
CS168: The Modern Algorithmic Toolbox
Lecture #7: Understanding Principal Component

Analysis (PCA)

Tim Roughgarden & Gregory Valiant

April 20, 2015

1 Introduction

1.1 Lecture Goal

Principal components analysis (PCA) is a basic and widely used technique for exploring data.
If you go on to take specialized courses in machine learning or data mining, you’ll certainly
hear more about it. The goal of this lecture is develop your internal mapping between the
linear algebra used to describe the method and the simple geometry that explains what’s
really going on. Ideally, after understanding this lecture, PCA should seem almost obvious
in hindsight.

1.2 A Silly Example

Let’s begin with a silly example. Suppose you have a friend who is baffled by their high-
dimensional data set — n points in d dimensions, where both n and d are large. Looking at
the data, you notice that:

x1 = (17, 4, 2, 5, . . . ,)

x2 = (136, 32, 16, 40, . . . ,)

x3 = (51, 12, 6, 15, . . . ,)

· · ·

This data set isn’t so complicated after all — all of the points are multiples of a common
vector! Rather than storing n d-dimensional points, this data set can be represented as a
single d-dimensional vector and n scalars (the multiples).

1

If the points are only approximately all multiples of a common vector:

x1 = (17, 4, 2, 5, . . . ,)

x2 = (140, 32, 14, 40, . . . ,)

x3 = (52, 10, 7, 15, . . . ,)

· · ·

it is still true that almost all of the raw data can be thrown away with little loss of information.

1.3 Goal of PCA

The goal of PCA is to approximately express each of n d-dimensional vectors1 x1, . . . ,xn ∈ Rd

as linear combinations of k orthogonal d-dimensional vectors w1, . . . ,wk ∈ Rd, so that

xi ≈
k∑

j=1

aijwj

for each i = 1, 2, . . . , n. (In the silly example, k = 1.) PCA offers a formal definition of
which k vectors are the “best” ones for this purpose. Next lecture, we’ll see that there are
also good algorithms for computing these vectors.

1.4 Motivation

There are several reasons to approximately re-express data as linear combinations of a small
number of vectors.

1. Dimensionality reduction. PCA can be viewed as a form of lossy compression or di-
mensionality reduction, continuing a theme developed earlier (especially in Lecture
#4). In some cases, PCA is able to throw out much of the raw data with little loss of
information.

Recall that the dimensionality reduction techniques in Lecture #4 — the Johnson-
Lindenstrauss (JL) transform and MinHash — are “data-oblivious.” For example, the
JL transform just picks a matrix with i.i.d. Gaussian entries, without paying attention
to what the actual data set is. PCA, by contrast, is all about understanding the data
set at hand — the method is deterministic and the dimensions chosen are directly
determined by the data. The JL transform offers approximate distance preservation
guarantees for every point set — you can apply it “for free” if all you care about is in-
terpoint Euclidean distances — but it requires a relatively large number of dimensions.
PCA will work well for some data sets, even when k is tiny, and poorly for others.

1Representing, for example: images (dimensions = pixels); measurements (dimensions = sensors); docu-
ments (dimensions = words); and so on.

2

2. De-noising. Thus far, we’ve been talking about lossy compression as if it’s always a
bad thing. Sometimes you’re actually happy to rid yourself of some of the data, if you
believe it to be more noise than signal. When the data represents something simple
with a modest amount of noise added, the low-dimensional approximate representation
given by PCA can better illuminate the underlying phenomenon than the raw data.

3. Data visualization. A key point is that, for many data sets, PCA can give illuminating
results even when k is 1 or 2. In these cases, the data can be plotted and inspected for
interesting patterns. (If xi is approximated as

∑k
j=1 aijwj by PCA, then it is plotted in

k-dimensional space as the point (ai1, . . . , aik).) We’ll see a striking example of this next
lecture, where raw genetic data of Europeans turn out to encode a shocking amount
of geographic information. You’ll also gain some experience with this on Mini-Project
#4.

4. Data interpretation. In some cases, the vectors w1, . . . ,wk that PCA chooses are
easy to interpret. For example, if each xi represents the movies watched by a Netflix
customer, one might expect some of the wi’s to encode movie genre information.

PCA also initiates a new theme that we’ll develop over several upcoming lectures: choosing
the right representation for your data can expose interesting patterns that would be otherwise
undetectable.

PCA has a number of “killer applications” in many different fields; one famous one
in computer science is the Eigenfaces project [1]. Here, the data points are a bunch of
images of faces — all framed in the same way, under the same lighting conditions. Thus
d is the number of pixels (around 65K) and each dimension encodes the intensity of one
pixel. It turns out that using only 100–150 vectors are enough to represent almost all of the
images with high accuracy — far less than the 65K needed for exactly representing all of
the images. Face recognition then boils down to a nearest-neighbor-type computation in the
low-dimensional space spanned by these vectors. There have of course been lots of advances
in face recognition since the 1991 publication of [1], but PCA remains a key building block
in modern approaches to the problem.

2 Defining the Problem

This lecture focuses on the special case of k = 1, where the goal is to fit the “best” line to a
data set. Solving this special case will naturally lead to all of the ideas needed to solve the
case of general k, as well.

2.1 Preprocessing

Before using PCA, it’s important to preprocess the data. First, the points x1, . . . ,xn should
be centered around the origin, in the sense that

∑n
i=1 xi is the all-zero vector. This is easy

to enforce by subtracting (i.e., shifting) each point by the “sample mean” 1
n

∑n
i=1 xi. After

3

(a) (b)

Figure 1: Scaling the x-axis yields a different best-fit line.

finding the best-fit line for the shifted point set, one simply shifts the line back by the original
sample mean to get the best-fit line for the original uncentered data set. This shifting trick
makes the necessary linear algebra a bit simpler and clearer.

Second, in many applications it is important to scale each coordinate appropriately (see
also Mini-Project #4). The most common approach to this is: if x1, . . . ,xn is a point set
centered at the origin, then for each coordinate j = 1, 2, . . . , d, divide the jth coordinate

of every point by the “sample deviation” in that coordinate,
√∑n

i=1 x
2
ij. The motivation

for this coordinate scaling is the fact that, without it, the result of PCA would be highly
sensitive to the units in which each coordinate is measured. For example, changing units
from miles to kilometers in some coordinate yields the “same” data set in some sense, and
yet this change would scale up all values in this coordinate, which in turn would cause a
different “best-fit” line to be computed.2 In some applications, like with images — where
all coordinates are in the same units, namely pixel intensities — there is no need to do such
coordinate scaling.

2.2 The Objective Function

There’s more than one way to define the “best-fit line” through a point set.3 PCA, by
definition, minimizes the average squared Euclidean distance between a point and the line:

argmin
w : ‖w‖=1

1

n

n∑
i=1

(
(distance between xi and line spanned by w)2

)
. (1)

Note that we’re identifying a line (through the origin) with a unit vector w in the same
direction. Minimizing the Euclidean distances between the points and the chosen line should
seem natural enough; the one thing you might be wondering about is why we square these

2It should be geometrically clear, already in two dimensions, that stretching out one coordinate affects
the best line through the points. See also Figure 1.

3A different definition is given by linear regression; see Mini-Project #4.

4

xi

w

O
〈xi,w〉

||xi||
dist(xi ↔ line)

Figure 2: The geometry of the inner product.

distances before adding them up. One reason is that it ensures that the best-fit line passes
through the origin. Another is a tight connection to variance maximization, discussed next.

Recall the geometry of projections and the inner product (Figure 2). Recall the Pythagorean
Theorem: for a right triangle with sides a and b and hypotenuse c, a2 +b2 = c2. Instantiating
this for the right triangle shown in Figure 2, we have

(dist(xi ↔ line))2 + 〈xi,w〉2 = ‖xi‖2. (2)

The right-hand side of (2) is a constant, independent of the choice of line w. Thus, there is a
zero-sum game between the squared distance between a point xi and the line spanned by w
and the squared length of the projection of xi on this line — making one of these quantities
bigger makes the other one smaller. This implies that the objective function of maximizing
the squared projections — the variance of the projection of the point set — is equivalent to
the original objective in (1):

argmax
w : ‖w‖=1

1

n

n∑
i=1

〈xi,w〉2. (3)

The objective function of maximizing variance is natural in its own right, and the fact
that PCA’s objective function admits multiple interpretations builds confidence that it’s
performing a fundamental operation on the data. For example, imagine the data points
fall into two well-separated clusters; see Figure 3 for an illustration but imagine a high-
dimensional version that can’t be so easily eyeballed. In this case, maximizing variance
corresponds to preserving the separation between the two clusters post-projection. (With
a poorly chosen line, the two clusters would project on top of one another, obscuring the
structure in the data.)

PCA effectively assumes that variance in the data corresponds to interesting information.
One can imagine scenarios where such variance corresponds to noise rather than signal, in
which case PCA may not produce illuminating results. (See next lecture for more on PCA
failure cases.)

5

“good” line

“bad” line

Figure 3: For the good line, the projection of the points onto the line keeps the two clusters
separated, while the projection onto the bad line merges the two clusters.

3 Solving the Problem

We’ve now formally defined the mathematical goal of PCA (with k = 1): identify the
direction (i.e., unit vector w) that optimizes (1) or, equivalently, (3). How do we figure out
this w? — after all, there is an infinite number of unit vectors to try. A big reason for the
popularity of PCA is that this optimization problem is easily solved using sophomore-level
linear algebra. After we review the necessary preliminaries and build up your geometric
intuition, the solution should seem straightforward in hindsight.

3.1 Rewriting the Optimization Problem

Let’s see how to rewrite variance-maximization (3) using linear algebra. First, we take the
data points x1, . . . ,xn — remember these are in d-dimensional space — and write them as
the rows of a n× d matrix A:

A =


x1

x2
...

xn

 .
Thus, for a unit vector w ∈ Rd, we have

Aw =


〈x1,w〉
〈x2,w〉

...
〈xn,w〉

 ,
6

so Aw is just a column vector populated with all the projection lengths of the xi’s onto
the line spanned by w. We care about the sum of the squares of these (recall (3)), which
motivates taking the inner product of Aw with itself:

wT AT Aw = (Aw)T (Aw) =
n∑

i=1

〈xi,w〉2.

Summarizing, our variance-maximization problem can be rephrased as

argmax
w : ‖w‖=1

wTBw, (4)

where B is a d×d matrix of the form ATA.4 This problem is called “maximizing a quadratic
form.”

The matrix ATA has a natural interpretation. The entries of the matrix are inner prod-
ucts of columns of A. For example, suppose the xi’s represent documents, with dimensions
(i.e., columns of A) corresponding to words. Then the inner product of two columns of
A measures how frequently the corresponding pair of words co-occur in a document. The
matrix ATA is called the covariance or correlation matrix of the xi’s, depending on whether
or not each of the coordinates was normalized in a preprocessing step (see Section 2.1).

3.2 Solving (4): The Diagonal Case

To gain some understanding for the optimization problem (4) that PCA solves, let’s begin
with a very special case: where B is a diagonal matrix

λ1 0
λ2

. . .
0 λd

 (5)

with sorted nonnegative entries λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 on the diagonal.
There is a simple geometric way to think about diagonal matrices. A d× d matrix maps

points in Rd back to points in Rd — the matrix “moves Rd around,” in effect. For example,
the matrix (

2 0
0 1

)
moves each point (x, y) of the plane to the point (2x, y) with double the x-coordinate and
the same y-coordinate. For example, the points of the circle are mapped to the points of
the “squashed circle,” or ellipse, shown in Figure 4. More generally, a diagonal matrix of
the form (5) can be thought of as “stretching” Rd, with the ith axis getting stretched by the
factor λi.

4We are ignoring the 1
n scaling factor in (3), because the optimal solution w is the same with or without

it.

7

x

y

1 2

1

−1−2

−1

Figure 4: The point (x, y) on the unit circle is mapped to (2x, y).

A natural guess for the direction w that maximizes wTBw with B diagonal is the “di-
rection of maximum stretch,” namely w = e1, where e1 = (1, 0, . . . , 0) denotes the first
standard basis vector. (Recall λ1 ≥ λ2 ≥ · · ·λd ≥ 0.) To verify the guess, let w be an
arbitrary unit vector, and write

wT (Bw) =
(
w1 w2 · · · wd

) ·

λ1w1

λ2w2
...

λdwd

 =
d∑

i=1

w2
i λi. (6)

Since w is a unit vector, the w2
i ’s sum to 1. Thus wTBw is always an average of the λi’s,

with the averaging weights given by the w2
i ’s. Since λ1 is the biggest λi, the way to make

this average as large as possible is to set w1 = 1 and wi = 0 for i > 1. That is, w = e1

maximizes wTBw, as per our guess.

3.3 Diagonals in Disguise

Let’s generalize our solution in Section 3.2 by considering matrices B that, while not diagonal,
are really just “diagonals in disguise.” Geometrically, what we mean is that B still does
nothing other than stretch out different orthogonal axes, possibly with these axes being a
“rotated version” of the original ones. See Figure 5 for a rotated version of the previous
example, which corresponds to the matrix(

3
2

1
2

1
2

3
2

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)
︸ ︷︷ ︸
rotate back 45◦

·
(

2 0
0 1

)
︸ ︷︷ ︸

stretch

·
(

1√
2

1√
2

− 1√
2

1√
2

)
︸ ︷︷ ︸

rotate clockwise 45◦

(7)

8

x

y

1

1

−1−2

−1

−2

Figure 5: The same scaling as Figure 4, but now rotated 45 degrees.

So what’s a “rotated diagonal” in higher dimensions? The appropriate generalization of
a rotation is an orthogonal matrix.5 Recall that an orthogonal matrix Q is a square matrix
where the columns are a set of orthonormal vectors — that is, each column has unit length,
and the inner product of two different columns is 0. A key property of orthogonal matrices
is that they preserve length — that is, ‖Qv‖ = ‖v‖ for every vector v. We review briefly
why this is: since the columns of Q are orthonormal vectors, we have

QT Q = I,

which means that the inverse of an orthogonal matrix is simply its transpose. (For example,
see the two inverse rotation matrices in (7).) Then, we have

‖Qv‖2 = (Qv)T (Qv) = vT QT Qv = vT v = ‖v‖2,

showing that Qv and v have same norm.
Now consider a matrix B that can be written B = QT DQ for an orthogonal matrix Q

and diagonal matrix D as in (5) — this is what we mean by a “diagonal in disguise.” Such
a matrix B has a “direction of maximum stretch” — the (rotated) axis that gets stretched
the most (i.e., by λ1). Since the direction of maximum stretch under D is e1, the direction
of maximum stretch under B is the direction that gets mapped to e1 under Q — which is

5In addition to rotations, orthogonal matrices capture operations like reflections and permutations of the
coordinates.

9

Q−1e1 or, equivalently, QT e1. Notice that QT e1 is simply the first column of QT — the first
row of Q.

This direction of maximum stretch is again the solution to the variance-maximization
problem (3). To see this, first plug in this choice w1 = QT e1 to obtain

wT
1 Bw1 = wT

1 QT DQw1 = eT
1 De1 = λ1.

Second, for every unit vector w, Qw is also a unit vector (since Q is orthogonal), so
wT QT DQw is an average of the λi’s, just as in (6) (with averaging weights given by the
squared coordinates of Qw, rather than those of w). Thus wTBw ≤ λ1 for every w,
implying that w1 = QT e1 maximizes wTBw.

3.4 The General Case

We’ve seen that when the matrix B can be written as QT DQ for an orthogonal matrix
Q and diagonal matrix D, it’s easy to understand how to maximize the variance (3): the
optimal solution is to set w equal to the first row of Q, and geometrically this is just the
direction of maximum stretch when we view B as a map from Rd to itself. But we don’t
want to solve the problem (3) only for diagonals in disguise — we want to solve it for an
arbitrary covariance matrix B = AT A. Happily, we’ve already done this: recall from linear
algebra that every matrix B of the form AT A can be written B = QT DQ for an orthogonal
matrix Q and diagonal matrix D as in (5).6

3.5 Eigenvectors and Eigenvalues

The bottom line of the derivation above is that PCA boils down to computing the eigenvectors
of the covariance matrix ATA. Recall that an eigenvector of a matrix B is a vector v that
is stretched in the same direction by B, meaning Bv = λv for some λ 6= 0. The value λ is
the corresponding eigenvalue. Eigenvectors are just the “axes of stretch” of the geometric
discussions above.

When we write B = AT A as B = QT DQ, we’re actually writing the matrix in terms of
its eigenvectors and eigenvalues. The ith row of Q is an eigenvector of B with eigenvalue
λi. (Proof: the ith row of Q can be written QT ei, and since QT Q = QQT = I we have
BQT ei = QT Dei = λiQ

T ei.) We already determined that the first row of Q is PCA’s
answer — we now see that this is simply the first principal eigenvector of the matrix AT A,
meaning the eigenvector with the largest eigenvalue. We’ll discuss how to efficiently compute
eigenvectors in the next lecture.

6If you look back at your notes from your linear algebra class, the most likely relevant statement is that
every symmetric matrix can be diagonalized by orthogonal matrices. (The proof is not obvious, but it is
covered in standard linear algebra courses.) Here we’re also using that B is “positive semidefinite” — because
it is not only symmetric but also has the form AT A, it follows that wTBw ≥ 0 for every w, which in turn
implies that all of the diagonal entries of D must be nonnegative (as you should check).

10

3.6 Larger Values of k

The discussion so far focused on the k = 1 case (fitting a line to the data), but the case of
larger k is almost the same. For general k, the objective functions of minimizing the squares of
distances to a k-dimensional subspace and of maximizing the variance of the projections onto
a k-dimensional subspace are again equivalent. The solution to the variance-maximization
problem is now to pick the k orthogonal axes that are stretched the most. The first direction
is picked as in the k = 1 case; the second direction is, among all those orthogonal to the
first, that of maximum stretch; and so on. These are just the first k rows of the matrix Q
used to decompose B, so the solution is just the top k eigenvectors of the covariance matrix
ATA.

3.7 Interpreting the Results

At the very beginning of lecture, we said that the goal is to approximately express each data
point xi as a linear combination of k vectors (in the same space, Rd). PCA chooses the top
k eigenvectors w1, . . . ,wk of ATA for this purpose. The corresponding approximate linear
combination is then

xi ≈
k∑

j=1

〈xi,wj〉wj.

Both the wj’s and the projections of the xi’s onto them can be interesting. Here are some
things to look at:

1. Look at the data points with the largest (most positive) and smallest (most negative)
projections 〈xi,w1〉 on the first principal component. Does this suggest a potential
“meaning” for the component? Are there data points clustered together at either of
the two ends, and if so, what do these have in common?

2. Associate each data point xi with two coordinate values, corresponding to the top two
principal components (〈xi,w1〉 and 〈xi,w2〉). Plot all points according to their two
coordinate values. Do any interesting clusters pop out, for example in any of the four
corners? By looking at pairs that have similar second coordinates — both pairs with
similar first coordinates, and pairs with very different first coordinates — it is often
possible to obtain a rough interpretation of the second principal component.

3. Looking at the coordinates of w1 — the linear combination of the original data point
attributes that it uses — can also be helpful. For example, in the Eigenfaces application
mentioned earlier, one principal component, when viewed as image in its own right,
basically corresponds to a mustache!

References

[1] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3(1):71–86, 1991.

11

	Introduction
	Lecture Goal
	A Silly Example
	Goal of PCA
	Motivation

	Defining the Problem
	Preprocessing
	The Objective Function

	Solving the Problem
	Rewriting the Optimization Problem
	Solving (4): The Diagonal Case
	Diagonals in Disguise
	The General Case
	Eigenvectors and Eigenvalues
	Larger Values of k
	Interpreting the Results

