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1 The Story So Far

Our current theme is the design of ex post incentive compatible (EPIC) ascending auctions
in which sincere bidding leads to a welfare-maximizing allocation. Recall that in an EPIC
auction, sincere bidding — answer all queries honestly — is an ex post Nash equilibrium
(EPNE) that guarantees nonnegative utility.

Recall the current scenario of unit demand bidders. Scenario #3:

• A set U of m non-identical items.

• Each bidder i has a private valuation vij for each item j. The number n of bidders can
be more or less than m.

• Each bidder i has unit demand, meaning its value for a bundle S ⊆ U of items is

vi(S) := max
j∈S

vij.

Recall that in this scenario, the VCG mechanism — which is always DSIC and welfare-
maximizing — can be implemented in polynomial time, as computing a welfare-maximizing
allocation (and also the VCG payments) reduces to a bipartite matching problem. By the
Revelation Principle, this is a logical prerequisite for the type of ascending auction that we’re
looking for.

Natural ascending auctions terminate at (approximate) Walrasian equilibria (WE). Recall
that a WE is a price vector q and an allocation (i.e., matching) M such that:

1. Every bidder i gets a preferred good, meaning that M(i) ∈ argmax{vu(j)− q(j)}.1
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2. Item j is unsold only if q(j) = 0.

We’ll see later that our goal of designing an EPIC and welfare-maximizing ascending
auction requires simulating the truthful VCG outcome — both its allocation and its pay-
ment — when bidders bid sincerely. This seems intimidating because VCG payments, while
polynomial-time computing in scenario #3 as the different between two matching problems,
do not appear simple. The key result from last lecture was a characterization of the VCG
payments in scenario #3 as the smallest WE price vector.

Theorem 1.1 (Last Lecture) In scenario #3, let v be a valuation profile. In the truthful
VCG outcome (p, M), let p(j) denote the payment of the winner of item j, or p(j) if j was
not sold. Then:

1. (p, M) is a WE;

2. p ≤ q component-wise for every WE price vector q.

We’ll see in the next lecture that the first part of Theorem 1.1 crucially depends on the
unit-demand assumption.

Summarizing, we’ve reduced our overarching goal to the design of an auction that satisfies
the following three properties.

1. EPIC.

2. Sincere bidding leads to the smallest WE.

3. Simple and (pseudo)polynomial-time.

2 The Crawford-Knoer Auction

The following auction was proposed by Crawford and Knoer [2]; our description and analysis
follows Demange et al. [4]. The keen reader will notice similarities to the deferred acceptance
algorithm of Gale and Shapley [5]. A similar algorithm for bipartite matching was proposed
independently by Berksekas [1]. Incentive issues were only considered later, by Leonard [6]
and Demange and Gale [3].

Crawford-Knoer (CK) Auction:

1. Initialize the price of every item j to q(j) = 0.

2. Initially all bidders are unassigned.

3. while (TRUE):

(a) Ask each bidder for a favorite item (or ∅) at the prices q + ε, meaning an item
j ∈ Di(q + ε) := argmax{vi(j)− (q(j) + ε)}. Treat this as a “bid” for item j.2

2It is remarkable that the auction can get away with asking for one of possibly many favorite items.
Several other ascending auctions require the full demand set Di(q + ε).
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(b) If no unassigned bidder submits a bid, then halt with the current allocation and
prices q.

(c) Otherwise, pick an arbitrary unassigned bidder i that bid for item j and assign j
to i.

i. If item j was previously assigned to bidder i′, mark i′ as unassigned and
increase the price q(j) by ε.

We first make several immediate observations about the CK auction. The bidder to bid on
an item j receives it at price 0; each subsequent bid on j increments its price by ε. After
a bidder i bids for j, it remains assigned to j until it is outbid by some other bidder — it
cannot relinquish the item by its own volition. Thus, once an item has been bid on, it is
forevermore assigned to some bidder. At termination, an item is assigned to the most recent
bidder for it. Assuming sincere bidding — meaning all bidders i always honestly report
an item from Di(q + ε) (or report that there none) — the CK auction will terminate in
a pseudopolynomial number of iterations. If vmax = maxi,j vij, then there will be at most
vmax/ε bids on each of the m items. One could of course imagine variants of the CK auction
designed to reduce the number of iterations, for example by letting the price increment ε
grow larger as the auction proceeds.

3 Analysis of the CK Auction

We next establish the following fundamental result.

Theorem 3.1 Up to ε terms, the outcome of the CK auction under sincere bidding is the
VCG outcome under truthful revelation.

From last lecture, all we need to prove is that the sincere bidding outcome of the CK auction
is approximately the smallest Walrasian equilibrium. The formal statement of Theorem 3.1
is the conjunction of the next three lemmas. Lemma 3.2 argues that the outcome is an
ε-Walrasian equilibrium, which should not be surprising given its termination condition.
Lemma 3.4 is the most significant piece: the prices computed by CK auction with sincere
bidding are approximately lower than every Walrasian equilibrium. It is not immediately
apparent from the CK auction’s description why it should find an ε-WE in such a parsimo-
nious way. Lemma 3.5 proves a converse that, as an ε-WE, the prices computed by the CK
auction cannot be much smaller than those of the smallest (exact) WE.

Lemma 3.2 If all bidders bid sincerely, then the CK auction terminates at an ε-WE (q, M).3

Recalling an exercise from last week, Lemma 3.2 immediately gives the following corollary.

3Recall from last lecture this means that unsold goods have price 0, and that each bidder’s utility is
within ε of maxj∈U∪{∅} vi(j)− q(j).
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Corollary 3.3 If all bidders bid sincerely, then the CK auction terminates with an allocation
that has surplus within mε of the maximum possible.

Proof of Lemma 3.2: Our discussion of the CK auction shows that an unsold item j was
never bid on and hence satisfies q(j) = 0. So, consider a bidder i that was matched with
j ∈ U ∪ {∅}. Suppose that at the time of i’s most recent bid, the item prices were r. By
definition, j is i’s preferred option at the prices r+ε. After i’s bid, j’s price was incremented
by ε (unless j = ∅) and other prices stayed the same, so j remained i’s preferred option, up
to ε. For the remainder of the CK auction, j’s price remained the same (so q(j) = r(j) + ε)
while other prices only increased (so q(`) ≥ r(`) for ` 6= j). Thus j is i’s preferred option,
up to ε, at the conclusion of the CK auction.4 �

Corollary 3.3 states that the CK auction’s allocation under sincere bidding is essentially
the same as that in truthful VCG outcome. But what about the payments?

Lemma 3.4 Fix a valuation profile v. Let (q, M) denote an outcome of the CK auction at
termination, under sincere bidding. Let (p, M∗) denote the outcome of the VCG mechanism
under truthful revelation. Then

q(j) ≤ p(j) + ε ·min{m, n} (1)

for every item j.

Proof: The proof is a little tricky. Consider an iteration of the CK auction in which, for
a positive integer `, a bidder i1 is about to bid on an item ji such that, under the current
prices r,

r(j1) > p(j1) + ε · `. (2)

Under this assumption, we’ll construct sets U1 ⊆ U2 ⊆ · · · ⊆ U` of goods and sets B1 ⊆
B2 ⊆ · · ·B` with the following properties for k = 1, 2, . . . , `:

(1) Uk has k items and Bk has k + 1 bidders.

(2) For every item j of Uk,
r(j) > p(j) + ε · (`− k + 1). (3)

(3) For every bidder i of Bk, i’s most recent bid was for an item in Uk.
5

(4) Every bidder of Bk is matched under the VCG allocation M∗ to some item.

The point is that such a construction implies that, by (1) and (4), B` has ` + 1 bidders that
are all matched under M∗. This implies that ` + 1 ≤ min{n, m}, and so no bidder ever bids

4Later we’ll generalize the CK auction and its properties to substitutes valuation, which are essentially
the preferences that enjoy similar stability as item prices ascend.

5For bidder i1, we consider its current bid for item j1 as its most recent.
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in the CK auction on a good j with r(j) − p(j) > ε · (min{n, m} − 1), which proves the
lemma.

We construct the Uk’s and the Bk’s by induction. For the base case, we set U1 = {j1};
(2) is satisfied. Since r(j1) > 0, there is some tentative winner i2 that bidder i1 is about to
outbid (recall ??). Define B1 = {i1, i2}; (1) and (3) are satisfied. To prove property (4), note
that since i1 and i2 are the two most recent bidders on j1, vi1(j1), vi2(j1) ≥ r(j1) > p(j1).
That is, with respect to the prices p, each of i1, i2 has an item that would net them positive
utility (namely, j1). Since (p, M∗) is a WE (recall ??), neither i1 nor i2 can be unassigned
in M∗.

For the inductive step, let Uk−1 and Bk−1 satisfy (1)–(4). We need to augment each by
one new member, while preserving the properties (2)–(4). We begin by identifying the next
item to add. By (1) and (4) of the inductive hypothesis, there is a bidder i ∈ Bk−1 matched
to a good jk /∈ Uk−1 under M∗. By (3), bidder i’s most recent bid in the CK auction was for
some item j ∈ UK−1. Why did i bid for j instead of jk, especially in light of the fact that,
by (2), all of the goods of Uk−1 are relatively expensive? The only reason can be that jk is
expensive as well.

In more detail, consider the iteration of i’s most recent bid, for the item j ∈ Bk. At the
prices s at that time, it must have been that

vi(j)− s(j) ≥ vi(jk)− s(jk)− ε.

Since j’s price has not changed since (r(j) = s(j))6 price of jk can only have increased since
(r(jk) ≥ s(jk)), the same inequality holds in the current iteration:

vi(j)− r(j) ≥ vi(jk)− r(jk)− ε.

On the other hand, since (p, m∗) is a WE,

vi(jk)− p(jk) ≥ vi(j)− p(j)− ε.

This flip in i’s preferences at the different prices can only be explained by jk being at least
as expensive at r relative to p compared to j (up to ε):

r(jk)− p(jk) ≥ r(j)− p(j)− ε ≥ ε · (`− k + 1), (4)

with the last inequality following from property (2) of the inductive hypothesis (recall (3)).
Thus, we can define Uk = Uk−1 ∪ {jk} and satisfy property (3).

The inequality (4) implies that r(jk) > 0, so item jk is currently assigned to some bidder
ik+1. By property (3) of the inductive hypothesis, ik+1 6∈ Bk−1. Setting Bk = Bk−1 ∪ {ik+1

satisfies properties (1) and (3).
Finally, property (4) holds by the same argument as in the base case: since r(jk) > p(jk)

and (p, M∗) is a WE, jk must be matched to an item in M∗. �

6If i 6= i1, then i is still in possession of the good j and the price is the same. Bidder i1 is the one bidding
right now, so s = r.
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Lemma 3.4 states that, up to a small error, the prices computed by the CK algorithm
are no higher than the VCG prices. We know from last time that an exact WE cannot be
lower than the VCG prices. The next lemma extends this property to ε-WE, such as the one
computed by the CK auction. It plays an important role in our analysis of incentives in the
auction.

Lemma 3.5 Fix a valuation profile v. Let (q, M) denote an ε-WE for v. Let (p, M∗)
denote the outcome of the VCG mechanism under truthful revelation. Then

q(j) ≥ p(j)− ε ·min{m, n} (5)

for every item j.

Lemma 3.5 can be proved using an inductive construction similar to that in the proof of
Lemma 3.4, although the details differ. The exercises provide a step-by-step guide to the
proof.

4 Incentives in the CK Auction

Section 3 shows that, assuming sincere bidding, the CK auction approximately simulates
the VCG outcome. Does this automatically imply that sincere bidding is an (approximate)
EPNE? After all, truthful revelation is a dominant strategy in the VCG mechanism that is
being simulated.

The answer is subtle. Simulating the VCG outcome gives us a property that is weaker
than EPIC. To explain, we can group the possible actions of a player i with a valuation vi

into three categories, from least to most devious.

1. Answer all queries honestly (with respect to vi).

2. For some valuation vi
′ 6= vi, answer all queries as if its valuation was vi

′.

3. Answer queries in an arbitrary, possibly inconsistent, way. valuation.

Call an action consistent if it is realized by sincere bidding with respect to some valuation.
The first two categories above are consistent actions. In indirect auctions, however, not
all actions are consistent. The “crazy bidder #2” from the first lecture, used to illustrate
the impossibility of a DSIC guarantee for all but the simplest iterative auction, used an
inconsistent action.

If an auction A simulates the VCG outcome, there is an outcome-preserving bijective
correspondence between profiles of consistent actions in A and bid profiles in the VCG
mechanism. Since no bid deviations improve over direct revelation in the VCG mechanism,
no deviations to consistent actions improve over sincere bidding in the auction A.

Proposition 4.1 Let A be an iterative auction such that the sincere bidding outcome of A
is the same as the truthful revelation outcome of the VCG mechanism. For every bidder i
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and valuation profile v, if every player other than i bids sincerely, then sincere bidding is
bidder i’s best response among consistent actions.

The guarantee in Proposition 4.1 is weaker than EPIC, which states that sincere bidding
is bidder i’s best response among all actions, consistent or not. Indeed, the hypothesis of
the proposition do not guarantee that the auction A is EPIC. As an exercise, we invite the
reader to concoct an auction A for which sincere bidding leads to the VCG outcome but in
which a player can have an incentive to deviate to an inconsistent action when the others
are bidding sincerely.

For the special of the CK auction, however, we can prove that it possesses the stronger
EPIC guarantee. The example above shows that the argument must make use of the special
structure of the auction.

Theorem 4.2 The CK auction is EPIC (up to error 2ε ·min{m, n}).

Proof: Fix valuations v and a bidder i. Assume that all bidders other than i bid sincerely.
Proposition 4.1 assures us that deviations to consistent actions can’t help bidder i. The plan
is to show that, for every deviation to an inconsistent action, there is an equally (in)effective
deviation to a consistent action.

Consider an arbitrary deviation by bidder i. Clearly, this deviation can only improve
over sincere bidding if the auction terminates with i being allocated some item, say item j.
Let (q, M) denote the outcome of the CK auction.

Intuitively, there is a very direct way that i could have acquired item j: bid consistently
with the valuation vi

′, defined as vi
′(j) = +∞ (or sufficiently large) and vi

′
j′ = 0 for j 6= j′.

The worry is that i figured out an inconsistent action that netted item j at a cheaper price;
we proceed to show that this cannot be the case.

We claim that (q, M) is an ε-WE for the valuation profile (vi
′,v−i). First, bidder i clearly

gets its favorite good j with respect to the valuation vi
′. All of the other bidders get their

favorite goods, up to ε, by the stopping condition of the CK auction (as in the proof of
Lemma 3.2). Finally, in the CK auction, an item goes unsold only if it no one ever bid on it,
in which case its price is 0. In particular, bidder i has no ability to relinquish an item that
it is assigned to.

Let (p′, M ′) be the outcome of the VCG mechanism with the bid profile (vi
′,v−i); by

construction of vi
′, M ′(i) = j. The claim above and Lemma 3.5 imply that q(j) ≥ p′(j)− ε ·

min{m, n} for every j. We thus have

utility of i in (q, M) ≤ utility of i in VCG with profile (vi
′,v−i) + ε ·min{m, n}

≤ utility of i in VCG with profile (vi,v−i) + ε ·min{m, n}
≤ utility of i bidding sincerely + 2ε ·min{m, n},

where the second inequality follows from the fact that the VCG mechanism is DSIC and the
third inequality follows from Lemma 3.4. �
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