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1 Sparsity

Data analysis is only interesting when the data has structure — there’s not much you can
do with random noise. Ideally, when data has nice structure, it can be both detected and
exploited algorithmically.

“Structure” can mean many things. One major theme in data analysis, implicit in many
recent lectures, is sparsity. In the simplest case, the raw data — vectors in Rn, say — are
sparse, meaning that the vectors consist mostly of zeroes. For example, in Homework #2,
when you looked at terms used in various newsgroups, you learned that rather than explicitly
storing all of the zeroes of a sparse vector, it’s more efficient to store just the non-zero values
and their coordinates.

In recent lectures, we’ve been thinking about data that becomes sparse after a suitable
change of basis, meaning that in the new basis most of the coefficients of most vectors are
zero. For example, last week we discussed looking at data in the Fourier basis (or “frequency
domain”), and Greg showed how an audio recording of him whistling for 5 seconds was
dense in the time domain but sparse (just 1-2 spikes) in the frequency domain. We knew to
check the representation in the Fourier domain because of the physics of sound. Similarly,
properties of real-world images suggest re-representing them in the wavelet basis (mentioned
last lecture), where they are typically sparse.

Data is often only approximately sparse. Rather than being mostly zeroes, the data
(perhaps after a change of basis) consist mostly of relatively small numbers. Such almost
sparse data admit good compression and good de-noising — after expressing the data so
that they are almost sparse, one can just zero out the small coefficients and remember only
the large ones to get a compressed or de-noised version of the data. We’ve already seen a
couple of examples of this paradigm.

For example, in principal components analysis (PCA), one doesn’t have advance knowl-
edge of the basis in which the data is spares — the goal of the method is to examine the data
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set and identify the “best” basis for approximately representing it as linear combinations of
small set of k orthonormal vectors. The projection of the original data points onto the top k
principal components can be be thought of as a sparse approximation (with only k non-zeros
per data point in the new basis) of the original data set.

Low-rank matrix approximations — computing the singular value decomposition (SVD)
of a matrix and retaining only its top k singular vectors and values — can also be viewed
in this way. Here, matrix rank playing the role analogous to vector sparsity (recall rank k
means only k non-zero singular values).

2 The Idea and Applications of Compressive Sensing

The usual approach to compressing approximately sparse data is to first collect the raw
data, and then to compress it in software. For example, your smartphone initially captures
an image in the standard pixel basis (with red, green, and blue intensities for each pixel).
Subsequently, using a standard image compression algorithm (e.g., JPEG), the raw image is
compressed, which typically reduces the image size by a large factor (15+). At a high level,
such compression algorithms follow the paradigm outlined in Section 1 — expressing the
image in a suitable basis (like a wavelet basis) so that it is almost sparse, and then retaining
only the components that have sufficiently large coefficients. This two-step approach works
fine in many applications, but it’s hard not to wonder if the first step can be made more
efficient. If most of the raw data is going to be thrown out immediately, before any processing,
why did we bother to collect it all in the first place?

The main idea of compressive sensing, also called “compressed sensing,” is to directly
capture data in a compressed form. The theory of compressive sensing is barely a decade
old, so the engineering viability of this idea is still being worked out in different application
domains. At present, the key ideas seem well on their way to practical use and commercial-
ization.

Here are some potential applications of compressive sensing — of collecting less informa-
tion in cases where you know that the data is sparse in a suitable basis.

1. Cameras that use less power. The power used by your smartphone to capture an image,
or a frame of a video, is driven by the number of analog-to-digital conversions that
it has to do, which in turn is proportional to the number of pixels it uses. Compres-
sive sensing suggests the possibilities of using fewer pixels without degrading image
quality, resulting in qualitatively less battery drain for a given number of photos or
videos. There was an early (meaning 2007) proof-of-concept prototype of a “single-
pixel” camera built at Rice [4]; recently, new developments in chip fabrication suggest
that commercialization of these ideas could occur in the near future.

2. MRI and tomography. In magnetic resonance imaging (MRI), a powerful magnet and
radio waves are used to image parts of the human body (especially tendons, cartridge,
joints, etc.). The scan time is proportional to the number of measurements (or “slices”)
taken, and can easily be 30 minutes or more. Compressive sensing techniques have been
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tried out in some hospitals, and they have sped up scan times by a constant factor.
This may not matter much for an MRI on an athlete’s knee, but when the patient
is a child and/or is not allowed to breathe during the scan (e.g., for a lung scan), a
constant factor speed-up can be a big deal.

3. Demystifying undersampling. There have been examples in different fields where ac-
curate inference is possible with far less information that would seem to be necessary.
One example is in geophysics, in the business of drilling for oil. In the late 1970s and
1980s, geophysicists started trying to figure out what layers of rock strata looked like
by sending seismic waves into the ground, at various frequencies.1 Such seismic waves
pass through homogeneous rock without much ado, but when they hit a discontinuity
between different layers of rock — also where oil deposits are more likely to be — there
is a reflection back to the surface.2 Even with very few samples — meaning sending
waves at just a few different frequencies — the geophysicists obtained quite accurate
reconstructions of the rock layers (which could be confirmed during later drilling).
They even came up with the linear programming-based algorithm that we’ll discuss
next lecture! The working hypothesis for the efficacy of using few samples was that
the structure of the rock layers was typically “simple;” compressive sensing provides a
mathematical formulation and proof of this intuition.

3 The Setup

We give a mathematical description of the compressive sensing problem. At a high level, the
goal is to design a small number of “linear measurements” such that their results enable the
unique and efficient reconstruction of an unknown sparse signal. After this description, we’ll
relate it back to the applications in Section 2.

Step 1: Design m “linear measurements” a1, . . . , am ∈ Rn.

Step 2: “Nature” picks an unknown “signal,” meaning an n-vector z ∈ Rn.

Step 3: Receive the measurement results b1 = 〈a1, z〉, b2 = 〈a2, z〉, . . . bm = 〈am, z〉.

Step 4: Recover the n-vector z from the m-vector b.3

Note that the goal is to design a single set of measurements a1, . . . , am that “works” for all
signals z, in the sense that Step 4 should be possible.

For instance, in the camera example, we think of z as the raw image, in the standard
pixel basis. Then, each ai specifies a linear combination of the pixels. Various approaches

1For example, by setting off some dynamite!
2Think of light going from air to water — some of it reflects back, some of it refracts in the new medium.
3There is a loose analogy between this setup and that of error-correcting codes. With codes, one designs

an encoding function (analogous to our mapping z → b) such that, given any codeword that hasn’t been
corrupted too much, one can uniquely and computationally efficiently decode (for us, map b back to z).

3



are being explored for implementing such linear combinations in hardware. In Rice’s single-
pixel camera, they were implemented using tiny mirrors [4]. More recently, researchers have
devised on-chip hardware tailored for such linear combinations [9].

In the tomography example, z is the “true image” of whatever’s being scanned. Medical
imaging devices already report what are essentially linear measurements of z — this is in
the spirit of the linearity of the Fourier transform discussed last week, with a different but
analogous transform. (We’ll return to the geophysicists in a bit.)

4 Recovering Sparse Signals: Main Result and Inter-

pretations

In the fourth and final step of the setup, the goal translates to solving a linear system Ax = b
in the variables x, where the m× n constraint matrix

A =


a1

a2
...
am

 .

was designed up front and the right-hand size b = Az is given. Solving linear systems is
a very well-studied problem and you’ve surely seen algorithms for it, for example Gaussian
elimination.4

Can we design A so that it’s easy to recover z from b? Without further restrictions,
this is a stupid question, and the answer is obviously yes. Taking A = I, the n× n identity
matrix, b = Az will simply be z — the unknown signal is handed to us on a silver platter.
In this solution, the ith linear measurement 〈ai, z〉 returns the ith coordinate of z, so n linear
measurements are used.

Recall that our goal is to minimize the number of measurements used — corresponding
to the power drain in a smartphone camera or the scan time of a MRI machine. We’ve
seen that n linear measurements are sufficient; can we get away with fewer? The issue with
taking m < n is that the linear system Ax = b becomes underdetermined. While z remains
a feasible solution of the linear system (by the definition of b), every vector z+w with w in
the (n−m)-dimensional kernel of A is also a solution.5 This means we can’t reconstruct z,
since we have no idea which of the infinitely many solutions to Ax = b is the real unknown
signal.

Summarizing, to reconstruct arbitrary unknown signals z ∈ Rn, n linear measurements
are both necessary and sufficient. But recall the discussion in Section 1 — many signals of
interest are (approximately) sparse in a suitable basis. Perhaps we can get away with fewer
than n measurements if we only care about reconstructing sparse signals?

4The singular value decomposition (SVD) also leads to a good algorithm for solving linear systems; see
e.g. [5].

5Recall that the kernel of a matrix A is the set of vectors w such that Aw = 0.
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For the rest of lecture, we assume that the unknown signal z is k-sparse in the standard
basis, meaning that it has at most k non-zero coordinates. For example, z could be a black
and white image, with a black background (of 0-pixels) with lines of white (1) pixels. The
parameter k could be anything between 0 and n, but you should think of it as much less
than n, for example

√
n or even log2 n. We focus on sparsity in the standard basis for

simplicity only. Importantly, everything we’ll say below also applies when z is k-sparse in a
different basis, for example the Fourier basis (as with Greg’s whistle). The only difference
is that one needs to throw in an extra change-of-basis matrix into some of the statements
below.

The main theorem in compressive sensing, at least for the purposes of this lecture, pro-
vides a resounding “yes” to the question of whether or not signal sparsity allows for fewer
linear measurements.

Theorem 4.1 (Main Theorem [2, 3]) Fix a signal length n and a sparsity level k. Let
A be an m × n matrix with m = Θ(k log n

k
) rows, with each of its mn entries chosen inde-

pendently from the standard Gaussian distribution.6 With high probability over the choice of
A, every k-sparse signal z can be efficiently recovered from b = Az.

In Theorem 4.1, a single matrix A — a fixed set of m = Θ(k log n
k
) linear measurements

— “works” simultaneously for all k-sparse signals z, allowing efficient recovery of z from b.
(Even though there’s zillions of different solutions to Ax = b!) Note that for all interesting
values of k, the number m of measurements used is way less than n — so signal sparsity
indeed radically reduces the number measurements needed. For example, if n is a million,
with k =

√
n only tens of thousands of measurements are needed, and with k = log2 n only

hundreds are needed.
The proof of Theorem 4.1 is beyond the scope of this course; we’ll focus instead on

interpreting it and discussing the algorithms used for recovery. Some important comments:

1. Theorem 4.1 extends to “almost k-sparse” signals z. This is crucial for practical ap-
plications — approximately sparse signals are far more common than exactly sparse
ones. By “approximately k-sparse,” we mean that the sum of the magnitudes of the k
largest coordinates of z is much larger than the sum of the magnitudes of the rest of the
coordinates of z. The recovery guarantee changes, as you might expect: if z is only ap-
proximately k-sparse, then the algorithm returns a vector z′ that is only approximately
equal to z. (If you’re lucky, you might even get back a sparser, “de-noised” version of
z.) The guarantee degrades gracefully: for z’s further and further away from sparse
vectors, the guarantee for the returned z′ grows weaker and weaker. In the extreme
case, where z isn’t sparse at all, then since m < n our previous discussion implies that
the returned vector z′ might have nothing to do with z.

6You’ve seen this matrix before, in a quite different context — the Johnson-Lindenstrauss (JL) Lemma
for Euclidean distance-preserving dimensionality reduction (Lecture #4). While compressive sensing and
dimensionality reduction seems like quite different goals, there are deep connections between them (see [1, 7]).
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2. The number m = Θ(k log n
k
) of linear measurements used in Theorem 4.1 is optimal

up to a constant factor, at least if one also wants the approximate recovery of approx-
imately sparse vectors.7

For some approximate intuition about where the mysterious Θ(k log n
k
) term comes

from, recall the proof that every comparison-based sorting algorithm requires Ω(n log n)
comparisons: a correct algorithm distinguishes between the n! possible relative order-
ings of the n input elements, and each comparison might be resolved in a way that only
reduces the number of remaining possibilities by a factor of 2 (or less). Thus, at least
log2(n!) = Θ(n log n) comparisons are needed in the worst case. In the present context,
there are an infinite number of possibilities for the unknown k-sparse vector z, but if
we bucket these by support (i.e., the set of non-zero coordinates) then there are

(
n
k

)
different possibilities that our linear measurements must differentiate. Thinking of a
linear measurement as analogous to a comparison, we might guess that at least log2

(
n
k

)
measurements are required to correctly reconstruct all possible k-sparse signals. (You
can use Stirling’s approximation to verify that log2

(
n
k

)
= Θ(k log n

k
).) This analogy

is not entirely accurate, as each linear measurement returns a real value, not just a
bit. (This is why smaller values of m, even m = 2k, are sufficient for recovering ex-
actly sparse vectors.) Still, a non-trivial proof shows that for recovering approximately
sparse vectors, m = Θ(log2

(
n
k

)
) is indeed the correct answer.

3. The assumption that the entries of A are i.i.d. Gaussians is not crucial — many matrices
A work, and there is now a reasonable understanding of such matrices. Indeed, if
the linear measurements are implemented in hardware, then it may be infeasible to
implement Gaussian coefficients. In the camera application, it makes sense to use
coefficients with fewer bits, ideally just in {−1, 0, 1}. In the MRI example, one doesn’t
even have the luxury of using random linear measurements — instead one is stuck with
the measurements performed by the MRI machine, which are similar to the rows of the
Fourier matrix Mn discussed last week (Figure 1(a)). Fortunately, there are slightly
weaker versions of Theorem 4.1 that also apply to these sorts of linear measurements.8

One type of matrix A that certainly doesn’t work is a sparse matrix. For example,
imagine that A is a random subset of not too many rows of the identity matrix In
(Figure 1(b)). Az is then just the projection onto the coordinates of z corresponding
to the chosen rows of In. Plenty of sparse vectors z will be 0 in every one of these
coordinates, in which case b = 0. There is no hope of reconstructing z from b in this
case.

Roughly, generalized versions of Theorem 4.1 say that as long as A is sufficiently dense
and not pathological, it enables the recovery of sparse signals. More generally, if z is

7For the weaker and less practically relevant goal of reconstructing only exactly k-sparse vectors, it turns
out that m = 2k measurements are necessary and sufficient (see [8, Section 4.4])!

8Precisely, randomly choosing m rows of the Fourier matrix (with m a bit larger than k, but much less
than n) yields, with high probability, a matrix A such that every k-sparse vector z can be recovered from
b = Az.
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Mn z = × b 

(a) Rows of the Fourier matrix

In z = × b 

1 

1 

1 

1 

zi 

zj 

zk 

zl 

(b) Rows of the identity matrix

Figure 1: Randomly sampling a small number of rows from the (dense) Fourier matrix Mn

enables the recovery of all sparse signals; not so for the (sparse) identity matrix In.

a signal that is sparse in some other basis, and A is dense and non-pathological after
changing to the relevant basis, then z can be recovered from the linear measurements
in A.

A related concept is the uncertainty principle, which states that no signal z can be
“localized” (i.e., made sparse) simultaneously in both the time and frequency domains. We
saw a vivid illustration of this last week: Greg’s whistle was sparse in the frequency domain,
but dense in the time domain; while the series of percussive noises was sparse in the time
domain (with one spike for each noise) but dense in the frequency domain. The uncertainty
principle is a rigorous result stating that every signal is dense in the time domain or in the
frequency domain (or both).

Now, back to the geophysicists. Their unknown signal z was the structure of rock strata,
and it was typically sparse in the spatial domain (analogous to percussive noises) — mostly
chunks of homogeneous rock, separated from each other by the occasional discontinuity
(Figure 2). Their measurements — seismic waves — were sparse in the frequency domain.
By the uncertainty principle, when these measurements are re-represented in the spatial
domain — the basis in which the signal is sparse — they are dense (and presumably not
pathological). Theorem 4.1 and its generalizations suggest that relatively few measurements
should suffice for recovering the signal, corroborating what was observed empirically.

5 Recovery via `1 Minimization

5.1 Recovery via Optimization

Next, we study how to recover a k-sparse signal z from b = Az, where A is chosen as in
Theorem 4.1. Since A has many fewer rows than columns (recall m = Θ(k log n

k
)), Ax = b

is an underdetermined linear system with tons of solutions (z, and lots of others). We need
some principled way to select one feasible solution out of the many — hopefully it will be z.
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layer 1 

layer 2 

layer 3 

Figure 2: The structure of rock strata is often pretty simple. When a seismic wave hits a
discontinuity, there is both a reflection and a refraction.

A natural and flexible way to do this is via optimization — to posit an objective function
defined on the feasible solutions to Ax = b and single out the “best” one.

More precisely, for some real-valued function f : Rn → R, we consider optimization
problems of the form

min f(x)

subject to
Ax = b.

(We could also maximize a function f , but this is equivalent to minimizing −f .) We talked
about optimization before, in Week 3 in the context of gradient descent. There, we only
considered unconstrained optimization (like finding regression coefficients), whereas here we
need to constrain the recovered signal x to be consistent with the observed measurements
b.9

What objective function f should we use? All we know about the unknown signal z is
that it satisfies Az = b and that z is k-sparse. This suggests that we want to look for the
sparsest solution to Ax = b:

min |supp(x)|
subject to

Ax = b,

where supp(x) denotes the support of x, meaning the set of coordinates for which it is non-
zero. The quantity |supp(x)| is sometimes called the `0 norm of x, so we can call this problem
`0-minimization.

9There are various ways to turn constrained optimization problems into unconstrained ones (like La-
grangian relaxation), but more direct solutions are preferred for most sparse recovery problems.
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Figure 3: The unit balls in R2 under the `2, `∞, and `1 norms.

Unfortunately, `0-minimization is NP -hard [6]. So the next idea is to replace the `0 norm
with a more tractable norm. An important lesson of this lecture is that minimizing the `1
norm, ‖x‖1 =

∑n
j=1 |xj|, has two non-obvious and very useful properties:

(1) Minimizing the `1 norm of a solution promotes sparsity.

(2) The `1 norm can be minimized by computationally efficient algorithms.

In comparison, the `0 norm satisfies property (1) but not (2). Minimizing the `2 norm
satisfies property (2) — the singular value decomposition (SVD) discussed in Lecture #9 can
be used to give a slick solution — but as we’ll see shortly, this does not lead to property (1).

5.2 Geometry with the `1 Norm

We next explain property (1), that `1 minimization tends to promote sparse solutions. First
we recall an exercise we did way back in Lecture #3, comparing the unit balls under various
norms. See Figure 3 for an illustration in 2 dimensions.

Imagine that you tied a dog to a pole at the origin using a leash with unit `p norm.
With p = 2, the dog can roam the same amount in every direction. With p = ∞, the dog
can travel the farthest (in `2 distance) in the northwest, northeast, southwest, and southeast
directions. With p = 1, the dog can stray farthest (in `2 distance) along the standard basis
vectors.

Now consider the set {x : Ax = b} of feasible solutions to a linear system. In our
context, this set is the (n −m)-dimensional kernel of A, shifted by z (an affine subspace).
See Figure 4. Let’s examine the optimal solution of the optimization problem

min ‖x‖p

subject to
Ax = b,

as a function of the choice of norm p. Geometrically, we’ll think about blowing up a balloon
centered at the origin, where the shape of the balloon is that of the unit ball in the given
norm. If we’ve blown up the balloon to a radius (in `p norm) of r, then the intersection of
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Figure 4: For a given choice of norm, the minimum-norm feasible solution is the first point
of contact between a blown-up balloon and the affine subspace of feasible solutions.

the balloon and {x : Ax = b} is exactly the set of norm-r solutions to Ax = b. Thus, the
minimum-norm solution to Ax = b is the first point of contact between the balloon, as we
blow it up, and the affine subspace of feasible solutions.

For example, consider the case depicted in Figure 4, where points live in two dimensions
and the feasible region is one-dimensional (a line). With p = 2, where the balloon is expand-
ing at the same rate in all directions, the minimum-norm feasible solution is the point that
forms a line with the origin perpendicular to the feasible region. With p =∞, the relevant
direction in which the balloon is expanding the quickest is northeast, so the optimal point
is the intersection of this direction with the feasible region. With p = 1, the ball is expand-
ing the quickest along the standard basis vectors, so the first intersection occurs along the
y-axis. The optimal solution under the p = 2,∞ norms have full support (non-zero x- and
y-coordinates), while the optimal solution under the `1 norm has a support size of only 1.
The reader is encouraged to repeat this thought experiment in three dimensions — where
the `1 ball is an octahedron — with one- and two-dimensional subspaces of feasible solutions.

Summarizing, because the `1 ball expands more quickly in directions with smaller support
than in directions with larger support, it makes sense that minimizing the `1 norm generally
favors sparser solutions. Indeed, `1 minimization is precisely the algorithm used for the
guarantee in Theorem 4.1. We conclude the lecture by sharpening the theorem statement to
take this into account.

Theorem 5.1 (Main Theorem, Sharpened [2, 3]) Fix a signal length n and a sparsity
level k. Let A be an m × n matrix with m = Θ(k log n

k
) rows, with each of its mn entries

chosen independently from the standard Gaussian distribution. With high probability over the
choice of A, for every k-sparse signal z, the unique optimal solution to the `1-minimization
problem

min ‖x‖1
subject to

Ax = b

is z.
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Next lecture we’ll explain how to solve the `1-minimization problem efficiently using linear
programming. We’ll also consider a different type of sparse recovery problem, that of matrix
completion.
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