Near-Optimal Equilibria

Tim Roughgarden (Stanford)

Simons Institute boot camp on economics and computation
Example Theorem: [Syrgkanis/Tardos 13] (improving [Hassidim/Kaplan/Nisan/Mansour 11]) Suppose m items are sold simultaneously via first-price single-item auctions:

- for every product distribution over submodular bidder valuations (independent, not necessarily identical), and
- for every (mixed) Bayes-Nash equilibrium, expected welfare of the equilibrium is within 63% of the maximum possible.

(matches best-possible algorithms!)
Outline

1. *Smooth Games, Extension Theorems, and Robust POA Bounds*
2. Smooth Mechanisms and Bayes-Nash POA Bounds
3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems
4. Complexity-Based POA Lower Bounds
THE PRICE OF ANARCHY

IS IT OKAY TO BE SELFISH?
The Price of Anarchy

Network with 2 players:
The Price of Anarchy

Nash Equilibrium:

\[\text{cost} = 14 + 14 = 28 \]
The Price of Anarchy

Nash Equilibrium:

To Minimize Cost:

\[
\begin{align*}
\text{cost} &= 14 + 14 = 28 \\
\text{cost} &= 14 + 10 = 24
\end{align*}
\]

\textit{Price of anarchy (POA)} = \frac{28}{24} = \frac{7}{6}.

- if multiple equilibria exist, look at the \textit{worst} one
 - [Koutsoupias/Papadimitriou 99]
What Do POA Bounds Look Like?

- n players, each picks a strategy s_i
- player i incurs a cost $C_i(s)$

Objective function: $\text{cost}(s) := \sum_i C_i(s)$
What Do POA Bounds Look Like?

- n players, each picks a strategy s_i
- player i incurs a cost $C_i(s)$

Objective function: $\text{cost}(s) := \sum_i C_i(s)$

To Bound POA: (let $s =$a Nash eq; s^* =optimal)

$$\text{cost}(s) = \sum_i C_i(s) \quad [\text{defn of cost}]$$
What Do POA Bounds Look Like?

- n players, each picks a strategy s_i
- player i incurs a cost $C_i(s)$

Objective function: $\text{cost}(s) := \Sigma_i C_i(s)$

To Bound POA: (let s =a Nash eq; s^* =optimal)

$$\text{cost}(s) = \Sigma_i C_i(s) \quad [\text{defn of cost}]$$
$$\leq \Sigma_i C_i(s^*_i, s_{-i}) \quad [s \text{ a Nash eq}]$$

“baseline” strategies
What Do POA Bounds Look Like?

Suppose: we prove that (for \(\lambda > 0; \mu < 1 \))

\[
\sum_i C_i(s_i^*, s_{-i}) \leq \lambda \cdot cost(s^*) + \mu \cdot cost(s) \quad [\text{(*)}]
\]
What Do POA Bounds Look Like?

Suppose: we prove that (for $\lambda > 0; \mu < 1$)

$$\sum_i C_i(s^*_i, s_{-i}) \leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s) \quad [(*')]$$

Implies: $\text{cost}(s) \leq \sum_i C_i(s^*_i, s_{-i}) \quad [s \text{ a Nash eq}]$

$$\leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s) \quad [\text{by (*)}]$$

So: POA (of pure Nash equilibria) $\leq \lambda/(1-\mu)$.
Canonical Example

Claim [Christodoulou/Koutsoupias 05] (see also [Awerbuch/Azar Epstein 05]) worst-case POA in routing games with affine cost functions is $5/2$.

- for all integers y,z: $y(z+1) \leq \frac{5}{3}y^2 + \frac{1}{3}z^2$
- so: $ay(z+1) + by \leq \frac{5}{3}[ay^2 + by] + \frac{1}{3}[az^2 + bz]$
 - for all integers y,z and $a,b \geq 0$
- so: $\sum_e [a_e(x_e+1) + b_e)x_e^*] \leq \frac{5}{3} \sum_e [(a_e x_e^* + b_e)x_e^*]$
 + $\frac{1}{3} \sum_e [(a_e x_e + b_e)x_e]$
- so: $\sum_i C_i(s_i^*,s_{-i}) \leq \frac{5}{3} \cdot \text{cost}(s^*) + \frac{1}{3} \cdot \text{cost}(s)$
Smooth Games

Definition: [Roughgarden 09] A game is \((\lambda, \mu)\)-smooth w.r.t. baselines \(s^*\) if, for every outcome \(s\) (\(\lambda > 0; \mu < 1\)):

\[
\sum_i C_i(s^*, s_{-i}) \leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s) \quad [(*)]
\]
Smooth Games

Definition: [Roughgarden 09] A game is \((\lambda, \mu)\)-smooth w.r.t. baselines \(s^*\) if, for every outcome \(s\) \((\lambda > 0; \mu < 1)\):

\[
\sum_i C_i(s^*_i, s_{-i}) \leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s) \quad [(*)]
\]

Implies: \(\text{cost}(s) \leq \sum_i C_i(s^*_i, s_{-i}) \quad [s \text{ a Nash eq}]
\]

\[
\leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s) \quad \text{[by (*)]}
\]

So: if \((\lambda, \mu)\)-smooth w.r.t. optimal outcome, then POA (of pure Nash equilibria) is at most \(\lambda/(1-\mu)\).

(using (*) only in the special case where \(s = \text{equilibrium}\))
POA Bounds Without Convergence

Meaning of a POA bound: *if* the game is at an equilibrium, *then* outcome is near-optimal.

Problem: what if can’t reach an equilibrium?
- non-existence (pure Nash equilibria)
- intractability (mixed Nash equilibria)

[Daskalakis/Goldberg/Papadimitriou 06], [Chen/Deng/Teng 06], [Etessami/Yannakakis 07]

Worry: fail to converge, POA bound won’t apply.
Learnable Equilibria

Fact: simple strategies converge quickly to more permissive equilibrium sets.

- correlated equilibria: [Foster/Vohra 97], [Fudenberg/Levine 99], [Hart/Mas-Colell 00], ...
- coarse/weak correlated equilibria (of [Moulin/Vial 78]): [Hannan 57], [Littlestone/Warmuth 94], ...

Question: are there good “robust” POA bounds, which hold more generally for such “easily learned” equilibria?

[Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/Azar/Epstein/Mirrokni/Skopalk 08], [Christodoulou/Koutsoupias 05], [Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08]
A Hierarchy of Equilibria

Recall: POA determined by \textit{worst} equilibrium (only increases with the equilibrium set).
An Out-of-Equilibrium Bound

Theorem: [Roughgarden 09] if game is (λ, μ)-smooth w.r.t. an optimal outcome, then the average cost of every no-regret sequence is at most

$$\frac{\lambda}{1-\mu} \cdot \text{cost of optimal outcome}.$$

(the same bound as for pure Nash equilibria!)
No-Regret Sequences

Definition: a sequence $s_1, s_2, ..., s_T$ of outcomes of a game is no-regret if:

• for each i, each (time-invariant) deviation q_i:

$$\frac{1}{T} \sum_t C_i(s^t) \leq \frac{1}{T} \sum_t C_i(q_i, s_{-i}^t) [\pm o(1)]$$

(will ignore the “$o(1)$” term)
Smooth => No-Regret Bound

- notation: $s^1,s^2,...,s^T =$ no regret; s^* = optimal

Assuming (λ, μ)-smooth:

$$\sum_t \text{cost}(s^t) = \sum_t \sum_i C_i(s^t) \quad \text{[defn of cost]}$$
Smooth \Rightarrow No-Regret Bound

- notation: $s^1, s^2, \ldots, s^T = \text{no regret}; s^* = \text{optimal}$

Assuming (λ, μ)-smooth:

$$\Sigma_t \text{cost}(s^t) = \Sigma_t \Sigma_i C_i(s^t)$$

[defn of cost]

$$= \Sigma_t \Sigma_i [C_i(s^*_i, s^t_{-i}) + \Delta_{i,t}]$$

[\(\Delta_{i,t} := C_i(s^t) - C_i(s^*_i, s^t_{-i})\)]
Smooth => No-Regret Bound

- notation: \(s^1, s^2, \ldots, s^T \) = no regret; \(s^* \) = optimal

Assuming \((\lambda, \mu)\)-smooth:

\[
\sum_t \text{cost}(s^t) = \sum_t \sum_i C_i(s^t) \quad \text{[defn of cost]}
\]

\[
= \sum_t \sum_i [C_i(s^*_i, s^t_{-i}) + \Delta_{i,t}] \quad [\Delta_{i,t} := C_i(s^t) - C_i(s^*_i, s^t_{-i})]
\]

\[
\leq \sum_t [\lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s^t)] + \sum_i \sum_t \Delta_{i,t} \quad \text{[smooth]}
\]
Smooth => No-Regret Bound

- notation: $s^1, s^2, ..., s^T = \text{no regret}; \ s^* = \text{optimal}$

Assuming (λ, μ)-smooth:

$$\Sigma_t \ cost(s^t) = \Sigma_t \Sigma_i C_i(s^t)$$ \hspace{1cm} \text{[defn of cost]}

$$= \Sigma_t \Sigma_i \left[C_i(s^*, s^t_{-i}) + \Delta_{i,t} \right]$$ \hspace{1cm} \text{[$\Delta_{i,t} := C_i(s^t) - C_i(s^*, s^t_{-i})$]}

$$\leq \Sigma_t \left[\lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s^t) \right] + \Sigma_i \Sigma_t \Delta_{i,t}$$ \hspace{1cm} \text{[smooth]}

No regret: $\Sigma_t \Delta_{i,t} \leq 0$ for each i.

To finish proof: divide through by T.

Extension Theorems

permissive equilibrium concept (e.g., no-regret outcomes)

what we care about
Extension Theorems

pure Nash equilibria
what’s easy to analyze

permissive equilibrium concept (e.g., no-regret outcomes)
what we care about

easier
Extension Theorems

- Pure Nash equilibria
- What's easy to analyze
- Easier
- POA extension theorem
- Permissive equilibrium concept (e.g., no-regret outcomes)
- What we care about
Bells and Whistles

- can allow baseline \(s^*_i \) to depend on \(s_i \), but not \(s_{-i} \)
- POA bound extends to correlated equilibria
- but *not* to no-regret sequences
- applications include:
 - splittable routing games [Roughgarden/Schoppman 11]
 - opinion formation games [Bhawalkar/Gollapudi/Munagala 13]
 - sequential composition of auctions [Syrgkanis/Tardos 13]
Outline

1. Smooth Games, Extension Theorems, and Robust POA Bounds
2. Smooth Mechanisms and Bayes-Nash POA Bounds
3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems
4. Complexity-Based POA Lower Bounds
Incomplete-Information Games

Game of incomplete information: [Harsanyi 67,68] specified by players, types, actions, payoffs.

- e.g., type = private valuation for a good
- player payoff depends on outcome and type
- strategy: function from types to actions
 - semantics: “if my type is t, then I will play action a”

Common Prior Assumption: types drawn from a distribution known to all players (independent, or not)

- realization of type i known only to player i
Example: First-Price Auction

Bayes-Nash Equilibrium: every player picks expected utility-maximizing action, given its knowledge.

Exercise: with n bidders, valuations drawn i.i.d. from $U[0,1]$, the following is a Bayes-Nash equilibrium: all bidders use the strategy $v_i \rightarrow [(n-1)/n] \cdot v_i$.

- highest-valuation player wins (maximizes welfare)
Bayes-Nash Equilibrium: every player picks expected utility-maximizing action, given its knowledge.

Exercise: with n bidders, valuations drawn i.i.d. from $U[0,1]$, the following is a Bayes-Nash equilibrium: all bidders use the strategy $v_i \rightarrow [(n-1)/n] \cdot v_i$.

- highest-valuation player wins (maximizes welfare)

Exercise: with 2 bidders, valuations from $U[0,1]$ and $U[0,2]$, no Bayes-Nash equilibrium maximizes expected welfare. (Second bidder shades bid more.)
POA with Incomplete Information: The Best-Case Scenario

Ideal: POA bounds w.r.t an *arbitrary* prior distribution.
(or maybe assuming only independence)

Observation: point mass prior distribution \Leftrightarrow game of full-information (Bayes-Nash equilibria \Leftrightarrow Nash eq).
POA with Incomplete Information: The Best-Case Scenario

Ideal: POA bounds w.r.t an *arbitrary* prior distribution.
 (or maybe assuming only independence)

Observation: point mass prior distribution \Leftrightarrow game of full-information (Bayes-Nash equilibria \Leftrightarrow Nash eq).

Coolest Statement That Could Be True: POA of Bayes-Nash equilibria (for worst-case prior distribution) same as that of Nash equilibria in worst induced full-info game. (Observation above \Rightarrow can only be worse)
Ideal Extension Theorem

Hypothesis: in every induced full-information game, a smoothness-type proof shows that the POA of (pure) Nash equilibria is α or better.

- induced full-info game \iff specific type profile
- ex: first-price auction with known valuations

Conclusion: for every common prior distribution, the POA of (mixed) Bayes-Nash equilibria is α or better.
Extension Theorem (Informal)

- incomplete-info games
 - i.e., uncertain payoffs
- mixed Bayes-Nash equilibria

what we care about
(e.g., for auctions)
Extension Theorem (Informal)

- Full-information games
 - i.e., certain payoffs
 - Pure Nash equilibria
 - What’s easy to analyze

- Incomplete-info games
 - i.e., uncertain payoffs
 - Mixed Bayes-Nash equilibria
 - What we care about (e.g., for auctions)

Easier
Extension Theorem (Informal)

- Full-information games • i.e., certain payoffs
 - Pure Nash equilibria

- Incomplete-info games • i.e., uncertain payoffs
 - Mixed Bayes-Nash equilibria

POA extension theorem

What we care about (e.g., for auctions)

What’s easy to analyze

easier
1. Fix a game.
 (fixes optimal outcomes)

2. Choose baseline \(s^* = \text{some optimal outcome} \).
 (in many games, only one option)

3. Fix outcome \(s \).

4. Prove \(\Sigma_i C_i(s^*_i, s_{-i}) \leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s) \).

5. Conclude that POA of no-regret sequences \(\leq \lambda/(1-\mu) \).
Smoothness Paradigm
(Full => Incomplete)

1. Fix a setting *and the private valuations*. (fixes optimal outcomes)

2. Choose baseline \(s^* = \) some optimal outcome. (in many games, only one option)

3. Fix outcome \(s \).

4. Prove \(\sum_i C_i(s^*_i, s_{-i}) \leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s) \).

5. Conclude that POA of no-regret sequences \(\leq \lambda/(1-\mu) \).
Smoothness Paradigm
(Full ⇒ Incomplete)

1. Fix a setting and the private valuations. (fixes optimal outcomes)

2. Choose baseline $b^* = \text{some optimal outcome.}$ (note the large number of possible options)

3. Fix outcome $s.$

4. Prove $\sum_i C_i(s^*_i, s_{-i}) \leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s).$

5. Conclude that POA of no-regret sequences $\leq \lambda/(1-\mu).$
1. Fix a setting \textit{and the private valuations}.
\hspace{1cm} (fixes optimal outcomes)

2. Choose baseline $b^* = \text{some optimal outcome}$.
\hspace{1cm} (note the large number of possible options)

3. Fix outcome b.

4. Prove $\sum_i C_i(s_i^*, s_{-i}) \leq \lambda \cdot \text{cost}(s^*) + \mu \cdot \text{cost}(s)$.

5. Conclude that POA of no-regret sequences $\leq \lambda/(1-\mu)$.
Smoothness Paradigm
(Full => Incomplete)

1. Fix a setting *and the private valuations*.
 (fixes optimal outcomes)

2. Choose baseline $b^* = \text{some optimal outcome}$.
 (note the large number of possible options) \cite{SyrgkanisTardos13}

3. Fix outcome b.

4. Prove $\Sigma_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Revenue}(b)$.

5. Conclude that POA of no-regret sequences $\leq \lambda/(1-\mu)$.
Smoothness Paradigm (Incomplete Information)

1. Fix a setting *and the private valuations.*
 (Fixes optimal outcomes)

2. Choose baseline \(b^* \) = some optimal outcome.
 (Note the large number of possible options)

3. Fix outcome \(b \).

4. Prove \(\sum_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Revenue}(b) \).

5. Conclude that POA of Bayes-Nash equilibria is \(\geq \lambda \).

[Syrgkanis/Tardos 13]
Smoothness Paradigm (Incomplete Information)

1. Fix a setting and the private valuations.
 (fixes optimal outcomes)

2. Choose baseline $b^* = \text{some optimal outcome}$.
 (note the large number of possible options)

3. Fix outcome b.

4. Prove $\sum_i u_i(b^*, b_{-i}) \geq \lambda \cdot \text{[OPT Welfare]} - \text{Revenue}(b)$.

5. Conclude that POA of Bayes-Nash equilibria is $\geq \lambda$.

45
Claim: for suitable choice of \(b^* \), for every \(b \),
\[
\sum_i u_i(b^*_i, b_{-i}) \geq \frac{1}{2} \cdot [\text{OPT Welfare}] - \text{Revenue}(b).
\]

Proof: Set \(b^*_i = \frac{v_i}{2} \) for every \(i \). (a la [Lucier/Paes Leme 11])
- since LHS \(\geq 0 \), can assume \(\frac{1}{2} \cdot [\max_i v_i] > \max_i b_i \)
- suppose bidder 1 has highest valuation. Then:
 \[
u_1(b^*_1, b_{-1}) = v_1 - (v_1/2) = v_1/2 \geq \frac{1}{2} \cdot [\text{OPT Welfare}]\]

Optimization: [Syrgkanis 12] 50% \(\Rightarrow \) 63% (different \(b^* \))
1. Fix a setting *and the private valuations.*
 (fixes optimal outcomes)

2. Choose baseline $b^* = $ some optimal outcome.
 (note the large number of possible options)

3. Fix outcome b.

4. Prove $\sum_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Revenue}(b)$.

5. **Conclude that POA of Bayes-Nash equilibria is $\geq \lambda$.**
Extension Theorem (PNE)

Assume: for suitable choice of b^*, for every b,
$$\Sigma_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(b).$$

Claim: POA of pure Nash equilibria is $\geq \lambda$.
Assume: for suitable choice of b^*, for every b,
\[\sum_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(b). \]

Claim: POA of pure Nash equilibria is $\geq \lambda$.

Proof: Let b = a pure Nash equilibrium. Then:
\[
\text{welfare}(b) = \text{Rev}(b) + \sum_i u_i(b) \quad \text{[defn of utility]}
\geq \text{Rev}(b) + \sum_i u_i(b^*_i, b_{-i}) \quad \text{[b a Nash eq]}
\geq \text{Rev}(b) + [\lambda \cdot [\text{OPT Welfare}] - \text{Rev}(b)]
= \lambda \cdot [\text{OPT Welfare}]
\]
Assume: for suitable choice of \(b^* \), for every \(b \),
\[
\sum_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(b).
\]

Claim: \((\approx [\text{Lucier/Paes Leme 11}])\) for all (possibly correlated) valuation distributions, POA of Bayes-Nash eq is \(\geq \lambda \).

Proof: Let \(b() \) = a Bayes-Nash equilibrium. Then:
\[
E_v[\text{welfare}(b(v))] = E_v[\text{Rev}(b(v))] + \sum_i E_v[u_i(b(v))] \quad [\text{defn of utility}]
\geq E_v[\text{Rev}(b(v))] + \sum_i E_v[u_i(b^*_i(v_i), b_{-i}(v_{-i}))] \quad [b \text{ a BNE}]
\geq E_v[\text{Rev}(b(v))] + [\lambda \cdot E_v[\text{OPT Welfare}] - E_v[\text{Rev}(b(v))]]
= \lambda \cdot E_v[\text{OPT Welfare}]
\]
First-Price Auctions

Summary: for all (possibly correlated) valuation distributions, every Bayes-Nash equilibrium of a first-price auction has welfare at least 50% (or even 63%) of the maximum possible.

• 63% is tight for correlated valuations [Syrgkanis 14]
• independent valuations = worst-case POA unknown
 • worst known example = 87% [Hartline/Hoy/Taggart 14]
• 63% extends to simultaneous single-item auctions (covered tomorrow)
Further Applications

- first-price sponsored search auctions
 [Caragiannis/Kaklamanis/Kanellopoulos/Kyropoulou/Lucier/Paes Leme/Tardos 12]

- greedy pay-as-bid combinatorial auctions
 [Lucier/Borodin 10]

- pay-as-bid mechanisms based on LP rounding
 [Duetting/Kesselheim/Tardos 15]
Second-Price Rules

- simultaneous second-price auctions [Christodoulou/Kovacs/Schapira 08]
 - worst-case POA = 50%, and this is tight (even for PNE)
- truthful greedy combinatorial auctions [Borodin/Lucier 10]
 - worst-case POA close to greedy approximation ratio
- can be reinterpreted via modified smoothness condition [Roughgarden 12, Syrgkanis 12]
- “bluffing equilibria” => need a no overbidding condition for non-trivial POA bounds
Revenue Covering

- [Hartline/Hoy/Taggart 14] define “revenue covering”
- for every \(b \), \(\text{Rev}(b) \geq \) critical bids of winners in OPT
- implies smoothness condition
 - near-equivalent in some cases [Duetting/Kesselheim 15]
- application #1: POA bounds w.r.t. revenue objective
 - e.g., simultaneous first-price auctions with monopoly reserves
- application #2: [Hoy/Nekipelov/Syrgkanis 15] bound the “empirical POA” from data
 - do not need to explicitly estimate valuations!
 - can prove instance-by-instance bounds that beat the worst-case bound
first POA guarantees when bidder population changing (p fraction drops out each time step, replaced by new bidders).

- convergence to (Nash) equilibrium hopeless
- positive results for “adaptive learners” (assume agents use sufficiently good learning algorithm)
- need baseline near-optimal strategy profiles (one per time step) s.t. no player changes frequently
- novel use of differential privacy! (in the analysis)
Outline

1. Smooth Games, Extension Theorems, and Robust POA Bounds
2. Smooth Mechanisms and Bayes-Nash POA Bounds
3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems
4. Complexity-Based POA Lower Bounds
Multi-Item Auctions

- suppose m different items
- for now: *unit-demand* valuations
- each bidder i has private valuation v_{ij} for each item j
- $v_i(S) := \max_{j \in S} v_{ij}$
Simultaneous Composition

- suppose have mechanisms M_1,\ldots,M_m
- in their *simultaneous composition*:
 - new action space = product of the m action spaces
 - new allocation rule = union of the m allocation rules
 - new payment rule = sum of the m payment rules

- example: each M_j a single-item first-price auction

Question: as a unit-demand bidder, how should you bid?
(not so easy)
Hypothesis: every single-item auction M_j is λ-smooth: for every v, there exists b^* such that, for every b,

$$\sum_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}(v)] - \text{Rev}(b).$$

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand, then composed mechanism is also λ-smooth.

- holds more generally from arbitrary smooth M_j’s and “XOS” valuations (generalization of submodular)
Composition Preserves Smoothness

Hypothesis: every single-item auction M_j is λ-smooth: for every \mathbf{v}, there exists \mathbf{b}^* such that, for every \mathbf{b},

$$\sum_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot \text{OPT Welfare}(\mathbf{v}) - \text{Rev}(\mathbf{b}).$$

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand, then composed mechanism is also λ-smooth.

Proof idea: Fix unit-demand valuations \mathbf{v}, fixes OPT.

• baseline strategy for a bidder i that gets item j in OPT
 • bid 0 in mechanisms other M_j
 • in M_j, use assumed baseline strategy for M_j
Simultaneous First-Price Auctions (First Try)

Consequence: for all (possibly correlated) unit-demand valuation distributions, every Bayes-Nash equilibrium of simultaneous first-price auctions has welfare at least 50% (or even 63%) of the maximum possible.

- prove smoothness inequality for first-price auction
- use composition theorem to extend smoothness to simultaneous first-price auctions
- use extension theorem to conclude Bayes-Nash POA bound for simultaneous first-price auctions
Fact: [Feldman/Fu/Gravin/Lucier 13], following [Bhawalkar/Roughgarden 11] there are (highly correlated) valuation distributions over unit-demand valuations such that every Bayes-Nash equilibrium has expected welfare arbitrary smaller than the maximum possible.

- idea: plant a random matching plus some additional highly demanded items; by symmetry, a bidder can’t detect the item “reserved” for it
Revised Statement

Consequence: for all *product* unit-demand valuation distributions, every Bayes-Nash equilibrium of simultaneous first-price auction has welfare at least 50% (or even 63%) of the maximum possible.

- prove smoothness inequality for first-price auction
- use composition theorem to extend smoothness to simultaneous first-price auctions
- use *modified* extension theorem to conclude Bayes-Nash POA bound for simultaneous first-price auctions
Private Baseline Strategies

First-price auction: set $b^*_i = v_i/2$ for every i.
- independent of v_{-i} ("private" baseline strategies)

Simultaneous first-price auctions: b^*_i is "bid half your value only on the item j you get in $OPT(v)$".
- "public" baseline strategies
- not well defined unless v_{-i} known
Assume: for suitable choice of b^*, for every b,
\[\sum_i u_i(b^*_i, \mathbf{b}_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(b). \]

Claim: (\approx [Lucier/Paes Leme 11]) for all (possibly correlated) valuation distributions, POA of Bayes-Nash eq is $\geq \lambda$.

Proof: Let $b() = a$ Bayes-Nash equilibrium. Then:
\[
E_v[\text{welfare}(b(v))] = E_v[\text{Rev}(b(v))] + \sum_i E_v[u_i(b(v))] \quad \text{[defn of utility]}
\]
\[
\geq E_v[\text{Rev}(b(v))] + \sum_i E_v[u_i(b^*_i(v_i), \mathbf{b}_{-i}(v_{-i}))] \quad \text{[b a BNE]}
\]
\[
\geq E_v[\text{Rev}(b(v))] + [\lambda \cdot E_v[\text{OPT Welfare}] - E_v[\text{Rev}(b(v))]]
\]
\[
= \lambda \cdot E_v[\text{OPT Welfare}]
\]

development can depend on v_i but not v_{-i}
Extension Theorem (BNE)

Assume: for suitable choice of private b^*, for every b,
\[
\Sigma_i u_i(b^*_i, b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(b).
\]

Claim: (\approx[Lucier/Paes Leme 11]) for all (possibly correlated) valuation distributions, POA of Bayes-Nash eq is $\geq \lambda$.

Proof: Let $b() = a$ Bayes-Nash equilibrium. Then:
\[
E_v[\text{welfare}(b(v))] = E_v[\text{Rev}(b(v))] + \Sigma_i E_v[u_i(b(v))] \quad \text{[defn of utility]}
\]
\[
\geq E_v[\text{Rev}(b(v))] + \Sigma_i E_v[u_i(b^*_i(v_i), b_{-i}(v_{-i}))] \quad \text{[b a BNE]}
\]
\[
\geq E_v[\text{Rev}(b(v))] + [\lambda \cdot E_v[\text{OPT Welfare}] - E_v[\text{Rev}(b(v))]]
\]
\[
= \lambda \cdot E_v[\text{OPT Welfare}]
\]

deviation can depend on v_i but not v_{-i}
Modified Extension Theorem

Assume: for suitable choice of public b^*, for every b,
\[\sum_i u_i(b^*_i,b_{-i}) \geq \lambda \cdot [\text{OPT Welfare}] - \text{Rev}(b). \]

Theorem: [Syrgkanis/Tardos 13], following [Christodoulou/Kovacs/Schapira 08] for all product valuation distributions, POA of Bayes-Nash eq is $\geq \lambda$.

Proof idea: to transform public b^*_i to a deviation:
- sample w_{-i} from prior distribution
- play baseline strategy for valuation profile (v_i,w_{-i})
Outline

1. Smooth Games, Extension Theorems, and Robust POA Bounds
2. Smooth Mechanisms and Bayes-Nash POA Bounds
3. Reducing Complex Mechanisms to Simple Mechanisms Using Composition Theorems
4. Complexity-Based POA Lower Bounds
Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/Kovacs/Sgouritsa/Tang 14]
the worst-case POA of S1A’s with subadditive bidder valuations is precisely 2.

monotone \textit{subadditive} valuations:
• \(v_i(A \cup B) \leq v_i(A) + v_i(B) \) for all disjoint \(A, B \)
Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/Kovacs/Sgouritsa/Tang 14]

the worst-case POA of S1A’s with subadditive bidder valuations is precisely 2.

Explicit Lower Bound:
Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/Kovacs/Sgouritsa/Tang 14]

The worst-case POA of S1A’s with subadditive bidder valuations is precisely 2.

Question: Can we do better?

(without resorting to the VCG mechanism)
The Upshot

Meta-theorem: equilibria are generally bound by the same limitations as algorithms with polynomial computation or communication.

- lower bounds without explicit constructions!

Caveats: requires that equilibria are

- guaranteed to exist (e.g., mixed Nash equilibria)
- can be efficiently verified

Example consequence: no “simple” auction has POA < 2 for bidders with subadditive valuations.
Theorem: [Roughgarden 14] Suppose:

- no nondeterministic subexponential-communication protocol approximates the welfare-maximization problem (with valuations V) to within factor of α.
 - i.e., impossible to decide $\text{OPT} \geq W^*$ vs. $\text{OPT} \leq W^*/\alpha$

Then worst-case POA of ϵ-approximate mixed Nash equilibria of every “simple” mechanism is at least α.

- simple = number of strategies sub-doubly-exponential in m
- ϵ can be as small as inverse polynomial in n and m

Point: reduces lower bounds for equilibria to lower bounds for communication protocols.
Consequences

Corollary: (via [Nisan/Segal 06], [Dobsinski/Nisan/Schapira 05])

- With subadditive bidder valuations, no simple auction guarantees equilibrium welfare better than 50% OPT.
 - “simple”: bid space dimension \(\leq \) subexponential in \# of goods
- With general valuations, no simple auction guarantees non-trivial equilibrium welfare.

Take-aways:

1. In these cases, S1A’s optimal among simple auctions.
2. With complements, complex bid spaces (e.g., package bidding) necessary for welfare guarantees.
Why Approximate MNE?

Issue: in an S1A, number of strategies = \((V_{\text{max}} + 1)^m\)
- valuations, bids assumed integral and poly-bounded

Consequence: can’t efficiently guess/verify a MNE.

Theorem: [Lipton/Markakis/Mehta 03] a game with \(n\) players and \(N\) strategies per player has an \(\varepsilon\)-approximate mixed Nash equilibrium with support size polynomial in \(n\), \(\log N\), and \(\varepsilon^{-1}\).
- proof idea based on sampling from an exact MNE
Nondeterministic Protocols

- each of n players has a private valuation v_i
- a “referee” wants to convince the players that the value of some function $f(v_1,\ldots,v_n)$ has the value z
- referees knows all v_i’s and writes, in public view, an alleged proof P that $f(v_1,\ldots,v_n) = z$
- protocol accepts if and only if every player i accepts the proof P (knowing only v_i)
- communication used = length (in bits) of proof P
- example: Non-Equality vs. Equality
Theorem: [Roughgarden 14] Suppose:

• no nondeterministic subexponential-communication protocol approximates the welfare-maximization problem (with valuations V) to within factor of α.
 • i.e., impossible to decide $\text{OPT} \geq W^* \text{ vs. } \text{OPT} \leq W^*/\alpha$

Then worst-case POA of ε-approximate mixed Nash equilibria of every “simple” mechanism is at least α.

• simple = number of strategies sub-doubly-exponential in m
• ε can be as small as inverse polynomial in n and m

Point: reduces lower bounds for equilibria to lower bounds for communication protocols.
Proof of Theorem

Suppose worst-case POA of ε-MNE is $\rho < \alpha$:

Input: game G s.t. either

(i) $\text{OPT} \geq W^*$
or (ii) $\text{OPT} \leq \frac{W^*}{\alpha}$
Proof of Theorem

Suppose worst-case POA of ε-MNE is $\rho < \alpha$:

Input: game G s.t. either
(i) $\text{OPT} \geq W^*$
or (ii) $\text{OPT} \leq W^*/\alpha$

Protocol:
“proof” = ε -MNE x with small support (exists by LMM); players verify it privately
Proof of Theorem

Suppose worst-case POA of ε-MNE is $\rho < \alpha$:

Input: game G s.t. either (i) $\text{OPT} \geq W^*$ or (ii) $\text{OPT} \leq W^*/\alpha$

Protocol: "proof" = ε-MNE x with small support (exists by LMM); players verify it privately

if $E[\text{wel}(x)] > W^*/\alpha$ then $\text{OPT} > W^*/\alpha$ so in case (i)
Proof of Theorem

Suppose worst-case POA of ε-MNE is $\rho < \alpha$:

Input: game G s.t. either (i) $\text{OPT} \geq W^*$ or (ii) $\text{OPT} \leq W^*/\alpha$

Protocol:
- "proof" = ε -MNE x with small support (exists by LMM); players verify it privately

If $E[wel(x)] > W^*/\alpha$ then $\text{OPT} > W^*/\alpha$ so in case (i)

If $E[wel(x)] \leq W^*/\alpha$ then $\text{OPT} \leq (\rho/\alpha)W^* < W^*$ so in case (ii)

Key point: every ε-MNE is a short, efficiently verifiable certificate for membership in case (ii).
Claim: POA lower bounds for ε-MNE with small enough ε essentially as good as for exact MNE. Reasons:

1. All known upper bound techniques apply automatically to approximate equilibria.
 1. e.g., “smoothness proofs” [Roughgarden 09]
 2. so our lower bounds limit all known proof techniques

2. Lower bounds for approximate equilibria can sometimes be translated into bounds for exact equilibria.

3. If POA of exact equilibria \ll POA of approximate equilibria, the latter is likely more relevant (and robust).
More Applications

- optimality results for “simple” auctions with other valuation classes (general, XOS)
- analogous results for combinatorial auctions with succinct valuations (if coNP not in MA)
- impossibility results for low-dimensional price equilibria (assuming NP ≠ coNP) [Roughgarden/Talgam-Cohen 15]
- unlikely to reduce planted clique to ε-Nash hardness
Open Questions

1. **Tight POA bounds for important auction formats**
 1. e.g. first-price auctions with independent valuations

2. **Best “simple” auction for submodular valuations?**
 1. S1A’s give 63% [Syrgkanis/Tardos 13], [Christodoulou et al 14]
 2. > 77% impossible [Dobzinski/Vondrak 13] + [R14]
 3. > 63% is possible with poly communication [Feige/Vondrak 06]

3. **Design “natural” games with POA matching hardness lower bound for the underlying optimization problem.**
 1. e.g., many auction and scheduling problems
FIN