
CS168: The Modern Algorithmic Toolbox
Lecture #15 and #16: The Fourier Transform and

Convolution

Tim Roughgarden & Gregory Valiant∗

May 24, 2017

1 Intro

Thus far, we have seen a number of different approaches to extracting information from
data. This week, we will discuss the Fourier transform, and other related transformations
that map data into a rather different space, while preserving the information.

The Fourier transformation is usually presented as an operation that transforms data
from the “time” or “space” domain, into “frequency” domain. That is, given a vector of
data, with the ith entry representing some value at time i (or some value at location i),
the Fourier transform will map the vector to a different vector, w, where the ith entry of
w represents the “amplitude” of frequency i. Here, the amplitude will be some complex
number.

We will revisit the above interpretation of the Fourier transformation. First, a quick
disclaimer: one of the main reasons people get confused by Fourier transforms is because
there are a number of seemingly different interpretations of the Fourier transformation. In
general, it is helpful to keep all of the interpretations in mind, since in different settings,
certain interpretations will be more natural than others.

2 The Fourier Transformation

We begin by defining the (discrete) Fourier transformation of a length n vector v. As will
become apparent shortly, it will prove more convenient to think of vectors and matrices as
being 0-indexed. Hence v = v0, v1, . . . , vn−1.

∗ c©2016–2017, Tim Roughgarden and Gregory Valiant. Not to be sold, published, or distributed without
the authors’ consent.

1

Definition 2.1 Given a length n vector v, its Fourier transform F(v) is a complex-valued
vector of length n defined as the product

F(v) = Mnv,

where the n × n matrix Mn is defined as follows: Let wn = e−
2πi
n = cos(2πi

n
) − i sin(2πi

n
)

be an nth root of unit (i.e. wn
n = 1). The j, kth entry of Mn is defined to be wjk

n . [Note
that Mn is 0-indexed.] Note that for any integer j, wj

n is also an nth root of unity, since
(wj

n)n = ((wn)n)j = 1j = 1.
Throughout, we will drop the subscripts on Mn and wn, and just refer to matrix M and

complex number w, though keep in mind that both are functions of the dimension of the
vector in question: if we are referring to the Fourier transform of a length n vector, then M
is n× n, and w = e−2πi/n.

Figure 1 plots M20—the matrix corresponding to the Fourier transformation of length
20 vectors. Each entry of the matrix is represented by an arrow, corresponding to the
associated complex number, plotted on the complex plain. The upper left entry of the matrix
corresponds to M20(0, 0) = w0 = 1, which is the horizontal unit vector in the complex plain.
The entry M20(1, 1) = w1 corresponds to the complex number that is 1/20th of the way
around the complex unit circle. Please look at the Figure 1 until you understand exactly
why each of the rows/columns looks the way it does. In the remainder of these notes, we
will omit the subscript Mn and just write M , in settings where the dimensionality of the
transform is clear from the context.

Figure 1: The matrix M20 corresponding to the Fourier transform of length 20 vector. Each
arrow depicts the complex number corresponding to that location: for example the top row (entries
(0, 0), (0, 1), . . . , (0, 19) corresponds to the value 1, and the entry in location (1, 1) corresponds to
the value e−2πi/20.

2

We will see a few other interpretations of the Fourier transform, though if you ever get
confused, you should always go back to the above definition: the Fourier transform of a
vector v is simply the product Mv, for the matrix M as defined above.

2.1 Basic Properties

Perhaps the two most important properties of the Fourier transform are the following:

• The Fourier transformation of a length n vector can be computed in time O(n log n),
using the “Fast Fourier Transformation” algorithm. This is a basic recursive di-
vide/conquer algorithm, and is described in the last section of these notes. It might
seem miraculous that we can actually multiply a vector by the n × n matrix M in
much less time than it would take to even write M—-the intuition behind why this is
possible can be gleaned from Figure 1: M is a highly structured matrix, with lots of
repeated structure (e.g. the top half looks rather similar to the bottom half).

• The Fourier transform is almost its own inverse. Letting M denote the transformation
matrix as defined above,

MM =

n 0 . . . 0 0
0 . . . 0 0 n
0 . . . 0 n 0
0 . . . n 0 0
... . .

. ...
n 0 . . . 0

.

Specifically, w = M(Mv) is the same as v if one scales the entries by 1/n, and then reverses
the order of the last n − 1 entries. In general, it is convenient to think of the inverse
Fourier transform as being essentially the same as the Fourier transform; their properties
are essentially identical.

Explicitly, the inverse Fourier transform is multiplication by the matrix M−1, whose
j, kth entry is (M−1)j,k = w−jk = e2jkπi/n. From our definition, it is clear that M−1Mv = v,
and hence the inverse transform maps the transformed vector Mv back to v.

2.2 An alternate perspective

Given the form of the inverse transformation explained above, a different interpretation
of the Fourier transformation of a vector v, is the vector of (complex-valued) coefficients
c0, . . . , cn−1 in the unique representation of v in the “Fourier basis”. Namely, the coefficients
satisfy

v =
n−1∑
j=0

cjbj,

3

where bj is a length n vector defined by the jth column of M−1, namely bj(k) = e2πi
jk
n . (The

lack of a minus sign in the exponent is not a typo!!!) The uniqueness of this representation
can be observed from the fact that the columns of M−1, which are the vectors (bj), are
linearly independent (and, in fact, are orthogonal to each other).

What does this all mean? The jth column of M−1 is a vector whose entries go around
the complex unit circle j times—you can think of this vector as representing the frequency
j, whose real component consists of a cosine that cycles j times, and the complex portion
consists of a sine that cycles j times. The jth coordinate of the Fourier transform Mv tells
you how much of the jth frequency the signal, v has. In this sense, the Fourier transform
gives the representation of v in the frequency domain, as a sum of different frequencies.

2.3 The Fourier Transform as Polynomial Evaluation and Inter-
polation

One of the more illuminating properties of the Fourier transform is that it can be regarded
as both polynomial evaluation, and polynomial interpolation.

Given a length n vector v, define

Pv(x) = v0 + v1x + v2x
2 + . . . + vn−1x

n−1

to be the polynomial associated to vector v. The kth entry of the transform Mv, is

v0 + v1w
k + v2w

2k + v3w
3k + . . . vn−1w

(n−1)k = Pv(w
k).

Hence the Fourier transform of a vector v is simply the vector of evaluations of the associated
polynomial Pv(x), evaluated at the n complex roots of unity.

The fact that the transform can be computed in time O(n log n) should be a bit striking:
it takes O(n) operations to evaluate Pv(x) at a single value—we are claiming that we can
evaluate Pv(x) at all n roots of unity in an amount of time that is only a logarithmic (as
opposed to linear) factor more than the amount of time needed to make a single evaluation.

Now for the real magic: if the Fourier transform takes a vector representation of a
polynomial, and returns the evaluation at the roots of unity, then the inverse transform
takes a vector representing the values of Pv evaluated at the roots of unity, and returns the
coefficients of the polynomial Pv. This is simply polynomial interpolation!!!

Recall from grade school that interpolating polynomials is often a headache; evaluating
a polynomial at some number is easy—you just plug it in, and you are done. Polynomial
interpolation usually involves writing out a big system of equations, and getting terms to
cancel, etc—usually polynomial interpolation is much harder than polynomial evaluation.
The fact that the Fourier transform is essentially its own inverse (and both the transform
and its inverse can be computed in time O(n log n) means that interpolating a polynomial
from its evaluation at the n roots of unity is easy (and is no harder than simply evaluating
the polynomial at the roots of unity)!

This duality between polynomial evaluation and interpolation (at the roots of unity)
provides the main connection between convolution and the Fourier transform, which we
explore in Section 4.

4

3 The Fast Fourier Transformation

The Fast Fourier Transformation was first discovered by Gauss, though was largely forgotten,
and was independently discovered by Cooley and Tukey in the 1950’s. All we want to do is
compute the product Mv, where M is the n× n Fourier transformation matrix whose j, kth
entry is wjk for w = e−2πi/n is an nth root of unity. This high level intuition why it might
be possible to compute this product in much less time than it would take to even write out
the matrix M , is because matrix M has tons of structure. In fact, M has so much structure
that we will be able to compute Mv by essentially reusing portions of the computation.

The Fast Fourier transform (FFT) algorithm is a recursive algorithm. We will describe
it in the case that n = 2k for some integer k. In the case that n is not a power of 2 similar
ideas and some messy tricks still allow for fast computation, though we will not discuss these
modifications.

To define the FFT, all we will do is rummage around inside the matrix Mn, and try to
find some reoccurring copies of submatrices that resemble Mn/2—the matrix corresponding
to the Fourier transformation of a vector of length n/2. Figure 2 depicts M16, with the
entries color coded for ease of reference.

Figure 2: A plot depicting the matrix M16 corresponding to the Fourier transform of length
16 vectors. The entries have been color coded to illustrate that M16 contains 4 submatrices
(one in each color) that can be related to M8).

5

We will now “rummage” around in Mn and identify four submatrices that all resemble
Mn/2. If wn = e−2πi/n, then w2

n = wn/2. Hence it follows that the even indexed columns of
the first half of the rows of Mn exactly form the matrix Mn/2. [For example, the black entries
of Figure 2 exactly correspond to M8.] Additionally, the even columns of the second half of
the rows (i.e. the blue elements) are identical to the even columns of the first half of the
rows (i.e. the black elements), and hence are also a copy of Mn/2. Now for the odd columns:
first observe that the jth odd column of Mn is each to the jth even column, just scaled by
wj
n. Additionally, the odd columns of the second half of the rows (i.e. the pink elements)

are negatives of the odd columns of the first half of the rows (i.e. the red elements)
Based on the above, we have shown the following: the first n/2 indices of the Fourier

transform of a length n vector v can be computed as F(v(evens))+F(v(odds))×s, where s is
the vector whose jth entry is wj

n, and “×” denotes element-wise multiplication. Similarly, the
second half of the indices of the Fourier transform F(v) can be computed as F(v(evens))−
F(v(odds))× s.

The crucial observation is that the above decomposition only involves the computation
of two Fourier transforms of length n/2 vectors, and two element-wise multiplications and
additions. Letting T (n) denote the time it will take to compute the Fourier transform of a
length n vector, we have shown that the above recursive procedure will result in an algorithm
whose runtime satisfies

T (n) = 2T (n/2) + O(n).

Solving this recurrence relation yields that T (n) = O(n log n).
For clarity, we restate the recursive algorithm derived from the above decomposition:

Algorithm 1
FFT

Given a length n = 2k vector v, we output its Fourier transformation.

• Define veven = (v(0), v(2), v(4), . . . , v(n− 2)) and vodd =
(v(1), v(3), . . . , v(n− 1)) .

• Recursively compute q1 = F(veven) and q2 = F(vodd), both Fourier trans-
formations of length n/2 vectors.

• Define the length n/2 vector s whose jth index is e−2πij/n.

• Output the concatenation of q1 + (q2 × s) and q1 − (q2 × s), where q × s
is the element-wise product of the two vectors.

4 Convolution

Convolution is an incredibly useful tool that is closely intertwined with the Fourier transform.
There are a number of interpretations/definitions, though perhaps the most insightful is via

6

polynomial multiplication.

Definition 4.1 The convolution of two vectors, v, w of respective lengths n and m is denotes
v ∗ w = w ∗ v, is the vector of coefficients of the product of the polynomials associated to v
and w, Pv(x)Pw(x).

Example 4.2 Let v = [1, 2, 3], w = [4, 5], then their convolution v ∗ w = [4, 13, 22, 15]
representing the fact that Pv(x) = 1 + 2x+ 3x2, Pw(x) = 4 + 5x, and their product (1 + 2x+
3x2)(4 + 5x) = 4 + 13x + 22x2 + 15x3.

The following fact—that convolutions can be computed incredibly quickly via the Fast
Fourier transformation—is the main reason that convolutions are as useful and pervasive as
they are.

Fact 4.3 The convolution v ∗ w can be expressed as the inverse Fourier transformation of
the component-wise product of the Fourier transformations of v and w:

v ∗ w = F−1 (F(v)×F(w)) ,

where “×” denotes the element-wise product of the two vectors.

This fact follows immediately from the polynomial interpolation/evaluation view of the
Fourier transform: The product of the evaluations of Pv and Pw will be the evaluations of
the polynomial corresponding to the product of Pv and Pw, hence the interpolation of these
evaluations will give the coefficients of this product, namely the convolution v∗w. Of course,
in order for this to make sense, we need to ensure that the number of evaluation points in
larger than the degree of Pv(x)Pw(x): i.e. if v and w are length n vectors, then we should
pad them with n zeros, and compute their Fourier transforms as length 2n vectors.

Another nice property of Fact 4.3 is that it implies that convolutions can be computed
in time O(n log n), and that they can also be inverted (provided the inverse exists) in time
O(n log n). To clarify, if we are given a vector q = v ∗ w for some known vector w, we can
invert this operation and find v. In particular, we have

v = F−1 (F(q)./F(w)) ,

where “./” denotes component-wise division. We will see some applications of this in the
next section.

4.1 Examples

Example 4.4 Consider Figure 3 representing some vector v, and let w be a Gaussian (see
Figure 4). The Fourier transform of a Gaussian is a Gaussian—the transform of a skinny
Gaussian is a fat Gaussian, and vice versa. Figure 5 depicts the convolution v ∗ w. Look at
this figure, and the definition of convolution, until it makes sense to you.

7

Figure 3: The vector v and the magnitude of its Fourier transform, ||F(v)||.

Figure 4: A plot of the Gaussian filter w and the magnitude of its Fourier transform. Note
that the Fourier transform of a Gaussian is Gaussian (though, in this case, you need to put
the two sides of the plot together to get the Gaussian).

8

Figure 5: The convolution v ∗ w, and the magnitude of its Fourier transform ||F(v ∗ w)|| =
F(v)×F(w), where “×” denotes the component-wise product.

Example 4.5 We can also try to invert a convolution: in this example, we will be looking
at images and 2-dimensional convolutions and Fourier transforms. For our purposes, don’t
worry about the details of this and just think of these as high dimensional analogs.

TODO: add image/motion blur and de-blurred.

4.2 Convolutions Everywhere!

Given a vector a, consider the transformation that takes a vector v, and returns the convo-
lution v ∗ a. For every vector a, this transformation has two crucial properties:

• Linearity: For any vectors v and w,

(v + w) ∗ a = (v ∗ a) + (w ∗ a),

and for any constant c, (cv) ∗ a = c(v ∗ a).

• Translational invariance: For any vector v, if one “shifts” it to the right by padding it
with k zeros, then the convolution of the shifted v with a will be the same as if one
shifted the convolution of v and a. For example, for v = [1, 2, 3], a = [4, 5], v ∗ a =
[41322], and if we shift v to get vs = [0, 0, 0, 0, 1, 2, 3], then vs ∗ a = [0, 0, 0, 0, 4, 13, 22],
namely the shifted vector v ∗ a.

While the above two properties are easily seen to hold for convolution, it turns out that
they define convolution:

9

Fact 4.6 Any transformation of a vector that is linear, and translation invariant is a con-
volution!

To appreciate the above fact, we will discuss two examples of natural transformations for
which we can fruitfully leverage the fact that they are convolutions.

Example 4.7 Nearly every physical force is linear, and translation invariant. For exam-
ple, consider gravity. Gravity is linear (i.e. one can just add up the effects of different
gravitational fields), and it is translation invariant (i.e. if I move 10 feet to the left, the
gravitational field that my mass exerts gets translated 10 feet to the left, but is otherwise
invariant). Hence the above fact shows that gravity is a convolution. We just need to figure
out what to convolve by.

For the purposes of this example, we will work in 2 dimensions. Recall that the grav-
itational force exerted on a point at location x, y by a unit of mass at the origin has

magnitude 1
x2+y2

, and is in the direction

(
−x√
x2+y2

, −y√
x2+y2

)
. Hence, given a description

of the density of some (2-d) asteroid, we can simply convolve this density with the function
fX(x, y) = −x

(x2+y2)1.5
to compute the X-coordinate of the force of gravity everywhere that

results from the given density plot. Similarly for the Y -coordinate of the gravitational force.
The Figure 6 depicts the density of an asteroid in space. Figure 7 depicts the force of gravity,
whose X component is the convolution of the asteroid by the function fX(x, y) = −x

(x2+y2)1.5

and the Y component is the convolution of the asteroid by the function fY (x, y) = −y
(x2+y2)1.5

.

Note that since the computations are convolutions, they can be computed in time O(n log n),
where n is the number of points in our grid. Naively, one might have thought that we would
have needed to spend time O(n2) to compute the gravitational effect on every point caused
by every other point. This illustrates one reason why convolutions and fast fourier transfor-
mations are so important to the efficient simulation of many physical systems.

10

Figure 6: A plot depicting the density of an imaginary asteroid in space (blue denotes 0
density, dark red denotes highest density).

Figure 7: A zoomed-in depiction of the force of gravity due to the density plot of Figure 6.
This can be computed as the convolution of the density function with the X and Y com-
ponents of the force of gravity experienced at a point (x, y) due to a point mass at the
origin, given by fX(x, y) = −x

(x2+y2)1.5
and fY (x, y) = −y

(x2+y2)1.5
. Recall that convolutions can

be computed in near-linear time, via the fast fourier transform.

11

If we were given the gravitational field depicted in Figure 7, we could invert the convolu-
tion to derive the density of the asteroid. This inversion would could also be computed just
as efficiently using fast Fourier transformations because v = F−1 (F(v ∗ w)./Fw) , where
“./” denotes element-wise division.

Example 4.8 To see a second illustration of the power of Fact 4.6, note that differentiation
is also both linear, and translation invariant (i.e. if you shift a function over to the right by
3 units, then you also shift its derivative over by 3 units). Since differentiation is linear and
translation invariant, it is a convolution, we just need to figure out what it is a convolution
of. Since differentiation only really applies to continuous functions, and we have been talking
about discrete Fourier transformations, thus far, we will be somewhat informal. Consider a
vector v with n components, and imagine it as a function v(x), defined for x = 0, 1, . . . , n−1.
Recall that

v(x) = q(0) + q(1)e2πi
x
n + q(2)e2πi

2x
n + q(3)e2πi

3x
n + . . . + q(n− 1)e2πi

2(n−1)
n .

If we differentiate, ignoring that x is supposed to only be defined on the integers, we get:

v′(x) = 0·q(0)+i·q(1)e2πi
x
n +(2i)·q(2)e2πi

2x
n +(3i)·q(3)e2πi

3x
n +. . .+(n−1)i·q(n−1)e2πi

(n−1)x
n .

Namely, the jth entry of the Fourier transform of the derivative of v is obtained by multi-
plying the jth entry of the Fourier transform of v by ij.

If we want to take a second or third derivative, we simply convolve again (and again).
Recall that we can also invert convolutions just as computationally efficiently as we can
compute them. In this case, this will let us solve differential equations extremely efficiently.
For example, suppose we have some 2-d image depicting some density of space, f(x, y). We
can very efficiently compute the sum of the second derivatives in the x and y direction:

g(x, y) = d2g(x,y)
dx2

+ d2g(x,y)
dy2

. Given g(x, y), we can also just as easily invert this convolution to

obtain f(x, y) (up to an additive constant). This corresponds to solving the Poisson equation
(a second-order differential equation) that arises in several places in physics.

TODO: add figures of this.

5 Beyond the Fourier Transform: Wavelets and Other

Bases

TODO: whats wrong with the Fourier Transform. (example of audio whistling vs percussive
sounds).

TODO: Wavelets
TODO: Moments

12

	Intro
	The Fourier Transformation
	Basic Properties
	An alternate perspective
	The Fourier Transform as Polynomial Evaluation and Interpolation

	The Fast Fourier Transformation
	Convolution
	Examples
	Convolutions Everywhere!

	Beyond the Fourier Transform: Wavelets and Other Bases

