees, this problem can be solved by dynamic
programming.

Corollary 4.5 A correlated equilibrium of a graphical
game with a tree topology can be found in time polyno-
mial in its natural compact representation.

As we noted in the introduction, Corollary 4.5 was
first proved by Kakade et al. [19], using tools from prob-
abilistic inference. Corollary 4.5 is also easily general-
ized, for example to graphs of bounded treewidth.

For general topologies, however, the story is dif-
ferent. First, a reduction from Exact COVER By 3-
SETS [16, SP2] shows the following.

Proposition 4.6 The separation problem for the nat-
ural compact representation of a graphical game is NP-
complete, even in bipartite graphs.

In fact, something much stronger is true. A similar
reduction, using the version of ExacT COVER BY 3-
SETS where each element is contained in only a constant
number of sets (see [16, SP2]), shows the following.

Proposition 4.7 Assuming P # NP, there is no
polynomial-time algorithm for computing a correlated
equilibrium of a compactly represented graphical game
that mazximizes the expected sum of player payoffs.

Proposition 4.7 dispels any lingering concern that
we might have taken the wrong proof approach in our
attempt to characterize the correlated equilibria of a
graphical game: there is no linear system that char-
acterizes the correlated equilibria of a general graph-
ical game and can be optimized over in time polyno-
mial in the game’s compact representation (assuming



P # NP). Thus no small explicit description is pos-
sible (cf., Theorem 3.1), nor is there any description
amenable to the ellipsoid algorithm (cf., Theorem 4.3).

Congestion Games Recall that a congestion game is
specified by a ground set E, strategy sets Si,...,Sk,
quantities ng,...,ng of players, and cost functions
{ce}eck defined on {1,2,...,3", n;}. Congestion games
have the most economical description of all of the games
studied in this paper, with nm numbers sufficing to
describe all of the payoffs, where n and m are the
number of players and elements, respectively. Perhaps
because of this very small description, congestion games
are in some sense also the least tractable class of games
studied in this paper: analogously to Proposition 4.7,
a reduction from EXAcT COVER BY 3-SETS shows the
following.

Proposition 4.8 Assuming P # NP, there is no
polynomial-time algorithm for computing a correlated
equilibrium of a compactly represented congestion game
that mazimizes the expected sum of player payoffs.

Proposition 4.8 holds even for congestion games
with one player type (k = 1). Some positive results
for efficiently optimizing over the correlated equilibria
of a congestion game can be salvaged if somewhat larger
representations are used; we defer a detailed discussion
of this point to the full version of this paper.

5 Nash Equilibria of Symmetric Games

Finally, we give an algorithm for computing a symmetric
Nash equilibrium in symmetric games.

Theorem 5.1 The problem of computing a symmetric
Nash equilibrium in a symmetric game with n players
and k strategies can be solved to arbitrary precision in
time polynomial in n*, the number of bits required to
describe the utility functions, and the number of bits of
precision desired.

Theorem 5.1 is a reduction from the so-called first-
order theory of the reals. A different application of
this idea to games was developed independently by
Lipton and Markakis [25]. Due to space constraints, we
omit further details. Since the compact representation
of a symmetric game has size Q(poly(n*)) when k =
O(logn/loglogn), we have the following corollary of
Theorem 5.1.

Corollary 5.2 The problem of computing a Nash equi-
librium of a compactly represented n-player k-strategy
symmetric game with k = O(logn/loglogn) is in P.

Theorem 5.1 and Corollary 5.2 can be extended
to certain types of “partially symmetric” games (first
considered by Nash in [30]), such as games with a
constant number of player types and full symmetry
among players of the same type.

Corollary 5.2 stands in contrast to the state of
the art for general games, where no polynomial-time
algorithm for computing a Nash equilibrium is known,
even when all players have only two strategies.

We unfortunately have no progress to offer when n
is small relative to k. We note, however, that finding
an algorithm for computing a Nash equilibrium of a
symmetric game in this case could be difficult. In
particular, it has long been known that for games with a
constant number of players, there is a polynomial-time
reduction from general games to symmetric games [3,
15], and hence symmetry affords no computational
advantage in this case.
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