
CS167: Reading in Algorithms
Triangle-Dense Graphs∗

Tim Roughgarden†

April 9, 2014

1 Social Networks and Triangle Density

In these notes we discuss a paper of Gupta, Roughgarden, and Seshadhri, “Decompositions of
Triangle-Dense Graphs” [1]. The motivation of the paper is to develop a theory of algorithms
for social networks, like the graphs derived from Facebook or Twitter data mentioned in the
first lecture. That is, the goal is to develop graph algorithms that work well on social
networks, if not on worst-case graphs.

What’s special about social networks? In the first lecture we mentioned three common
properties: they are generally big, sparse, and have a skewed degree distribution. This paper
discusses a different property: large triangle density. Intuitively, this is similar to having a
large average clustering coefficient. Formally, the triangle density of a graph is the fraction
of “filled in” 2-hop paths (aka “wedges”), which can also be written as

3 · number of triangles

number of wedges
.

Note the factor of “3” comes in because each triangle of a graph spawns three distinct wedges.
Every graph has a triangle density between 0 and 1. An acyclic graph has triangle density

0; so does a cycle of length at least 4. A triangle has a triangle density of 1, as does a clique,
as does a disjoint union of cliques. A little thought shows the converse is also true: a graph
has triangle density 1 only if it is the disjoint union of cliques.

The paper studies graphs with “large” triangle density, with the motivation that large
social networks tend to have this property (among others). For example, let’s compare the
Facebook graph with a random graph. By a “random graph,” we mean the following (called
an “Erdős-Rényi graph”): for parameters n and p ∈ [0, 1], form a graph with n vertices by
including each of the

(
n
2

)
possible edges independently with probability p. We expect the

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

Figure 1: Main result. If a graph G has constant triangle density, then we can partition G
into dense clusters such that not too many triangles are cut by the partition. The dotted
circles denote such a partition, and the red triangle is cut by this partition.

triangle density of such a random graph to be roughly p — given that (u, v) and (v, w) are
edges, the probability that (u,w) is also an edge is p. Thus, we expect the triangle density
of a random graph to be at least p only if we also expect the number of edges to be at least
≈ pn2/2 — this means that only dense random graphs have high triangle density.

The Facebook graph, on the other hand, has close to 1 billion vertices and 100 billion
edges (with an average degree close to 200). The corresponding edge density is little more
than 10−6. The triangle density of the Facebook graph, on the other hand, is roughly .16 [2]
— five orders of magnitude larger than if it were a random graph with the same number of
vertices and edge density.

2 Decomposing Triangle-Dense Graphs

The paper [1] proposes triangle-dense graphs as a coarse model of social networks. The
goal is then to design algorithms that work well on all triangle-dense graphs. There is a
long history of designing graph algorithms for restricted classes of graphs — planar graphs,
bounded-treewidth graphs, etc. Social networks are a relatively new application area, and
triangle-dense graphs are a correspondingly new definition.

The primary contribution of the paper is to quantify the sense in which graphs with
large triangle density are approximately a union of cliques. (Recall that a graph has triangle-
density 1 if and only if it is a union of cliques.) More formally, the paper gives an algorithmic
proof of the following result (Figure 1).

Theorem 2.1 If the triangle density of G = (V,E) is at least a constant, then there are
disjoint subsets V1, . . . , Vk of V such that:

1. Each induced subgraph G[Vi] has radius at most 2 and is dense.1

1A graph H has radius at most r if there is a vertex v of H such that every vertex w of H is at most
r hops away from v. A graph H is dense if the number of edges is quadratic in the number of vertices —
within a constant factor of the maximum possible.

2

(a) A motivating picture.
(b) A clique on n1/3 vertices, attached to a path
of length n.

Figure 2: Examples of triangle dense graphs.

2. The G[Vi]’s contain a constant fraction of the triangles of G.

A number of comments. First, we are suppressing the constant factors in both the hypothesis
and the conclusions. The larger the triangle density of the graph G, the larger the edge
density of the induced subgraphs G[V1], . . . , G[Vk] in the first property, and the larger the
constant fraction of “saved” triangles in the second property. Second, while the Vi’s are
disjoint, they need not form a partition of V . Third, the most interesting case of Theorem 2.1
is when the graph G is sparse (but triangle-dense), as with most social networks. In this case,
Theorem 2.1 states that the high triangle density must be the result of a number of disjoint
dense “community-like” subgraphs. Fourth, the guarantee in second property is effectively
identifying the “interesting content” of a social network with its triangles.

Let’s get a better feel for Theorem 2.1 with some toy examples. The first picture that
comes to mind is something like Figure 2a — a handful of near-cliques (missing a few edges
each), sparsely connected to each other. But triangle-dense graphs can get pretty weird.
Consider, for example, the “lollipop graph” of Figure 2b, with a clique on n1/3 vertices and
a path of n vertices. You should check that the number of edges and the number of triangles
are both Θ(n), so this family of graphs has constant triangle density as n→∞.

Even though the lollipop graph does not resemble known social networks, Theorem 2.1
applies — so what do we expect the corresponding decomposition to look like? Recalling
that the Vi’s need not cover all of V , we can simply take V1 equal to the clique. Observe
that while all of the triangles of G are preserved, almost none of the ≈ n+ n1/3 vertices are
covered, and similarly almost none of the ≈ n+ n2/3/2 edges are covered.

3 Interpretation of Theorem 2.1

There are two reasons to care about Theorem 2.1. The first is structural — it tells us what
triangle-dense graphs must “look like.” The second is algorithmic — the decomposition
promised by Theorem 2.1 enables a divide-and-conquer approach to solving computational
problems on triangle-dense networks.

As an example, let’s consider the problem of counting the number of small cliques in a
graph. Our first lecture considered the case of triangle-counting (i.e., 3-cliques); for concrete-
ness, suppose we want to count the number of 4-cliques. All known algorithms for exactly

3

counting r-cliques scale exponentially with r, so we’ll consider algorithms that return ap-
proximate counts instead (say, up to 5% error).

Sampling is a standard approach for approximate counting. The most straightforward
application of this to counting the 4-cliques of a graph G is the following. Pick 4 nodes at
random from G, without replacement, and check if they form a clique in G. Note that if
there are N4 4-cliques of G, then the probability p that this random trial finds a 4-clique is
exactly

24 ·N4

n(n− 1)(n− 2)(n− 3)
, (1)

since there are
(
n
4

)
distinct 4-tuples of vertices (n is the number of vertices). Of course, a

priori we don’t know N4 and hence don’t know p. But we can estimate p via random trials:
do as many independent random trials as time permits, and let p̂ denote the fraction of these
trials that are successful (i.e., find a 4-clique). From this estimate, we can use (1) to back
out an estimate N̂4 of N4.

How accurate is approximation counting via sampling? The answer depends on the true
success probability p. If p is reasonably large, then the estimation approach above works
well; if p is too small, then the estimate will suffer from large variance. More precisely, the
approach will work well if p is at least 1000/M or so, where M is the number of trials.2

So, when is the success probability p in our clique-counting experiment going to be high?
Roughly speaking, we expect p to be tiny in sparse graphs, but not so tiny in dense graphs.
That is, the accuracy of counting by sampling should increase with the edge density.

Returning to Theorem 2.1, here’s how it enables a divide-and-conquer approach to ap-
proximate clique counting in triangle-dense graphs. The original triangle-dense graph G
might well be sparse, so we can’t directly estimate the number of 4-cliques by sampling.
Instead:

1. Run the decomposition procedure of Theorem 2.1 to produce disjoint vertex subsets
V1, . . . , Vk.

2. Separately for each (dense) induced subgraph G[Vi], estimate the number of 4-cliques
by sampling.

3. Return the sum of the estimates from all k G[Vi]’s.

Why might this work? First, Theorem 2.1 suggests that very few 4-cliques of G should be
destroyed by the decomposition procedure — a typical 4-clique should wind up contained
entirely in one of the Vi’s. Second, Theorem 2.1 guarantees that each of the subgraphs G[Vi]
is dense — thus, as discussed earlier, a reasonable number of random trials should be enough
to accurately estimate the number of 4-cliques in each of the subgraphs. Recent experiments
have validated this approach [3].

2For example, suppose you know that a coin is either fair (50/50) or biased 60/40 toward heads. With
100 coin flips, you’ll be able to distinguish between these two cases with high probability. If instead the
probability of tails is either 10−5 or 10−10, say, then the 100 coin flips will likely all be “heads” either way,
giving you no information.

4

u v

w

Figure 3: A graph with triangle density 2/9. Edges (u, v) and (v, w) have Jaccard similarity
2/7 and 1/5, respectively.

More generally, Theorem 2.1 gives a methodology for reducing a problem on triangle-
dense graphs to the same problem on a collection of (edge-)dense graphs. This suggests that
problems that are easy to solve on dense graphs should generally be easy also on (triangle-
dense) social networks.

4 High-Level Description of Algorithm

The algorithm in [1] that proves Theorem 2.1 interleaves two different subroutines, the
cleaner and the extractor. The key notion in the cleaner is the Jaccard similarity of an
edge (u, v), which is a measure of the overlap in the neighborhoods of the two endpoints.
Precisely, it is defined as

J(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)| − 2

,

where N(w) denotes the neighbors of a vertex w. The reason for the “-2” in the denominator
is that we don’t want to count u (which is in N(v)) or v (which is in N(u)). For example,
the edge (u, v) in Figure 3 has Jaccard similarity 2

7
.

Why is Jaccard similarity an interesting statistic? Well, note that the triangles in which
an edge (u, v) participates correspond exactly to the vertices w of N(u)∩N(v). Thus, edges
with high Jaccard similarity belong to lots of triangles (relative to the sum of the endpoints’
degrees), while edges with low Jaccard similarity play little role in the triangles of the graph.

The cleaner takes as input a graph and iteratively removes edges with Jaccard similarity
less than a parameter ε, until no such edges remains.3 In [1], ε is set to be roughly the same as
the triangle density of the graph G. In the graphs in Figures 2a and 2b, this subroutine alone
is enough to prune the irrelevant edges and produce a decomposition satisfying Theorem 2.1.
In general, the intuition is that removing an arbitrary number of edges with low Jaccard
similarity cannot destroy more than a small fraction of the graph’s triangles.

The cleaner terminates with a graph in which every edge has Jaccard similarity at least
ε. This is a good situation to be in, because all one-hop neighborhoods must then be edge-
dense. To see this, consider an arbitrary vertex v and its neighborhood N(v) (Figure 4).
For every neighbor w ∈ N(v), the edge (v, w) has Jaccard similarity at least ε. This implies
that w is connected to at least a roughly ε fraction of the vertices in N(v) (do you see

3Removing an edge changes the Jaccard similarity of the remaining edges. Suitable data structures can
be used to efficiently track Jaccard similarities as edges are removed.

5

Figure 4: The neighborhood of N(v), post-cleaning. Since edge (v, w) has Jaccard similarity
at least ε, w must be connected to at least an ε fraction of N(v).

why?). Iterating over all w ∈ N(v), this argument shows that the set {v}∪N(v) induces an
edge-dense subgraph. By construction, it has radius 1 (with v as the center).

The first idea for the extractor subroutine is to set V1 equal to {v} ∪ N(v) for some
vertex v, delete V1 from G, and iterate. The discussion above shows that this algorithm
would produce a decomposition satisfying the first property of Theorem 2.1. However, it
could be a disaster for the second property. The problem is that there might be many
more triangles that are partially contained (i.e., one or two vertices) in {v} ∪ N(v) than
there are entirely contained in the set. (Exercise: check what happens when G is the
complete tripartite graph Kn/3,n/3,n/3. What is the Jaccard similarity of every edge? What
happens when you extract a 1-hop neighborhood?) The solution proposed in [1] is to extract
{v} ∪ N(v) plus a greedily chosen subset of the 2-hop neighborhood of v, with a vertex of
the two-hop neighborhood included if and only if its inclusion “saves” more triangles than it
destroys. The right implementation of this idea ensures that the fraction of saved triangles
is commensurate with the fraction of destroyed triangles, and establishes Theorem 2.1.

References

[1] Rishi Gupta, Tim Roughgarden, and C. Seshadhri. Decompositions of triangle-dense
graphs. In 5th Conference on Innovations in Theoretical Computer Science (ITCS),
pages 471–482, 2014.

[2] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of
the facebook social graph. Technical Report 1111.4503, Arxiv, 2011.

[3] Joshua Wang, Rishi Gupta, Tim Roughgarden, and C. Seshadhri. Counting small cliques
in social networks via triangle-preserving decompositions. Submitted, 2014.

6

