
CS168: The Modern Algorithmic Toolbox
Lecture #13: Sampling and Estimation

Tim Roughgarden & Gregory Valiant∗

May 15, 2017

This week, we will cover tools for making inferences based on random samples drawn from
some distribution of interest (e.g. a distribution over voter priorities, customer behavior, ip
addresses, etc.). We will also learn how to use sampling techniques to solve hard problems—
both problems that inherently involve randomness, as well as those that do not.

As a warmup, to get into the probabilistic mindset, we will see a very cute, and useful
algorithm for drawing samples from a datastream.

1 Reservoir Sampling

Problem: How can one efficiently sample k uniformly random elements from a datastream
of length N � k? The two main issues are 1) N might be huge—we certainly don’t want to
store a significant fraction of the stream in memory, 2) N might be unknown—we might not
know the length of the stream ahead of time, but we still hope that whenever the stream
ends, we have a uniformly random sample. (Recall that we are asking this problem in a
similar “streaming” setting as that of the Count-Min-Sketch algorithm we saw earlier.)

As a motivating example, suppose a router might want to sample 1,0000 random ip
addresses from a given day’s traffic. The router obviously doesnt want to store all of the ip
addresses, and the router does not know ahead of time the total amount of traffic that it
will see on a given day.

∗ c©2016–2017, Tim Roughgarden and Gregory Valiant. Not to be sold, published, or distributed without
the authors’ consent.

1

Algorithm 1
Reservoir Sampling [Vitter ’85]

Given a number k, and a datastream x1, x2, . . . of length greater than k:

• Put the first k elements of the stream into a “reservoir” R = (x1, . . . , xk).

• For i ≥ k + 1

– With probability k
i replace a random entry of R with xi.

• At the end of the stream, return the reservoir R.

We now show that at any time t ≥ k, the reservoir R consists of a uniformly random
subset of k of the entries of x1, . . . , xt. To do this, let Rt denote the reservoir after the tth
datastream element has been seen. It suffices to show that for all t ≥ i, Pr[xi ∈ R] = k

t
.

Claim 1.1 For all t ≥ i, Pr[xi ∈ Rt] = k
t
, where Rt denotes the reservoir after time t.

Proof: We prove this by induction on t. If i ≤ k, the base case will be when t = k and
Pr[xi ∈ Rk] = 1 = k/t. If i > k, the base case will be t = i, and recall that the algorithm
specifies that we include xi in R with probability exactly k/i = k/t. For the induction
hypothesis, assume that the statement holds for some fixed value of t ≥ i. We now consider
Pr[xi ∈ Rt+1] and leverage our induction hypothesis and conditional probability:

Pr[xi ∈ Rt+1] = Pr[xi ∈ Rt] · Pr[xi not replaced at time t+ 1|xi ∈ Rt]

=
k

t
· Pr[xi not replaced at time t+ 1|xi ∈ Rt] by our induction hyp.

=
k

t
·
(

1− k

t+ 1
· 1

k

)
=

k

t+ 1
.

Note that in the last line, we computed Pr[xi not replaced at time t+1|xi ∈ Rt] as 1−Pr[xt+1

replaces xi|xi ∈ Rt] = 1− k
t+1

1
k
, where the k

t+1
term is the probability that xt+1 is stored in

Rt+1, and the 1/k term is the probability that xi is chosen as the random element of Rt to
remove. �

2 Basic Probability Tools: Our good friends Andrey

[Markov] and Pafnuty [Chebyshev]

We begin with two of the most basic tools from probability theory that are extremely helpful
for designing sampling schemes, and interpreting the significance of results gleaned from
random samples.

In lecture we discussed a number of applications—the punch line was that data is every-
where, and that there is a huge difference between what is possible with a careful, mathe-
matically principled analysis, versus a sloppy/crude analysis. Just ask Nate Silver, who has

2

essentially made a career out of properly analyzing publicly available political poll data (and,
other public data, such as sports data, etc.). I have added a link from the course page to
a page on his website explaining his political prediction poll-aggregation system, in case you
are interested.

Markov’s inequality expresses the basic fact that “at most 10% of the population can
have an income that is more than 10× the average income of the population”:

Theorem 2.1 (Markov’s Inequality) For a real-valued random variable X s.t. X ≥ 0,
for any c > 0,

Pr [X ≥ cE[X]] ≤ 1

c
.

Proof: Assume for the point of contradiction that Pr [X ≥ c · E[X]] > 1
c
, then E[X] >

1
c
cĖ[X] = E[X], which is a contradiction. �

Markov’s inequality tells us something very simple about a distribution over real numbers,
if all we know about the distribution is its expectation, and that it is non-negative. In many
applications, it gives extremely weak bounds (e.g. the probability that a student’s GPA
is more that twice the average GPA is at most 1/2.....not very surprising). Nevertheless,
Markov’s inequality is the key tool that lets us prove more powerful theorems that give
sharper characterizations of distributions for which we have more information. For example,
it lets us prove Chebyshev’s inequality, which tells us that the probability that a random
variable is more than c standard deviations from its expectation, is at most 1/c2.

Theorem 2.2 (Chebyshev’s Inequality) For a real-valued random variable X, and any
c > 0,

Pr
[
|X −E[X]| ≥ c

√
Var[X]

]
≤ 1

c2
.

Proof: Chebyshev’s inequality is proved by applying Markov’s inequality to a cleverly chosen
random variable. Let Y = (X − E[X])2. Note that Y is a perfectly good random variable,
satisfying Y ≥ 0. To apply Markov’s inequality, we need to know E[Y]. First, note that
E[Y] = E [(X − E[X])2] = Var[X].

Pr
[
|X − E[X]| ≥ c

√
Var[X]

]
= Pr[Y ≥ c2Var[X]]

= Pr
[
Y ≥ c2E[Y]

]
≤ 1

c2
(by Markov’s inequality)

�

What is this good for? Lets see an example:

Example 2.3 How many people must we poll to estimate the percentage of people who
support candidate C? Specifically, say we want our answer to be accurate to ±1%, with
probability at least 3/4.

3

Let p ∈ [0, 1] denote the true probability that a randomly chosen person supports can-
didate C. Suppose we poll n people, and output the fraction that support the candidate.
Let X1, . . . , Xn denote the 0/1 indicator random variables with Xi indicating that the ith
person polled supports the candidate. Let Z =

∑
iXi denote the number of people polled

who support the candidate.

Var[Z] =
∑
i

Var[Xi] = n · p(1− p).

In the above calculation, we used 1) the fact that the variance of a sum of independent
random variables is the sum of the variances, and 2) a quick calculation showing that if X
is 1 with probability p, and 0 otherwise, Var[X] = p(1− p)2 + (1− p)p2 = p(1− p).

An error in our estimate of 1% corresponds to estimating E[Z] up to an error of 0.01 · n.
From Chebyshev’s inequality,

Pr[|Z − E[Z]| ≥ 0.01n] = Pr

[
|Z − E[Z]| ≥ 0.01n√

Var[Z]

√
Var[Z]

]

= Pr

[
|Z − E[Z]| ≥ 0.01

√
n√

p(1− p)

√
Var[Z]

]

≤ p(1− p)
n/1002

from Chebyshev’s inequality.

For any p ∈ [0, 1], the numerator p(1 − p) ≤ 1/4, and hence if n ≥ 1002, this probability
is at most 1/4, as desired. Note that if we know that p is very small (i.e. p < 0.1) or very
close to 1, then the numerator p(1− p) is very small, and the required number of samples is
correspondingly smaller.

What we have just shown is that, in general, to estimate the expectation of a 0/1 random
variable to error ±ε, one needs roughly O(1/ε2) independent samples.

If Chebyshev’s inequality tells us something about a distribution given a bound on its
variance, you might suspect that, given information on a distributions’ higher moments (i.e.
E[X3],E[X4],, etc.) one might be able to obtain even sharper insights into the distribution.
This intuition is true, and can be made rigorous via the same approach as the proof of
Chebyshev’s: apply Markov’s inequality to a cleverly chosen random variable, corresponding
to one of the higher moments of the distribution you care about. This is also how one proves
“central limit” style inverse exponential bounds on tail probabilities (i.e. showing that the
probability you flip fewer than 400 ’heads’ in 1000 tosses of a fair coin is miniscule.)

3 Importance Sampling

We mentioned “importance sampling” extremely briefly. The basic idea is that we can
estimate properties of distribution A, based on samples from distribution B. Sometimes,

4

A and B are fixed, and sometimes we can design distribution B to let us answer questions
about A using fewer samples than we would need if we were to directly sample from A.
This savings is achieved by having distribution B place higher weight on the “important”
elements of the domain. The following example will clarify this high level intuition.

Example 3.1 Suppose we want to estimate the average income of the population. We know
that the distribution of incomes has a long tail; i.e. there is a small fraction of people who
have very large incomes, and hence have a large effect on the average income. This long, but
important tail, is what makes the estimation task hard—if we don’t get any samples from
the tail, then our estimate will likely be too low, but we need to take many samples in order
to get any representatives from the tail.

We can use importance sampling as follows: Suppose we know that computer scientists
have higher income than average, and that computer scientists compose exactly a 0.05 frac-
tion of the total population. Rather than taking n random samples from the population,
suppose we take 0.8n samples of non-computer scientists, and 0.2n samples of random com-
puter scientists. If a1 is the average salary of the non-computer scientists in our sample, and
a2 is the average salary of the sample of computer scientists, we can estimate the population
average salary as:

ˆavg = 0.95a1 + 0.05a2.

The benefit of this is that by taking more samples from higher earners, we obtained a better
estimate of this important tail. Of course, the final calculation needs to reweight these two
samples so that our answer is still an unbiased estimate of the overall population average.

Formally, how does one characterize the improvement that we obtained by over sampling
the computer scientists? It does not change the expectation of our answer—our estimate is
still the unbiased estimate of the population average. The benefit is that we have reduced
the variance of our estimate, by focussing our samples on the important portion of the distri-
bution (important with respect to the property that we care about—in this case, estimating
the mean).

4 Knowing the unknowns: Estimating the missing mass

Thus far we have discussed interpreting random samples drawn from distributions over 0/1,
or distributions over real numbers (as in estimating average salary). In many applications,
particularly in natural language processing, and genetics, one obtains samples from a distri-
bution that is supported on a huge number of incomparable items. For example, a distribu-
tion over words, or a distribution over rare genetic variants. In these settings, one might not
even know the support of the distribution.

While it is generally not possible to know what elements of the support are missing from
a given sample, we can still hope to estimate the fraction of the distribution that is composed
of the missing elements. One concrete question is the following:

Given a set of random samples drawn from a distribution, what is the probability
that the next sample we draw is a “new” domain element that we have not

5

seen previously? Equivalently, what is the amount of probability mass in the
distribution composed of domain elements that are not represented in our sample
(i.e. the “missing mass”)?

This question was first studied by I.J. Good and Alan Turing, in their work at Bletchley
Park, in their work during WWII. (They wanted to estimate the probability that the next
enigma machine ciphertext would be a previously unseen ciphertext.) They proposed the
following extremely simple estimate of the missing mass, known as the Good–Turing fre-
quency estimation scheme. Given n independent draws from a distribution, they proposed
the following estimate:

Pr[next draw is something new] ≈ # elmts seen exactly once

n
.

There is a large literature analyzing and extending this basic estimate—just search for
“Good-Turing frequency estimation”.

Example 4.1 Assuming radio stations play songs in a random order, if you have been
listening to the radio for the past 5 hours, the probability that the next song you here is a
song you haven’t heard in the past 5 hours can be estimated as the fraction of songs that
you have heard exactly once in the past 5 hours.

Example 4.2 An estimate of the probability that the next word you read is a new word
that you haven’t seen before, is the number of words that you have seen exactly once, divided
by the total number of words that you have seen. Keep in mind that these lecture notes are
just an abbozzo.

Here is a quick sketch/derivation of this estimate: Assume that we have n samples from
a distribution p supported on some unknown domain X, with p(x) denoting the probability
that the distribution assigns to element x ∈ X.

“unseenmass′′ = Pr[next draw is new] =
∑
x∈X

p(x) · Pr[x unseen]

≈
∑
x∈X

p(x) · Pr[Binomial(n, p(x)) = 0]

=
∑
x∈X

p(x)(1− p(x))n

=
1

n

∑
x∈X

n · p(x)(1− p(x))n

=
1

n

∑
x∈X

Pr[Binomial(n+ 1, p(x)) = 1]

≈ 1

n

∑
x∈X

Pr[Binomial(n, p(x)) = 1] =
elmts seen exactly once

n
.

6

	Reservoir Sampling
	Basic Probability Tools: Our good friends Andrey [Markov] and Pafnuty [Chebyshev]
	Importance Sampling
	Knowing the unknowns: Estimating the missing mass

