
CS161, Winter 2011 Handout #16

Notes on Strongly Connected Components

Recall from Section 3.5 of the Kleinberg-Tardos book that the strongly connected components of a directed
graph G are the equivalence classes of the following equivalence relation: u ∼ v if and only if there is a directed
u v path and also there is a directed v u path. (Check that this is indeed an equivalence relation.) For
example, in the directed graph in Figure 1, the strongly connected components are identified by the dashed
circles.

Figure 1: The strongly connected components of a directed graph.

1 The Algorithm

Goal of Lecture: to give a linear-time (i.e., O(m+n)-time) algorithm that computes the strongly connected
components of a directed graph.

The algorithm we present is essentially two passes of depth-first search, plus some extremely clever
additional book-keeping. The algorithm is described in a top-down fashion in Figures 2–4.

Input: a directed graph G = (V, E), in adjacency list representation. Assume that the vertices V are labeled
1, 2, 3, . . . , n.

1. Let Grev denote the graph G after the orientation of all arcs have been reversed.

2. Run the DFS-Loop subroutine on Grev, processing vertices according to the given order, to obtain a
finishing time f(v) for each vertex v ∈ V .

3. Run the DFS-Loop subroutine on G, processing vertices in decreasing order of f(v), to assign a leader
to each vertex v ∈ V .

4. The strongly connected components of G correspond to vertices of G that share a common leader.

Figure 2: The top level of our SCC algorithm. The f -values and leaders are computed in the first and second
calls to DFS-Loop, respectively (see below).

1

Input: a directed graph G = (V, E), in adjacency list representation.

1. Initialize a global variable t to 0.

[This keeps track of the number of vertices that have been fully explored.]

2. Initialize a global variable s to NULL.

[This keeps track of the vertex from which the last DFS call was invoked.]

3. For i = n downto 1:

[In the first call, vertices are labeled 1, 2, . . . , n arbitrarily. In the second call, vertices are labeled by
their f(v)-values from the first call.]

(a) if i not yet explored:

i. set s := i

ii. DFS(G, i)

Figure 3: The DFS-Loop subroutine.

Input: a directed graph G = (V, E), in adjacency list representation, and a source vertex i ∈ V .

1. Mark i as explored.

[It remains explored for the entire duration of the DFS-Loop call.]

2. Set leader(i) := s

3. For each arc (i, j) ∈ G:

(a) if j not yet explored:

i. DFS(G, j)

4. t + +

5. Set f(i) := t

Figure 4: The DFS subroutine. The f -values only need to be computed during the first call to DFS-Loop, and
the leader values only need to be computed during the second call to DFS-Loop.

2

As we’ve seen, each invocation of DFS-Loop can be implemented in linear time. You should think
about how to implement the remaining details of the algorithm so that its overall running time is linear (i.e.,
(O(m + n))).

2 An Example

But why on earth should this algorithm work? An example should increase its plausibility (though it
certainly doesn’t constitute a proof of correctness). Figure 5(a) displays a reversed graph Grev, with its
vertices numbered arbitrarily, and the f -values computed in the first call to DFS-Loop. In more detail, the
first DFS is initiated at node 9. The search must proceed next to node 6. DFS then has to make a choice
between two different adjacent nodes; we have shown the f -values that ensue when DFS visits node 3 before
node 8.1 When DFS visits node 3 it gets stuck; at this point node 3 is assigned a finishing time of 1. DFS
backtracks to node 6, proceeds to node 8, then node 2, and then node 5. DFS then backtracks all the way
back to node 9, resulting in nodes 5, 2, 8, 6, and 9 receiving the finishing times 2, 3, 4, 5, and 6, respectively.
Execution returns to DFS-Loop, and the next (and final) call to DFS begins at node 7.

Figure 5(b) shows the original graph (with all arcs now unreversed), with nodes labeled with their finishing
times. The magic of the algorithm is now evident, as the SCCs of G present themselves to us in order: the
first call to DFS discovers the nodes 7–9 (with leader 9); the second the nodes 1, 5, and 6 (with leader 6);
and the third the remaining three nodes (with leader 4).

1

7

4

9

6

3

8

2

5

f(1) = 7

f(4) = 8

f(7) = 9

f(9) = 6

f(6) = 5

f(3) = 1

f(8) = 4

f(2) = 3

f(5) = 2

(a) First DFS-Loop on Grev

7

9

8

6

5

1

4

3

2

leader = 9
leader = 6

leader = 4

(b) Second DFS-Loop on G

Figure 5: Example execution of the strongly connected components algorithm. In (a), nodes are labeled
arbitrarily and their finishing times are shown. In (b), nodes are labeled by their finishing times and their
leaders are shown.

3 Proof of Correctness

3.1 The Acyclic Meta-Graph of SCCs

First, observe that the strongly connected components of a directed graph form an acyclic “meta-graph”,
where the meta-nodes correspond to the SCCs C1, . . . , Ck, and there is an arc Ch → Cℓ with h 6= ℓ if and
only if there is at least one arc (i, j) in G with i ∈ Ch and j ∈ Cℓ. This directed graph must be acyclic:
since within a SCC you can get from anywhere to anywhere else on a directed path, in a purported directed
cycle of SCCs you can get from every node in a constituent SCC to every other node of every other SCC
in the cycle. Thus the purported cycle of SCCs is actually just a single SCC. Summarizing, every directed
graph has a useful “two-tier” structure: zooming out, one sees a DAG on the SCCs of the graph; zooming
in on a particular SCC exposes its finer-grained structure. For example, the meta-graphs corresponding to
the directed graphs in Figures 1 and 5(b) are shown in Figure 6.

3.2 The Key Lemma

Correctness of the algorithm hinges on the following key lemma.

1Different choices of which node to visit next generate different sets of f -values, but our proof of correctness will apply to
all ways of resolving these choices.

3

C1

C2

C3

C4

(a) SCC graph for Figure 1

C1C2
C3

(b) SCC graph for Figure 5(b)

Figure 6: The DAGs of the SCCs of the graphs in Figures 1 and 5(b), respectively.

Key Lemma: Consider two “adjacent” strongly connected components of a graph G: components C1

and C2 such that there is an arc (i, j) of G with i ∈ C1 and j ∈ C2. Let f(v) denote the finishing time of
vertex v in some execution of DFS-Loop on the reversed graph Grev. Then

max
v∈C1

f(v) < max
v∈C2

f(v).

Proof of Key Lemma: Consider two adjacent SCCs C1 and C2, as they appear in the reversed graph Grev

— where there is an arc (j, i), with j ∈ C2 and i ∈ C1 (Figure 7). Because the equivalence relation defining
the SCCs is symmetric, G and Grev have the same SCCs; thus C1 and C2 are also SCCs of Grev. Let v
denote the first vertex of C1 ∪ C2 visited by DFS-Loop in Grev. There are now two cases.

First, suppose that v ∈ C1 (Figure 7(a)). Since there is no non-trivial cycle of SCCs (Section 3.1), there
is no directed path from v to C2 in Grev. Since DFS discovers everything reachable and nothing more, it
will finish exploring all vertices in C1 without reaching any vertices in C2. Thus, every finishing time in C1

will be smaller that every finishing time in C2, and this is even stronger than the assertion of the lemma.
(Cf., the left and middle SCCs in Figure 5.)

Second, suppose that v ∈ C2 (Figure 7(b)). Since DFS discovers everything reachable and nothing more,
the call to DFS at v will finish exploring all of the vertices in C1 ∪ C2 before ending. Thus, the finishing
time of v is the largest amongst vertices in C1 ∪C2, and in particular is larger than all finishing times in C1.
(Cf., the middle and right SCCs in Figure 5.) This completes the proof.

C1
C2

i j

v

(a) All f -values in C1 smaller than in C2

C1
C2

i j

v

(b) v has the largest f -value in C1 ∪ C2

Figure 7: Proof of Key Lemma. Vertex v is the first in C1 ∪ C2 visited during the execution of DFS-Loop

on Grev.

3.3 The Final Argument

The Key Lemma says that traversing an arc from one SCC to another (in the original, unreversed graph)
strictly increases the maximum f -value of the current SCC. For example, if fi denotes the largest f -value of
a vertex in Ci in Figure 6(a), then we must have f1 < f2, f3 < f4. Intuitively, when DFS-Loop is invoked

4

on G, processing vertices in decreasing order of finishing times, the successive calls to DFS peel off the SCCs
of the graph one at a time, like layers of an onion.

We now formally prove correctness of our algorithm for computing strongly connected components.
Consider the execution of DFS-Loop on G. We claim that whenever DFS is called on a vertex v, the
vertices explored — and assigned a common leader — by this call are precisely those in v’s SCC in G. Since
DFS-Loop eventually explores every vertex, this claim implies that the SCCs of G are precisely the groups
of vertices that are assigned a common leader.

We proceed by induction. Let S denote the vertices already explored by previous calls to DFS (initially
empty). Inductively, the set S is the union of zero or more SCCs of G. Suppose DFS is called on a vertex v
and let C denote v’s SCC in G. Since the SCCs of a graph are disjoint, S is the union of SCCs of G,
and v /∈ S, no vertices of C lie in S. Thus, this call to DFS will explore, at the least, all vertices of C.
By the Key Lemma, every outgoing arc (i, j) from C leads to some SCC C′ that contains a vertex w with
a finishing time larger than f(v). Since vertices are processed in decreasing order of finishing time, w has
already been explored and belongs to S; since S is the union of SCCs, it must contain all of C′. Summarizing,
every outgoing arc from C leads directly to a vertex that has already been explored. Thus this call to DFS

explores the vertices of C and nothing else. This completes the inductive step and the proof of correctness.

5

