Application-Specific Algorithm Selection

Tim Roughgarden (Stanford)

joint work with Rishi Gupta
Algorithm Selection

“I need to solve problem X. Which algorithm should I use?”

Answer usually depends on the details of the application (i.e., the instances of interest).

• for most problems, no “silver bullet” algorithm
Graph Coloring

SVMs to predict the boundaries of each algorithm's footprint, achieving better results, although still not perfect due to many contradictory instances within a region. The out-of-sample test set accuracies ranged from 90% for the DSATUR and Bktr predictions (easier to predict since they tend to be quite consistent in regions where they do not perform well) down to 73% accuracy for the AntCol prediction. The SVM prediction model for HEA was 82% accurate. Combining these eight SVM predictions, we can identify for each instance the algorithm that is predicted to be the best. In the event that multiple algorithms are predicted to be the best, we recommend adopting the algorithm which has the highest model accuracy (although shortest run-time could be another criterion). This approach leads to the algorithm recommendations shown in Fig. 4, including an upper right portion where no SVM model predicted any algorithm to be best. Since at least one algorithm is best, by definition, this is clearly a failing of a sophisticated machine learning method in this region. While this depiction of algorithm strength across the instance space is interesting and somewhat enlightening, it should be used with caution, since it is only as accurate as the machine learning models we are relying upon.

4.5. Insights into algorithm strengths and weaknesses

The instance space affords us the opportunity to explore more than algorithm footprints, but also to develop a good understanding of where the unique strengths and weaknesses of each algorithm lie. If an algorithm is only good where many other algorithms are good, then this is useful information to assess the relative power of algorithms. We wish to visualize where each algorithm offers a unique advantage, and where it might struggle where other algorithms succeed. These kinds of insights are critical to inform better algorithm design, and to help automated algorithm selection where machine learning methods may not be accurate enough.

For each instance, we now count how many of the eight algorithms in the portfolio are ε-good with $\varepsilon = 0$. Fig. 5 shows the location of the instances that are easily solved by all algorithms (shown as red on the color scale, with 8 algorithms finding the best number of colors of the graph), and the instances that are more challenging since only one algorithm attains the best result (shown as dark blue in the upper right portion). For these harder instances, we are interested to know which algorithm provides the unique advantage over others, and this is shown in Fig. 6. Only three algorithms show clearly consistent regions where they are uniquely best: AntCol (red), HEA (blue) and HillClimb (green). These are all methods that combine local search strategies with global operators that allow much larger changes to be made to a solution. Understandably, DSATUR and RandGr are never uniquely best, since the other algorithms can be considered extensions of Table 2

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Area (%)</th>
<th>$\varepsilon = 0%$</th>
<th>$\varepsilon = 5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AntCol</td>
<td>19.35</td>
<td>19.35</td>
<td>34.9</td>
</tr>
<tr>
<td>Bktr</td>
<td>11.63</td>
<td>11.63</td>
<td>14.17</td>
</tr>
<tr>
<td>DSATUR</td>
<td>7.11</td>
<td>7.11</td>
<td>12.84</td>
</tr>
<tr>
<td>HEA</td>
<td>41.17</td>
<td>41.17</td>
<td>57.14</td>
</tr>
<tr>
<td>HillClimb</td>
<td>32.97</td>
<td>32.97</td>
<td>52.08</td>
</tr>
<tr>
<td>PartialCol</td>
<td>30.86</td>
<td>30.86</td>
<td>51.84</td>
</tr>
<tr>
<td>RandGr</td>
<td>0.90</td>
<td>0.90</td>
<td>3.13</td>
</tr>
<tr>
<td>TabuCol</td>
<td>36.05</td>
<td>36.05</td>
<td>48.7</td>
</tr>
<tr>
<td>AntCol</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Algorithm footprints showing in blue where an algorithm achieves ε-good performance, with $\varepsilon = 0$. Red instances are not within the algorithm footprint. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

(from Smith-Miles/Baatar/Wreford/Lewis (2014))
Example #1: SATzilla

SAT competition: enter your best SAT solver, will be run on instances from diverse domains.

Bold idea: [Xu/Hutter/Hoos/Leyton-Brown] design “meta-algorithm” for smartly deploying a portfolio of existing solvers.

- uses coarse features of an instance to select a solver

(spoiler: won multiple SAT competitions)
Example #1: SATzilla

[Xu/Hutter/Hoos/Leyton-Brown]

- Portfolio = 7 SAT solvers
 - widely varying performance

- Identify coarse features of SAT instances
 - clause/variable ratio, Knuth’s search tree estimate, ...

- Use regression to learn good “empirical performance models (EPMs),” mapping input features to predicted solver running time.

- Run solver predicted to be fastest by EPMs.
Example #2: FCC Auctions

Broadcast Television Incentive Auction (ongoing):
• Reverse Auction: buy TV broadcast licenses
 • CBO estimate: $15 billion cost
• Forward Auction: sell 4G wireless licenses.
 • CBO estimate: $40 billion revenue.
• Revenue to cover auction costs, fund a new first responder network, reduce the deficit (!)
 • “Middle Class Tax Relief and Job Creation Act”
Reverse Auction Algorithm

Question: which stations stay on the air? [Milgrom/Segal 14] use a greedy algorithm ("descending clock auction")

- good: higher value for broadcasting
- bad: more interference
- scoring rule: rank by $(\text{value})/(\# \text{ conflicting stations})^{1/2}$
- a la [Lehmann/O’Callaghan/Shoham 02]
On Parameter Tuning

Case Study #1: machine learning.
- e.g., choosing the step size in gradient descent
- e.g., choosing a regularization parameter

Case Study #2: CPLEX. (LP/IP solver).
- 135 parameters! (221-page reference manual)
- manual’s advice: “you may need to experiment with them” (gee, thanks...)

Example #3: Self-Improving Algorithms

Model: receive sequence of inputs drawn independently from unknown input distribution F.

Goal: quickly converge to a near-optimal algorithm (w.r.t. F). [using small space]

- sorting
 - [Ailon/Chazelle/Liu/Seshadhri 06]
- Delaunay triangulations
 - [Clarkson/Seshadhri 08]
- convex hulls
 - [Clarkson/Mulzer/Seshadhri 10]
A Theory of Algorithm Selection?

Question: what would a theory of “application-specific algorithm selection” look like?

- need to go “beyond worst-case analysis”
Worst-Case Analysis

Worst-case analysis: \(\text{cost}(A) := \sup_z \text{cost}(A,z) \)
- \(\text{cost}(A,z) = \) performance of algorithm A on input z

Pros of WCA: universal applicability (no input assumptions)
- countless killer applications
- relatively analytically tractable

Cons of worst-case analysis: overly pessimistic
- can rank algorithms inaccurately (LP, paging)
- no data model (rather: “Murphy’s Law” model)
A Theory of Algorithm Selection?

Question: what would a theory of “application-specific algorithm selection” look like?

- need to go “beyond worst-case analysis”

Idea: model as a learning problem.

- algorithms play role of concepts/hypotheses
- algorithm performance acts as loss function
- two models: offline (batch) learning and online learning (i.e., regret-minimization)
Formalism

Given: a class C of algorithms for some problem π.
- could be finite (coloring, SAT) or infinite (parameter-tuning)
- no single “silver bullet” algorithm

Given: a cost function $\text{cost}(A,z)$ of algorithm A on input z (running time, solution quality, etc.) (range = $[0,H]$)

Perspective: think of each algorithm A as a real-valued function:

\[
z \quad \Rightarrow \quad \text{cost}(A,z)
\]

input \hspace{1cm} performance of A on input
Example: Independent Set

Greedy algorithm #1: process vertices in decreasing order of w_v.

(no adjacent vertices allowed)
Example: Independent Set

Greedy algorithm #2: process vertices in decreasing order of $w_v/(1+\text{deg}(v))$.

(no adjacent vertices allowed)
Example: Independent Set

Example class C of algorithms: all greedy algorithms that rank by $w_{\sqrt{(1+\text{deg}(v))^{p}}}$ for a parameter $p \geq 0$.
- can be adaptive or non-adaptive

(no adjacent vertices allowed)
Model #1: Unknown Distribution

Offline ("Batch") Learning Model: (≈ PAC learning)
- unknown distribution F over inputs z of problem π
- receive s i.i.d. samples $z_1,...,z_s$ from F
- based on sample, choose an algorithm A of C to use on all future inputs
 - extension: choose mapping from instance features to algorithms (a la SATZilla)

Goal: identify A^* that (approximately) minimizes

$$E_{z \sim F}[\text{cost}(A,z)]$$

(over A in C)
Lesson from learning theory: sample complexity scales with “complexity” of the “hypothesis class.”

- e.g., VC dimension

Corollary: the best “simple” hypothesis can be learned from a modest amount of data.

Proposed simplicity measure of a class C of algorithms: pseudodimension of the real valued functions (from inputs to performance) induced by C.
Theorem: [Haussler 92], [Anthony/Bartlett 99] if \(C \) has low pseudodimension, then it is easy to learn from data the best algorithm in \(C \).

- obtain \(s = \tilde{\Omega}(H^2 \varepsilon^{-2} d) \) samples \(z_1, \ldots, z_s \) from \(F \), where \(d = \) pseudodimension of \(C \) (range of cost = \([0,H]\))
- let \(A^* = \) algorithm of \(C \) with minimum average cost on the samples

Guarantee: with high probability, expected cost of \(A^* \) (w.r.t. \(F \)) within \(\varepsilon \) of optimal algorithm in \(C \).
Pseudodimension: Examples

$64K$ question: do interesting classes of algorithms have small pseudodimension?

Examples:

• finite set C \(O(\log |C|)\)
• single-parameter greedy algorithms \(O(\log n)\)
• local search with neighborhood size n^k \(O(k \log n)\)
• “bucket-based” sorting algorithms \(O(n \log n)\)
• per-instance algorithm selection \(O(|F| \cdot \text{pd}(C))\)
Pseudodimension: Definition

[Pollard 84] Let F = set of real-valued functions on X. (for us, $X = \text{instances}$, $F = \text{algorithms}$, range = cost(A, z))

F shatters a finite subset $S = \{v_1, \ldots, v_s\}$ of X if:

- there exist real-valued thresholds t_1, \ldots, t_s such that:
- for every subset T of S
- there exists a function f in F such that:

\[f(v_i) \geq t_i \iff v_i \text{ in } T \]

Pseudodimension: maximum size of a shattered set.
Pseudodimension: Example

Let $C = \text{WIS greedy algorithms with scoring rule of the form } w_v/(\text{deg}(v)+1)^p$ (e.g. for $p \geq 0$)

Claim: C can only shatter a subset $S=\{z_1,\ldots,z_s\}$ if $s = O(\log n)$. (hence pseudodimension $O(\log n)$)

Proof idea: Fix S. Call p, q *equivalent* if they induce identical executions on all inputs of S.

- **Lemma:** number of equivalence classes can only grow polynomially with n, s (uses “single-parameter” property)
- Since need 2^s labelings to shatter S, $s = O(\log n)$.

Proof of Lemma

Lemma: number of equivalence classes can only grow polynomially with \(n, s \) (uses “single-parameter” property).

Proof idea: Fix sample \(S \) of size \(s \).

- greedy alg depends only on results of comparisons
- **single-crossing property**: for each possible comparison (between two vertices), flips at most one as \(p \) goes from 0 to infinity \([w_v/(\deg(v)+1)^p \text{ vs. } w_x/(\deg(x)+1)^p]\)
- \# possible comparisons = \(\text{poly}(n,s) \)
- only \(\text{poly}(n,s) \) distinct algorithms (w.r.t. \(S \))
Pseudodimension: Upshot

Examples:
• finite set C $O(\log |C|)$
• single-parameter greedy algorithms $O(\log n)$
• local search with neighborhood size n^k $O(k \log n)$
• “bucket-based” sorting algorithms $O(n \log n)$
• per-instance algorithm selection $O(|F| \cdot \text{pd}(C))$

Recall: Can learn the best algorithm with sample complexity polynomial in the pseudodimension.
• also: running time at most exponential in dimension
Gradient Descent

Recall: for strongly convex functions, have convergence guarantee for all sufficiently small step sizes.

In practice: use much more aggressive step sizes in hopes of converging more quickly.

Result: can learn the best step size (to minimize expected # of iterations) from few samples.

Open: more generally, hyperparameter optimization?
Selecting an Algorithm Online

Online learning setup: (fix a problem π)

- set of actions known up front (for us, algorithms of C)
- each time step $t=1,2,...,T$:
 - we commit to a distribution p^t over actions/algorithms
 - adversary picks a cost vector (here, induced by an instance z of P)
 - algorithm A selected according to p^t
 - incur cost(A,z)

Details: see Rishi Gupta’s talk at BWCA workshop (Nov 16)
Regret-Minimization

Benchmark: best fixed algorithm \(A \) of \(C \) (in hindsight) for the adversarially chosen inputs \(z_1, \ldots, z_T \)

Goal: online algorithm that, in expectation, always incurs cost at most benchmark, plus \(o(T) \) error term.

Question #1: Weighted Majority/Multiplicative Weights?
- **issue**: what if \(A \) an infinite set?

Question #2: extension to Lipschitz cost vectors?
- **issue**: not at all Lipschitz! (e.g., for greedy WIS)
Theorem: for a sufficiently large constant n and arbitrary nonnegative vertex weights, there is no online algorithm with a non-trivial regret guarantee for the greedy WIS algorithm selection problem.

- **idea:** each day t, learning algorithm knows an interval of length 2^{-t} that contains the optimal value of p, but if it guesses the wrong half it incurs high cost
 - (crucially exploits non-Lipschitzness)
Theorem: for “smoothed WIS instances” (a la [Spielman/Teng 01]), can achieve expected regret $1/poly(n)$ as $T \rightarrow \infty$

Idea:
- run a no-regret algorithm using a “net” of the space of algorithms
- smoothed instances \Rightarrow the optimal algorithm is typically equivalent to one of the net algorithms
Open Questions

• non-trivial learning algorithms? (or a proof that, under complexity assumptions, none exist)

• extend gradient descent result to more general hyperparameter optimization problems

• trade-offs between representation and learning error

• connections to more traditional measures of “algorithm/problem complexity”?
Summary

- application-specific algorithm selection naturally modeled as a learning problem (offline or online)
- for the offline/distributional model, use pseudodimension to bound the sample complexity of learning the best algorithm
 - pseudodimension is low for many natural algorithm classes
 - analytically tractable
- for the online/distribution-free model, no-regret impossible in worst case, possible for smooth instances