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1. INTRODUCTION
The class of congestion games is expressive enough to capture a number of other-
wise unrelated applications — including routing, network design, and the migration
of species (see references in Roughgarden [2006]) — yet structured enough to permit a
useful theory. Such a game has a ground set of resources, and each strategy of a player
is to select a subset of them (e.g., a path in a network). Each resource has a univariate
cost function that depends on the load induced by the players that use it, and each
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player aspires to minimize the sum of the resources’ costs in its chosen strategy (given
the strategies chosen by the other players).

Congestion games have played a starring role in recent research on quantifying the
inefficiency of game-theoretic equilibria. They are rich enough to encode the Prisoner’s
Dilemma, and more generally can have Nash equilibria in which the sum of the play-
ers’ costs is arbitrarily larger than that in a minimum-cost outcome. Thus the research
goal is to understand how the parameters of a congestion game govern the inefficiency
of its equilibria, and in particular to establish useful sufficient conditions that guaran-
tee near-optimal equilibria.

A simple observation is that the inefficiency of equilibria in a congestion game de-
pends fundamentally on the “degree of nonlinearity” of the cost functions. Because of
this, we identify a “thorough understanding” of the inefficiency of equilibria in conges-
tion games with a simultaneous solution to every possible special case of cost functions.
In more detail, an ideal theory would include the following ingredients.

(1) For every set C of allowable resource cost functions, a relatively simple recipe for
computing the largest-possible price of anarchy (POA) — the ratio between the sum
of players’ costs in an equilibrium and in a minimum-cost outcome — in congestion
games with cost functions in C.

(2) For analytically simple classes C like bounded-degree polynomials, an exact for-
mula for the worst-case POA in congestion games with cost functions in C.

(3) An understanding of the “game complexity” required for the worst-case POA to
be realized. Ideally, such a result should refer only to the strategy sets and be
independent of the allowable cost functions C.

(4) An understanding of the equilibrium concepts — roughly equivalently, the ratio-
nality assumptions needed — to which the POA guarantees apply.

The earliest example of such a theory is for nonatomic congestion games, where
there is a continuum of players, each of which is infinitesimally small. (The load on
a resource is defined as the mass or measure of players that choose a strategy that
includes it.) For every class C that satisfies mild conditions, the worst-case POA of
nonatomic congestion games with cost functions in C is already realized in the sim-
plest of examples — symmetric two-resource games (i.e., two-node two-link networks)
— where one resource has a constant cost function and the other resource has, intu-
itively, the “steepest” cost function in C [Roughgarden 2003; Roughgarden and Tardos
2004]. This result can be interpreted as the third ingredient above — a cost function-
independent characterization of the (essentially trivial) necessary and sufficient con-
ditions on the strategy sets needed to realize the worst-case POA over all congestion
games with cost functions from the permitted class. This characterization immediately
implies, in principle, a recipe for computing the worst-case POA with respect to a set C
of allowable cost functions — just try each cost function from C in a trivial two-resource
example, and remember the worst example found. It also easily leads to precise numer-
ical bounds on the worst-case POA for simple classes of cost functions, such as a bound
of ≈ d/ ln d when C is the set of polynomials with degree at most d and nonnegative co-
efficients [Correa et al. 2004; Roughgarden 2003]. Blum et al. [2010] later supplied the
final component of this research agenda by showing that all of these POA bounds ap-
ply under relatively weak behavioral assumptions — specifically, that all users achieve
vanishing average regret over repeated plays of the game. More recently, Aland et al.
[2011], Awerbuch et al. [2005], Christodoulou and Koutsoupias [2005b], and Rough-
garden [2009] provided the four ingredients above for atomic congestion games, where
there is a finite number of players and the load on a resource is defined as the number
of players that use it.
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This paper is about the fundamental model of weighted congestion games [Milch-
taich 1996; Rosenthal 1973], where each player i has a weight wi and the load on a
resource is defined as the sum of the weights of the players that use it. Such weights
model non-uniform resource consumption among the players and can, of course, be rel-
evant for many reasons: for modeling different amounts of traffic (e.g., by Internet Ser-
vice Providers from different “tiers”); for different durations of resource usage [Shapley
1953]; and even for collusion among several identical users, who can be thought of as
a single “virtual” player with weight equal to the number of colluding players [Fotakis
et al. 2008; Hayrapetyan et al. 2006].

Our main contribution is a thorough understanding of the worst-case POA in
weighted congestion games, in the form of the four ingredients listed above. Inter-
esting byproducts of our proofs include the fact that weighted congestion games are
tight in the sense of Roughgarden [2009], and thus the worst-case POA with respect
to pure Nash equilibria, mixed Nash equilibria, correlated equilibria, and coarse cor-
related equilibria are always equal (under mild conditions on C); and the fact that,
like nonatomic but unlike atomic (unweighted) congestion games, weighted congestion
games with trivial structure already realize the worst-case POA, at least for polyno-
mial cost functions.

1.1. Overview of Results
Result 1: Exact POA of general weighted congestion games with general

cost functions. We provide the first characterization of the exact POA of general
weighted congestion games with general cost functions. For a given set of cost func-
tions C, the properties of the functions in this class determine certain “feasible values”
of two parameters λ, µ, which lead to upper bounds of the form λ/(1 − µ). The best
upper bound that can be obtained using this two-parameter approach is denoted by
ζ(C). The hard work then lies in proving that there always exists a weighted conges-
tion game that realizes this upper bound. The abstract approach is to make use of the
inequalities used in the upper bound proof — in the spirit of complementary slackness
arguments in linear programming — with the cost functions and loads on the resources
that make these inequalities tight employed in the worst-case example. Ultimately, we
can exhibit examples with POA arbitrarily close to our upper bound of ζ(C).

This approach is similar to the one taken by Roughgarden [2009] for unweighted
congestion games, although non-uniform player weights create additional technical
issues that necessitate completely different constructions.

A side effect of our upper bound proof is that ζ(C) is actually the “Robust POA” de-
fined by Roughgarden [2009]. Every bound on the robust POA of a game automatically
has numerous consequences [Roughgarden 2009], and in particular upper bounds on
the POA of mixed Nash equilibria, correlated equilibria, and coarse correlated equi-
libria. (See Section 2 for definitions.) The bound of ζ(C) is valid under much weaker
rationality assumptions on players than are needed to justify convergence to pure or
mixed Nash equilibria. Since we establish a matching lower bound for the pure POA
— which obviously applies also to the three more general equilibrium concepts — our
bound of ζ(C) is the exact POA with respect to all of these equilibrium concepts.

Exact robust POA bounds were previously established for nonatomic and atomic
unweighted congestion games [Roughgarden 2009], which are potential games and
hence possess pure Nash equilibria. Weighted congestion games do not have these nice
properties. They are not potential games and a pure Nash equilibrium does not always
exist (see Harks et al. [2011] and Harks and Klimm [2012] for characterizations), yet
our results show that the robust POA is exact.
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Table I. Values of exact POA bounds for polynomial cost functions. α(d) is the non-atomic POA [Roughgar-
den and Tardos 2004], γ(d) is the unweighted atomic POA [Christodoulou and Koutsoupias 2005b; Aland
et al. 2011], and ζ(d) is the weighted atomic POA [Awerbuch et al. 2005; Aland et al. 2011].

d α(d) γ(d) ζ(d)
1 4/3 2.5 2.618
2 1.626 9.583 9.909
3 1.896 41.54 47.82
4 2.151 267.6 277.0
d O(d/ log d) O((d/ log d)d) O((d/ log d)d)

Result 2: Exact POA of weighted congestion games on parallel links with
polynomial cost functions. We prove that, for polynomial cost functions with non-
negative coefficients and maximum degree d, the worst-case POA is realized on a net-
work of parallel links (for each d). We note that even for affine cost functions, only
partial results were previously known about the worst-case POA of weighted conges-
tion games in networks of parallel links. Thus our work implies, for the first time for
weighted congestion games, that the worst-case POA is essentially independent of the
allowable network topologies in the sense of Roughgarden [2003], at least for polyno-
mial cost functions. This result stands in contrast to unweighted congestion games,
where the worst-case POA in networks of parallel links (as well as some slight gen-
eralizations) is the same as that in nonatomic congestion games, denoted α(C), which
in turn is provably smaller than the worst-case POA in general (atomic) congestion
games [Anshelevich et al. 2008; Fotakis 2010; Holzman and Law-Yone 2003] 1. See
Table I for some concrete bounds for polynomial cost functions.

Result 3: POA of symmetric unweighted congestion games is as large as
asymmetric ones. Our final result contributes to understanding how the worst-case
POA of unweighted congestion games depends on the game complexity. We show that
the POA of symmetric unweighted congestion games with general cost functions is
the same value γ(C) as that for asymmetric unweighted congestion games. A result
of this form was previously known only for affine cost functions [Christodoulou and
Koutsoupias 2005b]. With this result, we can conclude that the known gap between
the worst-case POA α(C) of networks of parallel links and the worst-case POA γ(C) of
general unweighted atomic congestion games is located inside the class of symmetric
games, rather than between symmetric and asymmetric games.

1.2. Further Related Work
Koutsoupias and Papadimitriou [1999] initiated the study of the POA of mixed Nash
equilibria in weighted congestion games on parallel links, but with a different objec-
tive function: the expected maximum of the players’ costs. Lücking et al. [2008] then
developed results for the pure POA of unweighted congestion games on parallel links
(with the standard objective function) They showed that the exact POA of unweighted
congestion games on parallel links with linear cost functions is 4/3, and when all the
links have the same linear cost function it drops to 9/8. The first results for general
networks were obtained independently by Christodoulou and Koutsoupias [2005b] and
Awerbuch et al. [2005]. Christodoulou and Koutsoupias [2005b,a] established an exact
POA bound of 5/2 for unweighted congestion games with affine cost functions. They
obtained the same bound for the POA of pure Nash equilibria, mixed Nash equilibria,

1The price of anarchy bound for unweighted congestion games on parallel links follows from results in An-
shelevich et al. [2008] and Holzman and Law-Yone [2003]. Anshelevich et al. [2008] establish a Price of
Stability bound for unweighted congestion games which is the same as the nonatomic POA bound. Holz-
man and Law-Yone [2003] show that for a slight generalization of parallel link networks the pure Nash
equilibrium is unique. The bound was also independently established by Fotakis [2010].
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and correlated equilibria [Christodoulou and Koutsoupias 2005a]. They also provided
an asymptotic POA upper bound of dΘ(d) for cost functions that are polynomials with
nonnegative coefficients and degree at most d.

In their concurrent paper, Awerbuch et al. [2005] provided the exact POA of weighted
congestion games with affine cost function (namely, 1 +φ ≈ 2.618 where φ is golden ra-
tio). They also provided an upper bound of dΘ(d) for the POA of weighted congestion
games with cost functions that are polynomials with nonnegative coefficients and de-
gree at most d. Later Aland et al. [2011] obtained exact POA bounds for both weighted
and unweighted congestion games with cost functions that are polynomials with non-
negative coefficients.

Caragiannis et al. [2011] analyzed asymmetric singleton congestion games with
affine cost functions. They gave lower bounds which established a worst-case POA of
5/2 for unweighted congestion games and a POA of 1+φ for the weighted case. Gairing
and Schoppmann [2007] provided a detailed analysis of the POA of singleton conges-
tion games. They generalized the results in Caragiannis et al. [2011] to polynomial
cost functions, showing that the worst-case POA in asymmetric singleton games is as
large as in general games. For symmetric singleton congestion games (i.e., networks of
parallel links) and polynomial cost functions of maximum degree d, they show a lower
bound of the (d + 1)th Bell number Bd+1. This last result is subsumed by our second
contribution.

Finally using the results presented in the conference version of this paper as a build-
ing block, Roughgarden [2012] established an upper bound on the Bayes-Nash POA in
an incomplete information congestion game where the players’ weights or their sets of
permitted strategies are drawn from a product distribution. The lower bound construc-
tion presented in this paper proves that the Bayes-Nash POA upper bound established
there is tight.

2. PRELIMINARIES
Congestion Games. A general weighted congestion game Γ is composed of a set of

N players N , a set of resources E and a set C of non-negative, non-decreasing cost
functions from R+ → R+. For each player i in N a weight wi and a strategy set Si ⊆ 2E

are specified. The congestion on a resource is the total weight of all players using that
resource and the associated congestion cost is specified by a function ce ∈ C of the
congestion on that edge.

An outcome is a choice of strategies s = (s1, s2, . . . , sN ) by players with si ∈ Si. Then
congestion on a resource e in the outcome s is given by xe =

∑
i∈N :e∈si wi. The cost of a

player i is Ci(s) = wi
∑
e∈si ce(xe). The social cost of an outcome is the sum of player’s

costs i.e. C(s) =
∑N
i=1 Ci(s). The total cost can also be written as C(s) =

∑
e∈E xece(xe).

A special type of congestion games is unweighted congestion games where all players
have unit weight. A congestion game is symmetric when all players have the same set
of strategies, so Si = S ⊆ 2E for all i. A game is called singleton if every strategy for
every player has a single resource in it. A symmetric singleton congestion game is where
all players have access to the same set of singleton strategies. This is commonly known
as a congestion game on parallel links. A network congestion game is a congestion game
in which the resources correspond to edges in an underlying network and strategies for
a player i are given by paths from a vertex si to another vertex ti. Figure 1 illustrates
the relationships between these different classes.

Pure Nash Equilibrium. A pure Nash equilibrium is an outcome where each
player chooses a single strategy to play and no player has an incentive to deviate
from its current strategy. In the context of weighted congestion games an outcome s
is a pure Nash equilibrium if for each player i and s∗i ∈ Si, an alternative strategy for
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Fig. 1. Classes of congestion games based on structure

player i, the following holds:

Ci(s) ≤ Ci(s−i, s∗i ). (1)

Here (s−i, s∗i ) denotes the outcome that results when player i changes its strategy in s
from si to s∗i

A pure Nash equilibrium need not have the minimum-possible social cost. The POA
[Koutsoupias and Papadimitriou 1999] captures how much worse Nash equilibria are
compared to the cost of the best social outcome. For a congestion game Γ, if s denotes
a Nash equilibrium with the worst social cost and s∗ an outcome with the best social
cost, then the POA is defined as C(s)/C(s∗). The POA of a class of games is the worst
POA among all games in the class.

Other Equilibrium Concepts. As pure Nash equilibria do not always exist in
weighted congestion games, more general equilibrium concepts have been introduced
in the literature to remedy such situations, and also to weaken the rationality as-
sumptions required to justify convergence to equilibrium. We next review the concepts
of mixed Nash, correlated, and coarse correlated equilibria.

A set (σ1, · · · , σN ) of independent probability distributions over players’ strategy sets
is a mixed Nash equilibrium if

Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s−i, s′i)]
holds for every i and s′i ∈ Si. Here σ−i is a product distribution of all σj ’s other than σi
and s−i denotes a strategy drawn from this distribution. A correlated equilibrium is a
joint probability distribution σ over the outcomes of the game satisfying

Es∼σ[Ci(s)|si] ≤ Es∼σ[Ci(s−i, s
′
i)|si]

for every i and si, s′i ∈ Si. A coarse correlated equilibrium is given by a joint distribution
σ over the outcomes of the game satisfying

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s−i, s
′
i)]

for all i and s′i ∈ Si.
For each of these equilibrium concepts the corresponding POAs (mixed POA, cor-

related POA, coarse correlated POA) are defined as the ratio of the cost of the worst
equilibrium outcome to the optimal social outcome. All pure Nash equilibria can be rep-
resented as mixed Nash equilibria, all mixed Nash equilibria are correlated equilibria,
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and all correlated equilibria are coarse correlated equilibria. Thus the corresponding
POAs can only be nondecreasing.

Roadmap. The rest of the paper is organized as follows. Section 3 describes the
upper bound for weighted congestion games. The lower bound constructions for asym-
metric weighted congestion games and weighted congestion games on parallel links
are included in Section 4. Section 5 describes the lower bound construction for sym-
metric unweighted congestion games. We conclude in Section 6.

3. POA OF WEIGHTED CONGESTION GAMES
In this section we provide an upper bound on the POA of weighted congestion games
with general cost functions.

For a class of functions C the upper bound is parameterized by two parameters λ and
µ. Consider

A(C) ={(λ, µ) : µ < 1;x∗c(x+ x∗) ≤ λx∗c(x∗) + µxc(x)}. (2)
Here the constraints range over all functions c ∈ C and reals x ≥ 0 and x∗ > 0. Each
pair (λ, µ) in A(C) yields an upper bound on the pure POA of weighted congestion
games. We establish the following,

PROPOSITION 3.1 (POA UPPER BOUND). For a class of functions C, if (λ, µ) ∈ A(C)
then every weighted congestion game with cost functions in C has pure POA at most
λ/(1− µ).

PROOF. For a congestion game, let s denote a Nash equilibrium outcome and s∗
denote an outcome that minimizes the social cost. Let xe and x∗e denote the loads on
edge e in outcomes s and s∗ respectively. The Nash condition (1) implies that

∀i, Ci(s) ≤ Ci(s−i, s∗i ).
Summing over all players we get

C(s) =

N∑
i=1

Ci(s) ≤
N∑
i=1

Ci(s−i, s∗i ). (3)

Since λ, µ satisfy equation (2),
k∑
i=1

Ci(s−i, s∗i ) ≤
∑
e∈E

∑
i:e∈s∗i

wice(xe + wi)

≤
∑
e∈E

x∗ece(xe + x∗e)

≤
∑
e∈E

λx∗ece(x
∗
e) + µxece(xe)

= λC(s∗) + µC(s). (4)
Here the second inequality follows from the fact that for every edge

∑
i:e∈s∗i

wi = x∗e
and hence wi ≤ x∗e. Combining equations (3) and (4) we get

C(s) ≤ λC(s∗) + µC(s). (5)
Rearranging,

POA =
C(s)

C(s∗)
≤ λ

1− µ
.
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Every upper bound proved using Proposition 3.1 is a “smoothness argument” in the
sense of Roughgarden [2009], and thus automatically applies to (among other things)
all of the equilibrium concepts defined in Section 2.

We denote the best upper bound implied by Proposition 3.1 by ζ(C).

Definition 3.2. For a class of functions C, define

ζ(C) := inf
{

λ

1− µ
: (λ, µ) ∈ A(C)

}
. (6)

Define ζ(C) := +∞ if A(C) is empty.

4. LOWER BOUNDS FOR WEIGHTED CONGESTION GAMES
In this section we describe two different lower bounds that match the upper bound ζ(C)
given in Definition 3.2. The first lower bound applies to every class C of allowable cost
functions satisfying a mild technical condition, and makes use of asymmetric conges-
tion games. The second lower bound applies only to polynomial cost functions with
nonnegative coefficients, but uses only networks of parallel links.

For each lower bound, we are given a class of cost functions C, and we will describe a
series of games with POA approaching ζ(C). For each game we specify player weights,
player strategies, and congestion cost functions on the resources. Additionally, we de-
scribe two outcomes s and s∗. Justifying the example as a lower bound requires check-
ing that s is a (pure) Nash equilibrium and that the ratio of costs of the outcomes s and
s∗ is close to ζ(C).

Our lower bound constructions are guided by the aspiration to simultaneously sat-
isfy all of the inequalities in the proof of Proposition 3.1 exactly. This goal translates
to the following conditions.

(a) In the outcome s, each player is indifferent between its strategy si and the deviation
s∗i .

(b) For each player i, the strategies si and s∗i are disjoint.
(c) Cost functions and congestion on resources in the outcomes s and s∗ correspond to

tuples (c, x, x∗) that correspond to binding constraints in the infimum in (6).
(d) In the outcome s∗, each resource is used by a single player.

We believe that satisfying all of these conditions simultaneously is impossible (and can
prove it for congestion games on parallel links). Nevertheless, we are able to “mostly”
satisfy these conditions, which permits an asymptotic lower bound of ζ(C) as the num-
ber of players and resources tend to infinity.

4.1. Weighted Congestion Games with General Cost Functions
Now we present the lower bound examples that obtain POA arbitrarily close to ζ(C)
for most classes of cost functions C. We assume that the class C is closed under scaling
and dilation, meaning that if c(x) ∈ C and r ∈ R+, then rc(x) and c(rx) are also in C.
Standard scaling and replication tricks (see [Roughgarden 2003]) imply that the first
assumption is without loss of generality. The second assumption is not without loss
but is satisfied by most natural classes of cost functions.

Because our assumptions on C are so weak, we have to proceed at a quite abstract
level. The first step is to study deeply the optimization problem implicit in Defini-
tion 3.2, where constraints on the feasible values of λ, µ prohibit the value of ζ(C) from
getting arbitrarily low. To generically construct lower bound examples, we then exam-
ine the set of constraints to find ones that are binding, and use them to get close to the
values of (λ, µ) that yield ζ(C).
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First, we observe that scaling and dilation does not change the set of constraints in
the definition of the set A(C). The set of cost functions C can then be seen as composed
of a number of disjoint equivalence classes (where the relation is differing by scaling
and dilation). Henceforth whenever we speak of a cost function, we think of it as a
representative of its equivalence class.

The next lemma identifies one or two of the defining constraints of A(C) that cap-
tures the quantity ζ(C) to arbitrary precision.

LEMMA 4.1 (CHARACTERIZATION OF BINDING HALF-PLANES). If ζ(C) > 1, then
for every ε such that 0 < ε < ζ(C)− 1, one of the following two holds true.

(1) There exists a cost function c and values x ≥ 0, x∗ > 0 such that x∗c(x+ x∗) ≥ xc(x)
and

xc(x)

x∗c(x∗)
≥ ζ(C)− ε.

(2) There exist cost functions c1, c2 and values x1, x2 ≥ 0 and x∗1, x
∗
2 > 0 such that, if

(λ, µ) satisfy
x∗1c1(x1 + x∗1) = λx∗1c1(x∗1) + µx1c1(x1)

x∗2c2(x2 + x∗2) = λx∗2c2(x∗2) + µx2c2(x2),

then λ/(1 − µ) > ζ(C) − ε. Moreover, x∗1c1(x1 + x∗1) ≤ x1c1(x1) and x∗2c2(x2 + x∗2) ≥
x2c2(x2).

PROOF. For a cost function c ∈ C, x ≥ 0, and x∗ > 0, let Hc,x,x∗ denote the half-plane

x∗ · c(x+ x∗) ≤ λ · x∗ · c(x∗) + µ · x · c(x)

and ∂Hc,x,x∗ the boundary of this half-plane. Recall from (2) that these are the half-
planes that define the set A(C) of feasible pairs (λ, µ) for the set C of cost functions.
Also, define

βc,x,x∗ =
x · c(x)

x∗ · c(x+ x∗)
and ζc,x,x∗ =

x · c(x)

x∗ · c(x∗)
.

Fix a positive ε < ζ(C) − 1 and let ζ ′ = ζ(C) − ε/2. If ζ(C) is not finite, set ζ ′ = 1/ε. We
write Lζ′ for the line λ+ ζ ′ · µ = ζ ′ in the λ, µ plane.

If we think of a boundary line ∂Hc,x,x∗ as specifying µ as a function of λ, then this
line has slope −1/ζc,x,x∗ and µ-intercept 1/βc,x,x∗ . The half-space Hc,x,x∗ consists of
everything “northeast” of its boundary.

Consider the half-planes with βc,x,x∗ ≤ 1. In the lucky event that there is such a
half-plane with ζc,x,x∗ ≥ ζ ′, we are done: this choice of c, x, x∗ satisfies the conditions
of the first case of the lemma. For the rest of the proof, we assume that ζc,x,x∗ < ζ ′ for
every half-plane with βc,x,x∗ ≤ 1.

We consider two cases. To define them, pick an arbitrary cost function c1 with c1(1) >
0 — since C is closed under dilation, such a function exists — and a sufficiently large
value of x1 so that ζc1,x1,1 > ζ ′. Our standing assumption implies that βc1,x1,1 > 1.
Define (λ̂, µ̂) as the unique point of intersection of ∂Hc1,x1,1 and Lζ′ . Since the former
line has a larger slope (−1/ζc1,x1,1 vs.−1/ζ ′) and a smaller µ-intercept (1/βc1,x1,1 vs. 1)
than the latter, λ̂ > 0 and hence µ̂ < 1.

For the first case, we assume that there exists a half-planeHc2,x2,x∗2
with βc2,x2,x∗2

< 1
whose boundary intersects the line Lζ′ at a point (λ2, µ2) with µ2 < µ̂. Equivalently, the
line ∂Hc2,x2,x∗2

intersects Lζ′ to the right of where ∂Hc1,x1,1 intersects Lζ′ . Since the µ-
intercepts of ∂Hc2,x2,x∗2

and ∂Hc1,x1,1 (namely, 1/βc2,x2,x∗2
> 1 and 1/βc1,x1,1 < 1) are on
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either side of that of Lζ′ (namely, 1) and λ̂ > 0, this implies that the intersection (λ, µ)
of ∂Hc1,x1,1 and ∂Hc2,x2,x∗2

lies on the “northeast side” of Lζ′ . It follows that λ+ζ ′µ ≥ ζ ′.
Thus, c1, c2, x1, x2, 1, x

∗
2, λ, µ satisfy the conditions in the second case of the lemma.

Finally, assume that all half-planes Hc,x,x∗ with βc,x,x∗ < 1 have boundaries that
intersect the line Lζ′ at points (λ, µ) with µ ≥ µ̂. Let µ∗ denote the infimum of all µ-
coordinates of such intersections. Under our standing assumption, every such bound-
ary ∂Hc,x,x∗ has a smaller slope (−1/ζc,x,x∗ vs.−1/ζ ′) and a larger µ-intercept (1/βc1,x1,1

vs. 1) than Lζ′ , and hence intersects Lζ′ at a point (λ, µ) with 1 > µ ≥ µ̂. Thus,
1 > µ∗ ≥ µ̂.

We now find appropriate (c1, x1, x
∗
1) and (c2, x2, x

∗
2) with βc1,x1,x∗1

≥ 1 and βc2,x2,x∗2
<

1, such that the corresponding half-plane boundaries intersect Lζ′ at points (λ1, µ1)

and (λ2, µ2) with µ1, µ2 very close to µ∗. Let δ = ε·(1−µ∗)
4·ζ′−ε > 0. Consider the point (ζ ′ ·(1−

µ∗+ δ), µ∗− δ) of Lζ′ . This point is feasible for all constraints corresponding to (c, x, x∗)
with βc,x,x∗ < 1. Since ζ ′ < ζ(C), this point cannot belong to the feasible set A(C) and
hence there exists (c1, x1, x

∗
1) with βc1,x1,x∗1

≥ 1 such that the point (ζ ′ ·(1−µ∗+δ), µ∗−δ)
violates the corresponding constraint. Note that the point (0, 1) of Lζ′ lies in Hc1,x1,x∗1

.
This implies that ∂Hc1,x1,x∗1

intersects Lζ′ at a point (λ1, µ1) with µ1 ≥ µ∗−δ. Moreover,
λ1 + ζ ′ · µ1 = ζ ′.

If µ1 > µ∗, then we can find (c2, x2, x
∗
2) with βc2,x2,x∗2

< 1 that intersects Lζ′ at (λ2, µ2)
with µ∗ ≤ µ2 ≤ µ1. Then, similarly to the previous case, ∂Hc1,x1,x∗1

and ∂Hc2,x2,x∗2
intersect at a point (λ, µ) such that λ/(1− µ) ≥ ζ ′, completing the proof.

We can now assume that µ∗ − δ ≤ µ1 ≤ µ∗. By the definition of µ∗, there ex-
ist (c2, x2, x

∗
2) such that ∂Hc2,x2,x∗2

intersects Lζ′ at (λ2, µ2), with µ∗ ≤ µ2 ≤ µ∗ + δ.
Note that µ2 ≥ µ1 and λ2 + ζ ′ · µ2 = ζ ′.

Let (λ, µ) be the point where ∂Hc1,x1,x∗1
and ∂Hc2,x2,x∗2

intersect. Both these bound-
aries have negative slopes, which means (λ, µ) lies in the triangle formed by the
points (λ1, µ1), (λ2, µ2), and (λ2, µ1). Then λ/(1 − µ) ≥ λ2/(1 − µ1). Since λ1 − λ2 =
ζ ′ · (µ2 − µ1) ≤ 2 · ζ ′ · δ, we have

λ2

1− µ1
=

λ1

1− µ1
− λ1 − λ2

1− µ1

≥ ζ ′ − 2 · ζ ′ · δ
1− µ∗ + δ

≥ ζ ′ − ε

2
.

This proves that the conditions of the second case in the statement of the lemma
hold.

As long as ζ(C) > 1, the above Lemma identifies one or two binding constraints that
closely approximate the upper bound. We use these in our lower bound construction.

Fix an ε > 0. First consider the case when there are two binding constraints.
The lemma guarantees triples (c̄1, x1, x

∗
1), (c̄2, x2, x

∗
2) such that the corresponding half-

planes intersect at (λ, µ) with λ/(1− µ) = ζε > ζ(C)− ε.
Let z1 = x1/x

∗
1 and z2 = x2/x

∗
2. For any w > 0, we can identify functions c1, c2 that

are dilated versions of c̄1, c̄2 such that (λ, µ) satisfy:

c1(w · (z1 + 1)) = λ · c1(w) + µ · z1 · c1(w · z1)

c2(w · (z2 + 1)) = λ · c2(w) + µ · z2 · c2(w · z2). (7)
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Finally, since c1(w · (z1 + 1)) ≤ z1c1(z1w) and c2(w · (z2 + 1)) ≥ z2c2(z2w), for every w,
there exists a constant η ∈ [0, 1] such that

η · c1(w · (z1 + 1)) + (1− η) · c2(w · (z2 + 1))

= η · c1(w · z1) · z1 + (1− η) · c2(w · z2) · z2 (8)

The following example serves as a lower bound.

Fig. 2. Structure of the asymmetric lower bound for k = 4. Hollow nodes represent resources and solid
nodes represent players.

LOWER BOUND 1 (ASYMMETRIC WEIGHTED CONGESTION GAMES). For a pa-
rameter k ∈ N (chosen later) we construct a weighted congestion game with player set
N and resource set E as follows (see Figure 2).

Player strategies:. Organize the resources in a tree of depth k, which is a complete
binary tree of depth k − 1 with each leaf extended by a path of length 1. For each
non-leaf node i in the tree there is a player i with 2 strategies: either choose node i
or all children of i.
Player weights:. If i is the root then wi = 1. Otherwise, if node i is the left (right)
child of some node j, then wi = wj · z1 (wi = wj · z2), where z1, z2 are chosen for (λ, µ)
as noted above. Let NL ⊂ N be the set of players connected to a leaf.
Cost functions: . The cost functions of the resources are defined recursively as fol-
lows:
— For the root we can choose any cost function c ∈ C with c(1) = 1. By a scaling

argument such a cost function exists.
— Every leaf resource gets the same cost function as its parent.
— Consider an arbitrary resource ewhich is not a leaf nor its children are leaves. Let
ce be its cost function and let we be the weight of the corresponding player e. Let
l, r be the left and right child of e respectively. By construction the corresponding
players have weights wl = z1 · we and wr = z2 · we. Among all pairs of cost
functions c1, c2 that satisfy (7) for w = we, choose those that also satisfy

c1(we · z1) · z1 = c2(we · z2) · z2 = ce(we). (9)
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By a scaling argument such a pair always exists. Let ηe be the corresponding
value for η in (8) and define

cl = ηe · c1 and cr = (1− ηe) · c2. (10)

Nash strategy: . The Nash outcome in this example is the outcome s where each
player chooses the resource closer to the root.
Optimal strategy:. the optimal outcome s∗ is the outcome where each player chooses
its strategy further from the root.

We now prove that, in the construction above, the outcome s is indeed a Nash equilib-
rium and that the ratio C(s)/C(s∗) is at least λ/(1 − µ). We check those conditions in
the proof of the following lemma.

LEMMA 4.2. The congestion game in Lower Bound 1 has POA λ/(1− µ).

PROOF. We claim that s is a pure Nash equilibrium. Observe that by construction
no player in NL can improve by choosing its leaf strategy since the leaf resource has
the same cost function as the resource in its current strategy. Now, fix an arbitrary
player e ∈ N \ NL and let l, r be her left and right child, respectively. Then,

Ce(s) = ce(we)
(9)
= ηe · c1(we · z1) · z1 + (1− ηe) · c2(we · z2) · z2

(8)
= ηe · c1(we · (z1 + 1)) + (1− ηe) · c2(we · (z2 + 1)) (11)
(10)
= cl(we · (z1 + 1)) + cr(we · (z2 + 1))

= Ce(s−e, s∗e).

Thus, players in N \NL can also not improve. So s is a pure Nash equilibrium.
By (11) and (7) we also get that

Ce(s) = ηe · (λ · c1(we) + µ · c1(we · z1) · z1)

+ (1− ηe) · (λ · c2(we) + µ · c2(we · z1) · z1)

(9)
= ηe · (λ · c1(we) + µ · ce(we)) + (1− ηe) · (λ · c2(we) + µ · ce(we))
= λ · (ηe · c1(we) + (1− ηe) · c2(we)) + µ · ce(we)
= λ · Ce(s∗) + µ · Ce(s),

or equivalently

Ce(s) =
λ

1− µ
· Ce(s∗) = ζε · Ce(s∗). (12)

In the following, we show that C(s) = k and C(s∗) = 1 + (k − 1)/ζε. To see that
C(s) = k we show that the contribution of each non-leaf player e ∈ N \ NL to the total
latency is the same as the combined contribution of both of her left child and right
children l, r. The contribution of e to C(s) is ce(we) ·we while the combined contribution
of l and r is

cl(we · z1) · we · z1 + cr(we · z2) · we · z2

(10)
= ηe · c1(we · z1) · we · z1 + (1− ηe) · c2(we · z2) · we · z2

(9)
= ηe · ce(we) · we + (1− ηe) · ce(we) · we
= ce(we) · we.
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It follows that the combined contribution of each layer of players in our tree is the
same. Since the root player contributes 1 to the total latency and our tree has depth k,
we conclude that C(s) = k.

On the other hand

C(s∗) =
∑
i∈N

wi · Ci(s∗)

=
∑
i∈NL

wi · Ci(s∗) +
∑

i∈N\NL

wi · Ci(s∗)

(12)
=
∑
i∈NL

wi · Ci(s) +
∑

i∈N\NL

wi ·
Ci(s)

ζε

= 1 +
k − 1

ζε
.

The claim of the theorem now follows since

lim
k→∞

C(s)

C(s∗)
= lim
k→∞

k

1 + k−1
ζε

= ζε.

Next we handle the case where there is exactly one binding half-plane and it cor-
responds to the cost function c and values x, x∗ > 0. Let z = x/x∗. Using scaling and
dilation, it is possible to obtain for each w > 0, a cost function cw that is a dilated
version of c such that cw(w(z + 1)) > zcw(zw) and zcw(zw)/cw(w) = ζε. We construct a
slightly modified lower bound example for this case.

Represent the resources as the vertices of simple line graph with a single player
on each edge. Each player has two strategies - use exactly one of the two adjacent
resources. One end of the line is identified as the root. The weight of the player that is
closest to the root is set to 1. For each subsequent player, we set its weight to equal z
times the weight of the previous player. For the root resource, we choose a cost function
c0 ∈ C with c0(1) = 1. For each other resource, we define its cost function based on
the cost function of the adjacent resource that is closer to the root. More concretely,
consider two resources e and e′ that are adjacent to each other with resource e being
closer to the root. Let w denote the weight of the player on the adjoining edge and ce, ce′
denote the cost functions corresponding e and e′. We define the cost function ce′ as a
scaled or dilated version of c such that zce′(zw) = ce(w) and zce′(zw)/ce′(w) = ζε. When
e′ is the last resource, we set ce′ to be the same as ce. Let s denote the outcome where
all players play the resource that is closer to the root, and let s∗ denote the outcome
where all players play the resource that is further from the root.

We will first claim that the outcome s is a Nash equilibrium. Consider a player (that
is not the last player) with weight w. Let e denote that resource with cost ce that this
player plays on in this outcome. Note that it is the only player that is playing on this
resource. Its cost is thus ce(w). The player’s other option is to play on a resource e′

with cost function ce′ chosen such that zce′(zw) = ce(w). In the outcome s, another
player with weight zw is already playing on that resource e′. Thus if the player was to
deviate to play on the resource e′, its cost will be ce′(zw + w). By the choice of ce′ as
a scaled/dilated version of c, this is at least zce′(zw) which in turn equals ce(w). Thus
the player’s cost on deviation is more than its cost in the current outcome. For the last
player, its two strategies have the same cost function and no other player is playing
on either of the resources thus it will have no incentive to deviate from playing on the
resource closer to the root.
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We will next compute the ratio of the costs of the two outcomes s and s∗. First we
will show that the weighted cost in the outcome s for all players is the same. Consider
a player P1 with weight w that is not the last player. This player plays on a resource e
with cost function ce in the outcome s. Its weighted cost in the outcome s is thus wce(w).
The player P2 adjacent to this player that is further from the root has weight zw. In
the outcome s, this player plays on a resource e′ with cost function ce′ . Moreover, ce′
is chosen such that zce′(zw) = ce(w). Player P2’s weighted cost is zwce′(zw) = wce(w).
Thus for all players, their weighted costs in the outcome s are the same.

Next we show that, for all players other than the last, the ratio of their weighted
costs in the outcomes s and s∗ is ζε. Consider a player with weight w that has access
to resources e and e′ with resource e being closer to the root. The player’s cost in the
outcome s is ce(w). Unless this is the last player, this cost equals zce′(zw). On the other
hand the player’s cost in the outcome s∗ is ce′(w). We thus see that the ratio of the two
costs for this player is ζε.

For the last player, cost functions for the two resources that it has access to are the
same. In either outcome, it is also the only player playing on these resources. Thus
the ratio of its costs in the outcomes s, s∗ is 1. We conclude that as the number of
resources in the path grows, the ratio C(s)/C(s∗), which is a lower bound on the POA,
will approach ζε.

Combining all of the analysis above we obtain the following result.

THEOREM 4.3 (ASYMMETRIC WEIGHTED POA LOWER BOUND). For every class C
of cost functions that is closed under dilation, the worst-case POA of weighted conges-
tion games with cost functions in C is precisely ζ(C).

4.2. A Lower Bound for Parallel-Link Networks
We now focus on weighted congestion games with cost functions that are polynomials
with nonnegative coefficients and maximum degree d. For such games we show that
the POA does not change if we restrict to (symmetric) weighted congestion games on
parallel links. Recall that for general case the POA was shown to be φd+1

d [Aland et al.
2011] where φd satisfies (φd + 1)d = φd+1

d . We establish the following theorem.

THEOREM 4.4 (POA LOWER BOUND FOR PARALLEL LINK NETWORKS). For
weighted congestion games on parallel-link networks with cost functions that are
polynomials with nonnegative coefficients and maximum degree d, the worst-case POA
is precisely φd+1

d .

We reiterate that the lower bound in Theorem 4.4 is new even for affine cost functions.
We describe the example below.

Fig. 3. Structure of the symmetric lower bound example for α = 4 and k = 3. α is the branching factor, k is
number of levels. Hollow circles are resources and solid circles are players.
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LOWER BOUND 2 (WEIGHTED CONGESTION GAMES ON PARALLEL LINKS). Let k
be an integer. We construct the following congestion game on parallel links. (See Figure 3
for reference.) Let φd satisfy (φd+1)d = φd+1

d . Let α be an integer satisfying αd ≥ φ2d+2
d ≥

φd+1
d .

Player strategies: . Player strategies are single resources and all players have access
to all resources.
Cost functions: . Group the resources in groups A0, A1 · · ·Ak. For each i =
0, 1, . . . , k − 1, group Ai contains αi resources with cost function ci(x) =(
αd/φd+1

d

)i
xd. The last group Ak contains αk resources with cost functions ck(x) =

αd
(
αd/φd+1

d

)k−1
xd. These resources are arranged in a tree with resources from

group Ai at level i of the tree.
Player weights: . Group players into groups P1, P2, . . . , Pk. For i = 1, 2, . . . , k, group
Pi contains one player for each resource in Ai with player weight wi = (α/φd)

k−i.
Optimal strategy:. Players in group Pi play on resources in group Ai in the optimal
strategy. Denote this outcome by s∗.
Nash strategy:. Players in group Pi play on resources in group Ai−1 in the Nash
strategy with α players on each resource. Denote this outcome by s.

The example described above is symmetric which means that all players have access to
all of the strategies. Thus we have to check that no player would gain from switching to
any other strategy in the Nash outcome s. We verify these conditions in the following
lemma. Theorem 4.4 then follows immediately from this Lemma.

LEMMA 4.5. For the games in Lower Bound 2, outcome s is a pure Nash equilibrium
and limk→∞

C(s)
C(s∗) = φd+1

d .

PROOF. Recall from Lower Bound 2 that we have two outcomes s, s∗. We will estab-
lish that s is a Nash equilibrium and then show that C(s)/C(s∗) approaches φd+1

d as
k tends to infinity. Note that since this is a symmetric congestion game — that is, all
players have access to all strategies — we have to show that no player wants to switch
to any other strategy.

Throughout these calculations Ci(s) denotes the total weighted cost of resources in
Ai in outcome s, while cj(s) denotes the cost of a single player j in outcome s. s−j
denotes the outcome when all players other than j play their strategy in outcome s.
We first verify that the outcome s is indeed a Nash equilibrium.

Case (i) Players from groups i = 1 · · · k − 1 .
In the outcome s, α players from group Pi play on resources in group Ai−1. The load on
a resource in Ai−1 is α · (α/φd)k−i and the cost of a player j in that group is

cj(s) =

(
αd

φd+1
d

)i−1(
α ·
(
α

φd

)k−i)d
=

αkd

φd(k−1)+i−1
. (13)

Notice that this cost is decreasing in i, so players closer to the root pay more in the
Nash strategy than players lower in the tree. Since all players on a resource pay the
same cost no player would wish to switch to a strategy that already costs more than
his current cost. Hence it remains to consider players wishing to switch to resources
with a bigger index i.

Fix an index i. We verify that for any player j from group Pi, using a resource in
Ai−1 in s, switching to a resource (Ai)l in Ai is at least as bad. Recall this is the group
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in which this player’s strategy in the optimal outcome s∗ lies.

cj(s−j , (Ai)l) =

(
αd

φd+1
d

)i(
α

(
α

φd

)k−i−1

+

(
α

φd

)k−i)d

=

(
αd

φd+1
d

)i(
α

φd

)(k−i)d

(φd + 1)d

=

(
αd

φd+1
d

)i(
α

φd

)(k−i)d

φd+1
d = cj(s).

Next we verify that for any player switching to a strategy (Ai+t)l in group Ai+t for t > 0
can only increase a player’s cost. Even if the resource is empty in the Nash equilibrium,
the player does not want to switch to it:

cj(s−j , (Ai+t)l) =

(
αd

φd+1
d

)i+t(
α ∗

(
α

φd

)k−i−t−1

+

(
α

φd

)k−i)d

>

(
αd

φd+1
d

)i+t((
α

φd

)k−i)d
≥

(
αd

φd+1
d

)i+1((
α

φd

)k−i)d

≥ cj(s) ·

(
αd

φ2d+2
d

)
≥ cj(s).

Here the last inequality follows from the fact that α is chosen such that αd ≥ φ2d+2
d .

Now if we consider the player switching to a resource (Ak)l in the kth group,

cj(s−j , (Ak)l) = αd

(
αd

φd+1
d

)k−1(
α

φd

)(k−i)d

= αd
αd(k−i−1)

φ
(d+1)(k−i)
d

cj(s)

≥ cj(s).

Here the last inequality follows from the choice of α. This establishes that the players
in groups 1, 2, . . . , k − 1 will not wish to change their strategy in the outcome s.

Case(ii) Players in Pk .
Players in group Pk have unit weight and play on resources in Ak−1, α at a time in s.
The cost incurred by such a player is

cj(s) =

(
αd

φd+1
d

)k−1

αd =
αkd

φ(d+1)(k−1)
.

Comparing with equation (13), this is less than the cost in s of any other group of
resources. Now consider moving a player j from his strategy in Ak−1 to an empty
resource (Ak)l in Ak:

cj(s−j , Akj) = αd ·

(
αd

φd+1
d

)k−1

= cj(s).
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These cases thus establish that the outcome s is a Nash equilibrium.
Now we calculate the POA. For each group of resources Ai we calculate its cost in

the outcomes s and s∗. All the resources in a group have the same cost function and
the same load in each of s and s∗. If the cost function is of the form aix

d, then the cost
of the group is given by ((# of resources) · ai · (load)d+1).

Case(i) Cost of group Ai for i = 1 · · · k − 1 .
The cost in the outcome s is

Ci(s) = αi ·

(
αd

φd+1
d

)i
·

(
α ·
(
α

φd

)k−i−1
)d+1

=
αk(d+1)

φ
(d+1)(k−1)
d

.

In the outcome s∗, this cost is

Ci(s∗) = αi ·

(
αd

φd+1
d

)i
·
(
α

φd

)(k−i)(d+1)

=
αk(d+1)

φ
(d+1)k
d

.

Case(ii) Cost of group A0 .
Resources in group A0 are not used in the outcome s∗, so C0(s∗) = 0. C0(s) is

C0(s) = 1 · 1 ·

(
α ·
(
α

φd

)(k−1)
)(d+1)

=
αk(d+1)

φ
(k−1)(d+1)
d

.

Case(iii) Cost of group Ak .
Resources in group Ak are not used in the outcome s, so Ck(s) = 0. Ck(s∗) is

Ck(s∗) = (αk) · αd ·

(
αd

φd+1
d

)k−1

=
αk(d+1)

φ
(d+1)(k−1)
d

.

Combining all these expressions,

C(s) =

k∑
i=0

Ci(s) = k · αk(d+1)

φ
(k−1)(d+1)
d

, and

C(s∗) =

k∑
i=0

Ci(s∗) = (k − 1)
αk(d+1)

φ
(d+1)k
d

+
αk(d+1)

φ
(d+1)(k−1)
d

=
αk(d+1)

φ
(k−1)(d+1)
d

·
(
(k − 1)(1/φd+1

d ) + 1
)
.

Hence,

C(s)

C(s∗)
=

k

(k − 1) 1

φd+1
d

+ 1
.

The claim follows since limk←∞
k

(k−1) 1

φ
d+1
d

+1
= φd+1

d .
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5. UNWEIGHTED CONGESTION GAMES
We show that for symmetric unweighted congestion games the POA is the same as that
for general unweighted congestion games. A result in Roughgarden [2009] gives an
upper bound on the POA of unweighted congestion games. For a class of cost functions
C, one uses the set of parameters A(C) defined as

A(C) = {(λ, µ) : µ < 1;x∗c(x+ 1) ≤ λx∗c(x∗) + µxc(x)}, (14)

where the constraints are for cost functions c ∈ C and integers x ≥ 0, x∗ > 0. Then for
each (λ, µ) ∈ A(C), a simple derivation shows that the pure POA is at most λ/(1 − µ).
Let γ(C) denote the best such upper bound:

γ(C) = inf
{

λ

1− µ
: (λ, µ) ∈ A(C)

}
.

Roughgarden [2009] showed how to construct an asymmetric unweighted congestion
game that matches the upper bound γ(C) (for each C). Here we show that even sym-
metric games can be used to achieve this upper bound, in the limit as the number of
players and resources tend to infinity.

THEOREM 5.1 (SYMMETRIC UNWEIGHTED POA LOWER BOUND). For every set of
cost functions C there exist symmetric congestion games with cost functions in C and
POA arbitrarily close to γ(C).

We define γ(C, n) as the minimal value of λ/(1 − µ) that can be obtained when the
load on each edge is restricted to be at most n. Then γ(C, n) approaches γ(C) as n
approaches∞. For any finite n the feasible region for (λ, µ) is then the intersection of
a finite number of half planes, one for each value of x and x∗. We also maintain one
additional constraint on the feasible region that is µ < 1. We now state the following
lemma which was presented in Roughgarden [2009].

LEMMA 5.2 (CHARACTERIZATION OF BINDING HALF-PLANES). Fix finite n and a
set of functions C and suppose there exists (λ̂, µ̂) such that, λ̂

1−µ̂ = γ(C, n). Then there
exist c1, c2 ∈ C, x1, x2 ∈ {0, 1, . . . , n}, x∗1, x∗2 ∈ {1, 2, . . . , n} such that,

cj(xj + 1)x∗j = λ̂cj(x
∗
j )x
∗
j + µ̂cj(xj)xj (15)

for j ∈ {1, 2}. Additionally, βc1,x1,x∗1
< 1 and βc2,x2,x∗2

≥ 1 for βc,x,x∗ = xc(x)
x∗c(x+x∗) .

Note that the lemma as stated here differs from the one in Roughgarden [2009] in the
additional condition on βc1,x1,x∗1

, βc2,x2,x∗2
. However the modified version can be easily

obtained by noting that we are always guaranteed a half plane with β < 1 and as long
as the value of γ(C, n) is attained there is another half plane with β ≥ 1.

We now describe the lower bound.

LOWER BOUND 3 (SYMMETRIC UNWEIGHTED CONGESTION GAMES). Let N be
an integer which will denote the number of players. Let c1, x1, x

∗
1 and c2, x2, x

∗
2 be de-

fined as in the above lemma.

Resources and Cost functions. There are two groups of resources A1 and A2. For
j = 1, 2, group Aj contains

(
N
xj

)(
N
x∗j

)
resources with cost function αjcj(x), α1 and α2

will be chosen later. Arrange resources in Aj in a
(
N
xj

)
×
(
N
x∗j

)
grid.

Strategies. There are two main types of strategies: column strategies and row strate-
gies. There are N column strategies . For i ∈ {1, 2, . . . , N}, the i’th column strategy
O(i) is composed of sets O(i, 1) and O(i, 2) from resource sets A1, A2 respectively.
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A1 A2

Fig. 4. Example of column and row strategies with N = 5, x∗1 = x∗2 = 1, x1 = 2 and x2 = 3. Hollow circles
denote resources. One column strategy includes all columns marked by vertical blocks. An example row
strategy includes all resources marked by horizontal blocks.

Set O(i, j) contains
(
N−1
x∗j−1

)
of the columns from set Aj , resulting in ∆j =

(
N
xj

)(
N−1
x∗j−1

)
resources in all. The columns are chosen such that each resource is contained in
exactly x∗j sets.2
Row strategies denoted by E(i) for i ∈ {1, 2, . . . , N} are composed of sets E(i, 1) and
E(i, 2) from A1 and A2, respectively. Set E(i, j) is composed of

(
N−1
xj−1

)
rows from Aj ,

chosen such that each resource is contained in xj different row strategies. The num-
ber of resources in E(i,j) is xj

x∗j
∆j . The sets E(i, j) and O(i′, j) share xj

N ∆j resources.
Players. There are N players each with unit weight. Players have access to all of the
strategies.
Optimal strategy. The optimal strategy s∗i for player i is the strategy O(i).
Equilibrium strategy. The equilibrium strategy si for player i is the strategy E(i).

We choose α1, α2 ≥ 0 such that each player is indifferent between his strategy in
the equilibrium and optimal outcomes while all other players play their equilibrium
strategy. The following lemma establishes that such α1, α2 exist.

LEMMA 5.3 (CHOICE OF α1, α2 ). If tuples c1, x1, x
∗
1 and c2, x2, x

∗
2 with x1, x2 ≥

0, x∗1, x
∗
2 > 0 are such that βc1,x1,x∗1

< 1 and βc2,x2,x∗2
≥ 1, then for the game instance

described in Lower Bound 3 there exist α1, α2 ≥ 0 s.t. for each player i, Ci(si, s−i) =
Ci(s

∗
i , s−i).

PROOF. We start with the required condition, Ci(s−i, s∗i ) = Ci(s), to derive the val-
ues of α1 and α2. Recall that player i’s equilibrium strategy is composed of sets of
resources E(i, 1) and E(i, 2) that in s cost α1c1(x1) and α2c2(x2), respectively. Player i’s
optimal strategy is composed of sets of resources O(i, 1), O(i, 2). Hence we have

Ci(s) = Ci(s−i, s∗i ) ⇐⇒
|E(i, 1)|α1c1(x1) + |E(i, 2)|α2c2(x2)

=|E(i, 1) ∩O(i, 1)|α1c1(x1) + (|O(i, 1)| − |E(i, 1) ∩O(i, 1)|)α1c1(x1 + 1)

+ |E(i, 2) ∩O(i, 2)|α2c2(x2) + (|O(i, 2)| − |E(i, 2) ∩O(i, 2)|)α2c2(x2 + 1).

Plugging in the sizes of the strategy sets, we get
x1

x∗1
∆1α1c1(x1) +

x2

x∗2
∆2α2c2(x2) =

x1

N
∆1α1c1(x1) + (1− x1

N
)∆1α1c1(x1 + 1)

+
x2

N
∆2α2c2(x2) + (1− x2

N
)∆2α2c2(x2 + 1).

2A simple way of defining these strategies is to denote each column by a N bit number containing exactly
x∗j ones. The ith strategy then contains columns whose i’th bit is 1.
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Regrouping this equation,

∆1α1

[(
1− x1

N

)
c1(x1 + 1)−

(
x1

x∗1
− x1

N

)
c1(x1)

]
= ∆2α2

[(
x2

x∗2
− x2

N

)
c2(x2)−

(
1− x2

N

)
c2(x2 + 1)

]
.

Further regrouping and some simplification yields

∆1α1[N (c1(x1 + 1)− x1c1(x1)/x∗1) + (x1c1(x1)− x1c1(x1 + 1))]

= ∆2α2[N (x2c2(x2)/x∗2 − c2(x2 + 1)) + (x2c2(x2 + 1)− x2c2(x2))].

Choosing α1, α2 such that

a2 =
x2c2(x2)

x∗2
− c2(x2 + 1), b2 = x2c2(x2 + 1)− x2c2(x2),

a1 = c1(x1 + 1)− x1c1(x1)

x∗1
, b1 = x1c1(x1)− x1c1(x1 + 1),

α1 = (a2N + b2)/∆1, and α2 = (a1N + b1)/∆2 (16)

ensures that the relation holds. Note that since the cost functions are increasing and
βc2,x2,x∗2

≥ 1, both a2, b2 ≥ 0 and α1 is non-negative. We have b1 < 0 but since βc1,x1,x∗1
<

1 and a1 > 0, for sufficiently large N , α2 is also non-negative. Due to the symmetry
between the players we conclude that the above choice of α1, α2 renders each player
indifferent between their Nash and optimal strategies in the equilibrium.

It now remains to prove that the Lower Bound 3 has the desired POA. We first note
a few easy identities.

LEMMA 5.4. The following two identities hold:

a2x1c1(x1)

x∗1
+
a1x2c2(x2)

x∗2
= λ̂

[
x2c1(x∗1)c2(x2)

x∗2
− x1c1(x1)c2(x∗2)

x∗1
;

]
a2c1(x1) + a1c2(x2) = (1− µ̂)

[
x2c2(x2)c1(x∗1)

x∗2
− x1c1(x1)c2(x∗2)

x∗1
.

]
PROOF. From Lemma 5.2 we know that, for j ∈ {1, 2},

x∗jcj(xj + 1) = λ̂x∗jcj(x
∗
j ) + µ̂xjcj(xj).

Hence,

a2 =
x2c2(x2)

x∗2
− c2(x2 + 1) =

x2c2(x2)

x∗2
−
(
λ̂c2(x∗2) + µ̂

x2c2(x2)

x∗2

)
= (1− µ̂)

x2c2(x2)

x∗2
− λ̂c2(x∗2).

Similarly,

a1 = λ̂c1(x∗1)− (1− µ̂)
x1c1(x1)

x∗1
.
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Then,

a2x1c1(x1)

x∗1
+
a1x2c2(x2)

x∗2

=

(
(1− µ̂)

x2c2(x2)

x∗2
− λ̂c2(x∗2)

)
x1c1(x1)

x∗1
+

(
λ̂c1(x∗1)− (1− µ̂)

x1c1(x1)

x∗1

)
x2c2(x2)

x∗2

=λ̂

[
x2c1(x∗1)c2(x2)

x∗2
− x1c1(x1)c2(x∗2)

x∗1

]
.

A similar proof verifies the second identity.

Using these identities, we prove the following lemma. Recall that λ̂ and µ̂ were fixed
in the statement of Lemma 5.2.

LEMMA 5.5. The POA of the game in Lower Bound 3 approaches λ̂/(1− µ̂) as N →
∞.

PROOF. We first establish that the outcome s is a Nash equilibrium. The equilib-
rium cost for each player is the same, hence switching to another player’s equilib-
rium strategy will only increase the player’s cost. Next we check that switching to
another player j’s optimal strategy is also more expensive. From a player i’s perspec-
tive all the optimal strategies are similar, hence by the choice of α1, α2 we know that
Ci(si, s−i) = Ci(s

∗
j , s−i). Thus, a player will not gain by switching to another player’s

optimal strategy.
Next we calculate the POA. Recall that α1, α2 are defined as in equation (16). We

have

Ci(s) =
x1

x∗1
∆1α1c1(x1) +

x2

x∗2
∆2α2c2(x2)

=
x1

x∗1
(a2N + b2)α1c1(x1) +

x2

x∗2
(a1N + b1)α2c2(x2)

=

(
a2x1c1(x1)

x∗1
+
a1x2c2(x2)

x∗2

)
N +

(
b2x1c1(x1)

x∗1
+
b1c2(x2)

x∗2

)
=λ̂N

[
x2c1(x∗1)c2(x2)

x∗2
− x1c1(x1)c2(x∗2)

x∗1

]
+

(
b2x1c1(x1)

x∗1
+
b1c2(x2)

x∗2
.

)
Here the final step follows from the identities in Lemma 5.4. Similar calculations show
that

Ci(s∗) =∆1α1c1(x∗1) + ∆2α2c2(x∗2)

=(1− µ̂)N

[
x2c1(x∗1)c2(x2)

x∗2
− x1c1(x1)c2(x∗2)

x∗1

]
+ (b2c1(x∗1) + b1c2(x∗2).)

Since the coefficients of λ̂ and 1− µ̂ are strictly positive, we have

POA ≥ N · Ci(s)

N · Ci(s∗)
→ λ̂

1− µ̂
as N →∞.

When γ(C, n) is not attained by any pair (λ, µ), a similar construction yields in-
stances with POA arbitrarily close to γ(C, n). We establish the following lemma.
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LEMMA 5.6. If C is a class of functions and n an integer such that the value γ(C, n)
is not attained by any feasible pair (λ, µ), then there exist symmetric unweighted con-
gestion games with POA arbitrarily close to γ(C, n).

PROOF. The hypotheses imply that the optimal value of λ/(1− µ) is approached on
the last face of the feasible region as λ→∞ and µ→ −∞. The exact value of the POA
is then nc(n)/c(1) and we also have that c(n+ 1) > nc(n).

We construct an example similar to one in Lower Bound 3 for this special case. We
choose a k such that

nc(n)̇(1 +
1− 1/n

k − 1
) ≤ c(n+ 1). (17)

Such a k exists as c(n+1) > n ·c(n). The instance is then composed of kn players. There
are

(
kn
n

)
kn resources, each with cost function c(x). In the equilibrium, each player plays(

kn−1
n−1

)
kn resources while sharing each resource with n other players. For every player

we specify an optimal strategy composed of
(
kn−1
n−1

)
resources from each player’s equilib-

rium strategy. No resources are shared in the optimal outcome. The optimal strategy
has

(
kn
n

)
resources.

We first verify that the equilibrium conditions are met. Since all the players’ equilib-
rium strategies are identical, no player has an incentive to deviate to another player’s
equilibrium strategy. Now suppose a player i deviates to another player j’s optimal
strategy. The two strategies share

(
kn−1
n−1

)
resources. We have

Ci(s−i, s∗j ) =

(
kn− 1

n− 1

)
· c(n) +

(
kn− 1

n

)
c(n+ 1)

=

(
kn− 1

n− 1

)(
c(n) +

kn− n
n

· c(n+ 1)

)
≥
(
kn− 1

n− 1

)(
c(n) + (kn− n)(1 +

n− 1

n(k − 1)
) · c(n)

)
=

(
kn− 1

n− 1

)
· kn · c(n) = Ci(s),

where the inequality follows from the choice of k.
The social cost of the equilibrium is kn · kn ·

(
kn−1
n−1

)
· c(n) while the cost of the optimal

outcome is kn ·
(
kn
n

)
· c(1). The POA is then nc(n)/c(1).

Theorem 5.1 follows from Lemmas 5.5 and 5.6.

6. CONCLUSION AND OPEN QUESTIONS
This paper determines the exact POA in several classes of congestion games. There
remain some interesting open questions.

— Symmetric Unweighted Congestion Games on Networks - It is not clear if our
lower bound for the POA of symmetric unweighted congestion games (Theorem 5.1)
extends to network congestion games, where each player’s strategies correspond to
the paths between a source and a sink vertex.

— Symmetric Weighted Congestion Games - The lower bound for parallel link
networks in Section 4.2 applies only to polynomial cost functions. It would be inter-
esting to determine the exact POA for such games with general cost functions.
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