
CS364B: Frontiers in Mechanism Design
Lecture #6: Gross Substitutes: Welfare Maximization

in Polynomial Time∗

Tim Roughgarden†

January 22, 2014

1 Introduction

Last lecture we introduced the gross substitutes condition.

Definition 1.1 (Gross Substitutes) A valuation vi defined on item set U satisfies the
gross substitutes (GS) condition if and only if the following condition holds. For every price
vector p, every set S ∈ Di(p), and every price vector q ≥ p, there is a set T ⊆ U with

(S \ A) ∪ T ∈ Di(q),

where A = {j : q(j) > p(j)} is the of items whose prices have increased (in q relative to p).

We motivated this condition as the natural one under which the Kelso-Crawford auction
converges to a Walrasian equilibrium, where we think of the set S as the last bundle of
goods that a bidder i bid on (at prices p) and S \A as the items bid i still possesses (at the
original prices) at some later iteration of the auction with prices q. The condition asserts
that i still wants the items of S \ A and does not want to withdraw its standing bids for
them. We discussed last lecture how, more generally, the gross substitutes condition is on a
sense the most general one under which Walrasian equilibria is guaranteed.

This lecture gives a completely different sense in which gross substitutes valuations rep-
resent the frontier of tractability. Today we study the optimization problem of computing a
welfare-maximizing allocation in polynomial time. This is essentially equivalent to studying
whether or not the VCG mechanism can be implemented in polynomial time. The reason
is that the VCG mechanism reduces to n + 1 instances of welfare maximization, where n
is the number of bidders — once to compute the allocation, and once more per bidder to

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1



compute the payments. The properties of a polynomial-time VCG implementation and the
existence of Walrasian equilibria are very different — one concerns computation and incen-
tives, the other the mere existence of (non-DSIC) market-clearing prices — and yet the gross
substitutes condition is more or less the most general one for which either is possible. The
condition is also roughly necessary and sufficient for several other properties that we won’t
have time to discuss.

The set of gross substitutes valuations is fairly general and abstract — it contains the
previous four scenarios, among others, as special cases — and proving the tractability of
welfare-maximization correspondingly requires fairly heavy machinery. The point of the
algorithm, which is not simple or practical, is to establish the tractability of the problem in
principle. We will, however, learn several useful tools along the way, including an illuminating
interpretation of Walrasian equilibria as optimal dual solutions.

2 Warm-Up: Unit-Demand Bidders, Revisited

Our approach to polynomial-time welfare-maximization is via linear programming. The
relevant ideas are best grasped in the simpler scenario of non-identical items with unit-
demand bidders (scenario #3). As we’ll see, the key results extend with little difficulty to
arbitrary gross substitutes valuations.

2.1 An Integer Programming Formulation and Its Linear Relax-
ation

We begin with an integer programming formulation of the welfare-maximization problem
for unit-demand bidders. The unit-demand assumption allows us to restrict attention to
allocations in which each bidder gets at most one item. We can then identify allocations
with bipartite matchings, with bidders on one side of the graph, items on the other side,
and a complete (bipartite) edge set with edge weights corresponding to the valuations vij

(Figure 1).
Our integer program, denoted (IP ), has one decision variable per bidder i and item j:

xij =

{
1 if i gets item j
0 otherwise.

Our goal is to maximize welfare, which corresponds to the objective function

max
n∑

i=1

m∑
j=1

vijxij.

To make sure that every item goes to at most one bidder, and that each bidder receives at
most one good, we add the constraints

n∑
i=1

xij ≤ 1 for every j

2



v11

vnm

Items Bidders

Figure 1: For unit-demand bidders, the welfare maximizing solution is a bi-partite matching.

and
n∑

j=1

xij ≤ 1 for every i,

respectively. The allocations awarding at most one bidder to each good are in a one-to-
one objective function-preserving correspondence with the feasible solutions of this integer
program (IP ).

In general, integer programs are hard to solve. We know that there are polynomial-time
algorithms for computing maximum-weight bipartite matchings, however, so this particular
class of integer programs is tractable. Nevertheless, it will be very useful to consider the linear
relaxation of this integer program, where replace each integrality constraint xij ∈ {0, 1} by
the linear constraint xij ≥ 0. (Note the constraint xij ≤ 1 would be redundant.) This linear
relaxation is an explicitly described linear program, and can be solved in polynomial time
using any number of linear programming algorithms. Since its feasible region is only larger
than that of the original integer program, its optimal value can only be larger. (Though as
we’ll see, in this case the optimal value is the same.) We call this the primal linear program,
denoted (P ), to distinguish it from the dual linear program introduced next.

2.2 The Dual Linear Program

This section derives a linear program that is “dual” to the primal program above. Each
feasible point of this dual linear program represents a canonical type of upper bound on how
big the optimal value of the primal linear program can be.

As a thought experiment, suppose we give a nonnegative weight to each of the bidders

3



(the ui’s) and the items (the pj’s),
1 so that every edge (i, j) is “covered”:

ui + pj ≥ vij. (1)

Then, we claim that every matching has welfare (i.e.,
∑

i,j vijxij) at most the sum of the
weights (i.e.,

∑
i ui +

∑
j pj). Why? Well, suppose when you show me a matching, I’ll be a

nice guy and give you credit ui + pj instead of vij for each edge (i, j) in your matching —
this only overestimates its welfare. Since your matching will only get credit for each weight
ui or pj at most once, in the best-case scenario you’ll attain the full credit

∑
i ui +

∑
j pj.

Looking at this argument more carefully, we see that the upper bound of
∑

i ui +
∑

j pj

applies more generally to fractional matchings, meaning feasible solutions to the primal
linear program. The reason is that the constraints

∑
i xij ≤ 1 and

∑
j xij ≤ 1 ensure that

the best-case scenario remains that the fractional matching picks up every weight ui and pj

exactly once. Algebraically, if you like, whenever x is a fractional matching and (p,u) are
nonnegative weights that cover all edges (in the sense of (1)), we have

n∑
i=1

m∑
j=1

vijxij ≤
n∑

i=1

m∑
j=1

(ui + pj)xij =
n∑

i=1

ui

m∑
j=1

xij +
m∑

j=1

pj

n∑
i=1

xij ≤
n∑

i=1

ui +
m∑

j=1

pj, (2)

where the first inequality follows from (1) and the nonnegativity of the xij’s and the second
inequality follows from the constraints

∑x
i=1 xij ≤ 1 for all j and

∑m
j=1 xij ≤ 1 for all i and

the nonnegativity of the ui’s and pj’s.
The dual linear program, by definition, is the best (i.e., minimum) upper bound on the

primal linear program that can be derived in this way:

min
n∑

i=1

ui +
m∑

j=1

pj

subject to:

(D) ui + pj ≥ vij for every (i, j)

ui, pj ≥ 0 for every i and j.

The first set of constraints can be suggestively rewritten as

ui ≥ vij − pj (3)

for every i and j.
We have established the following.

Proposition 2.1 (Weak Duality) Every feasible solution to (P ) has objective function
value at most that of every feasible solution to (D).

We emphasize that Proposition 2.1 is useful but not deep — we defined the dual linear
program to ensure that weak duality holds.

1Eventually, we’ll interpret these as bidder utilities and item prices, respectively.

4



2.3 Duality and Complementary Slackness

Next we ask: given feasible solutions x to (P ) and (p,u) to (D), when do they have equal
objective function value? Note that equality in Proposition 2.1 simultaneously certifies the
optimality of both x and (p,u) — for example, no primal solution can be larger than any
dual solution, so meeting one with equality is as good as it gets.

The answer is that x and (p,u) have equal objective function value if and only if both of
the inequalities in (2) hold with equality. This translates to the following conditions, called
the complementary slackness conditions.

(CS1) vij = ui + pj (i.e., ui = vij − pj) whenever xij > 0;

(CS2)
∑m

j=1 xij = 1 whenever ui > 0;

(CS3)
∑n

i=1 xij = 1 whenever pj > 0.

In particular, if (CS1)–(CS3) hold for x and (p,u), then both solutions are optimal for their
respective linear programs.

The non-trivial part of linear programming duality asserts that there is always a choice
of a primal and dual feasible solution so that weak duality holds with equality.

Theorem 2.2 (Strong Duality) The optimal objective function value of a primal linear
program equals that of its dual linear program.

Strong duality, which we won’t prove here, states that there exists a primal-dual pair
with equal objective function values. Thus, the only way that a primal-dual pair can be
simultaneously optimal is by having equal objective function values — if there is a gap,
at least one of them is suboptimal. The complementary slackness conditions (CS1)–(CS3)
are therefore not merely sufficient for simultaneous optimality, as implied already by weak
duality, but also necessary.

Corollary 2.3 (Complementary Slackness) Let x and (p,u) be feasible primal and dual
solutions, respectively. Then x and (p,u) are both optimal if and only if the complementary
slackness conditions (CS1)–(CS3) hold.

2.4 Optimal Dual Solutions and Walrasian Price Vectors

There is an important connection between Walrasian equilibria and optimal solutions to the
dual linear program (D). We state the following result in a way that generalizes effortlessly
to the general valuation model introduced last lecture; the statement is somewhat awkward
for the special case of unit-demand bidders.

Theorem 2.4 ([6]) Let OPTIP and OPTLP denote the optimal objective function values of
the integer program (IP ) and its linear relaxation (P ), respectively.

1. There exists a Walrasian equilibrium if and only if OPTLP = OPTIP .

5



2. In this case, p is a Walrasian price vector if and only if it participates in an optimal
solution (p,u) to (D).

The first statement in Theorem 2.4 is awkward for unit-demand bidders because we already
know that a Walrasian equilibrium exists. Thus, this first statement asserts the well-known
fact that the linear relaxation (P ) of (IP ) is exact, meaning that it has an integer optimal
solution.

Proof of Theorem 2.4: For a price vector p and a matching M , we prove that (p, M) is a
Walrasian equilibrium if and only if (i) p participates in an optimal dual solution and (ii)
M is optimal solution to the linear relaxation (P ). Both parts of the theorem then follow
immediately. Note that (ii) asserts that M is not only an optimal integral solution, but also
optimal even amongst all fractional matchings.

For the forward direction, suppose (p, M) is a WE. Let x denote the (integral) solution
to (P ) induced by M (i.e., the characteristic vector of M). To extend p to a feasible solution
to the dual program (D), we set each decision variable ui as small as possible, subject to
feasibility: ui = max{0, maxj(vij − pj)}. Then x and (p,u) are feasible primal and dual
solutions, respectively.

The key claim is that the Walrasian equilibrium conditions for (p, M) imply the com-
plementary slackness conditions (CS1)–(CS3) for x and (p,u). Using Corollary 2.3, this
will complete the proof of the forward direction. Condition (WE1) of Walrasian equilib-
rium asserts that, for every bidder i, the item M(i) to which it is matched belongs to
argmax{vij − pj}, with the empty set a possible option (with utility 0). Recalling how we
defined the ui’s, this implies that xij > 0 only if ui = vij − pj (i.e., (CS1)) and ui > 0 only if∑m

j=1 xij = 1 (i.e., (CS2)). The third complementary slackness condition (CS3) is precisely
the condition (WE2) of Walrasian equilibria that unsold items have price 0.

For the reverse direction, we simply reverse the argument. If x and (p, ]u) are an integral
optimal and optimal solution for their respective linear programs, then by Corollary 2.3 the
complementary slackness conditions (CS1)–(CS3) hold, which translate to the Walrasian
equilibrium conditions (WE1) and (WE2) holding for (p.M), where M is the matching
corresponding to the integer solution x. �

3 Extension to General Valuations

We now return to the general valuation model described last lecture, where each bidder has
an arbitrary valuation vi that is monotone and that satisfies vi(∅) = 0. All of the arguments
and conclusion of the previous section, for unit-demand bidders, carry over with little trouble.
The main difference is in the initial integer programming formulation. Since bidders now
might want any subset of items, we require one decision variable per bidder i and bundle
S ⊆ U :

xiS =

{
1 if i gets the bundle S
0 otherwise.

6



The welfare objective is now

max
n∑

i=1

∑
S⊆U

vi(S)xiS.

To make sure that every item goes to at most one bidder, we modify the first set of constraints
to

n∑
i=1

∑
S⊆U : j∈S

xiS ≤ 1 for every j.

Every bidder should get at most one bundle, so∑
S⊆U

xiS ≤ 1 for every i,

Feasible allocations are in a one-to-one objective function-preserving correspondence with the
feasible solutions of this integer program (IP −GEN). In the linear relaxation (P −GEN)
of this integer program, we replace each integrality constraint xiS ∈ {0, 1} by the linear
constraint xiS ≥ 0 (again, the constraint xiS ≤ 1 would be redundant).

Our primal linear program again has one constraint per bidder and per good, so the
decision variables in the dual linear program are exactly the same as before. The full dual is

min
n∑

i=1

ui +
m∑

j=1

pj

subject to:

(D −GEN) ui +
∑
j∈S

pj ≥ vi(S) for every i and S ⊆ U

ui, pj ≥ 0 for every i and j.

As before, we can rewrite the constraints suggestively as ui ≥ vi(S) −
∑

j∈S pj for every i
and S ⊆ U .

Theorem 2.4 extends, with exactly the same proof, to the present general setting.

Theorem 3.1 ([6]) Let OPTIP and OPTLP denote the optimal objective function values of
the integer program (IP −GEN) and its linear relaxation (P −GEN), respectively.

1. There exists a Walrasian equilibrium if and only if OPTLP = OPTIP .

2. In this case, p is a Walrasian price vector if and only if it participates in an optimal
solution (p,u) to (D).

In the present general setting, the first statement of Theorem 3.1 is very interesting. We
know that there are valuation profiles for which there are no Walrasian equilibria. The
first part of Theorem 3.1 says the existence vs. non-existence of WE is governed entirely by
whether or not the linear relaxation of (IP −GEN) is exact. This is remarkable in that the

7



latter condition has nothing to do with prices per se. The second part of the theorem says
that Walrasian price vectors can always be interpreted as dual variables in a natural way.

Last lecture, we use the Kelso-Crawford auction to prove that when all bidders’ valuations
satisfy the gross substitutes condition, there exists a Walrasian equilibrium. Combining this
result with Theorem 3.1 immediately yields the following non-trivial fact.

Corollary 3.2 If v1, . . . , vn satisfy the gross substitutes condition, then the linear relaxation
(P −GEN) of (IP −GEN) is exact.

Corollary 3.2 can also be proved directly, although it is not easy to so [7, §8.7].2 Recapping the
sequence of ideas that got us to this point, we catch a glimpse of the rich and interconnected
theory around the gross substitutes condition, which holds simultaneously the key to strong
incentive and computational tractability guarantees. We used a non-incentive-compatible
ascending auction (the Kelso-Crawford auction) to establish the existence of Walrasian equi-
libria, which implies (through Theorem 3.1) the seemingly unrelated property that we can
maximize welfare via linear programming, which opens the door for a polynomial-time im-
plementation of the VCG mechanism in the next section (which has different payments than
the Kelso-Crawford auction and is DSIC).

4 Implementing the VCG Mechanism in Polynomial

Time

Implementing the VCG mechanism in polynomial time reduces to computing an allocation
(S1, . . . , Sn) that maximizes the welfare

∑n
i=1 vi(Si) in polynomial time — n + 1 invocations

of the latter suffice to compute the VCG mechanism’s allocation and payment rules. This
section focuses on the latter, purely algorithmic, problem.

4.1 Representations of Valuations

We’re going to pursue algorithms that run in time polynomial in the input size. But what
is “input size”? There are at least three possible answers to this question.

The first approach is to assume that the valuations are represented explicitly as a list of
vi(S)’s, for all bidders i and bundles S. This means that the input size is roughly n2m. In
this case, welfare-maximization can be solved in polynomial time by dynamic programming,
even for the most general valuation model from the last lecture (see the exercises). Two
issues with this result are: 2m is an unreasonably large number once m is of moderate size;
and the complexity of the problem is independent of the bidders’ preferences (e.g., whether
items are complements or not), which contradicts all real-world experience with the problem.

The second approach, which is interesting but not pursued in this section, is to focus on
special classes of valuations that can be represented with a number of bits that is polynomial
in n and m. All of the concrete examples of gross substitutes values that we’ve mentioned,

2In fairness, the direct proof does not assume the strong duality of linear programs, as we have done here.

8



such as k-unit valuations, have this property. In such cases, we look for algorithms that run
in time polynomial in n and m.

The third approach is to model a valuation as a “black box” that is capable of answering
“queries.” If this sounds too abstract for you, notice that this is exactly how we’ve been
treating bidders in our ascending auctions along: we have no idea how a bidder represents
internally their valuation, nor do we think of it as part of the input, but we expect a bidder
to be able to quickly answer questions such as demand queries.

With black-box valuations, what kinds of queries are permitted? The answer is somewhat
negotiable, but in auction design, the simpler and more natural the better. Two types of
queries have been extensively studied.

Demand queries. We provide a black-box valuation vi with a price vector p on items, and
expect back one or all of its favorite sets Di(p). All of our ascending auctions thus far have
used demand queries to interact with bidders.

Value queries. We provide a black-box valuation vi with a subset S of items, and expect
back its value vi(S) for that set.

Arguing the reasonableness of a query type can be done in both mathematical and non-
mathematical ways. A good mathematical argument is to show that the query can be
implemented in polynomial time for many or all concrete classes of valuations that one cares
about (cf., the second approach above). Then, counting the query as merely a constant or
polynomial amount of work is not cheating by pushing a ridiculous amount of work onto the
bidder. A good case can be made for value queries along such lines. For demand queries, the
mathematical argument is more mixed — they can be implemented in polynomial time for
many but not all concrete valuation classes of interest. The informal “naturalness” argument
for demand queries is strong, however — it’s hard to think of any iterative auctions in the
real world that don’t use them.

4.2 A Polynomial-Time Algorithm for Welfare Maximization

The goal of this section is to prove that welfare-maximization with gross substitutes valua-
tions is, at least in principle, tractable.

Theorem 4.1 ([4]) If valuations v1, . . . , vn satisfy the gross substitutes condition and are
represented as “black boxes,” then a welfare-maximizing allocation can be computed in a
polynomial (in n and m) amount of time, value queries, and demand queries.3

Theorem 4.1 implies that, under the same assumptions, the VCG mechanism can be imple-
mented in polynomial time.

The algorithm in Theorem 4.1 requires heavy linear programming machinery and is not
practical.4 It is theoretically and conceptually interesting, however. We’ll see next lec-

3In fact, only value queries are required. Time permitting, we’ll explain why in a future bonus lecture.
4There are also combinatorial algorithms, but these are also pretty slow and complex (see [5]).

9



alledged
feasible solution

separation
oracle

“feasible”

violated constraint

Figure 2: A separation oracle.

ture that, for valuations slightly more general than gross substitutes valuations, welfare-
maximization cannot be done in polynomial time (assuming P 6= NP ).

The algorithm Theorem 4.1 uses the ellipsoid algorithm [3] as a subroutine. The ellipsoid
algorithm is an old but still magical algorithm that can solve many implicitly described linear
programs in polynomial time. Other polynomial-time linear programming algorithms, like
interior-point methods, only work for explicitly described linear programs. As such, the
ellipsoid algorithm is an indispensable tool for proving tractability (in principle) results.5

More precisely, consider a linear program such that:

1. There are N decision variables.

2. There are any number of constraints, for example exponential in N . These constraints
are not provided explicitly as input.

3. There is a polynomial-time separation oracle for the set of constraints. By “polynomial-
time,” we mean running time polynomial in N and the maximum number of bits of
precision required. A separation oracle (Figure 2) is a subroutine that takes as input
an alleged feasible solution to the linear program, and either (i) correctly declares the
solution to be feasible; or (ii) correctly declares the solution to be infeasible, and more
strongly provides a proof of infeasibility in the form of a constraint that the proposed
solution violates.

Fact 4.2 (Ellipsoid Algorithm [3]) Every linear program that admits a polynomial-time
separation oracle can be solved in polynomial time.

Again, “polynomial” means polynomial in the number of variables and in the number of
bits of precision. Many researchers use the ellipsoid algorithm as a “black box” without
understanding how it works, and we will continue that tradition in the lecture. For more on
how and why the algorithm works, see e.g. [2, 1].

Proof of Theorem 4.1: The first step is to solve the primal linear program (P − GEN) in
polynomial time. The number of variables in this linear program is exponential in m, so the
ellipsoid algorithm cannot help us. It has only n + m constraints, however, and a result the

5While the ellipsoid algorithm is not practical, other algorithms that rely on a separation oracle, such as
cutting plane methods, are often practically useful (if not polynomial time in the worst case).

10



dual program (D−GEN) has only n+m decision variables. This makes the dual program a
candidate for application of the ellipsoid algorithm, provided we can implement a separation
oracle in polynomial time.

Given an alleged solution (p,u) to the dual program (D − GEN), how can we quickly
verify whether or not it is feasible? We can check the n+m nonnegative constraints directly
— the hard part is verify the exponentially many constraints of the form

ui ≥ vi(S)−
∑
j∈S

pj (4)

for a bidder i a bundle S. We do this for each of the n bidders in turn. For a bidder i, we use
a demand query (using the dual variables p as prices) to identify a bundle S∗

i that maximizes
the right-hand side of (4) — if any constraint for bidder i is violated, it is this one. Then,
using a value query (for S∗

i ) we evaluation the right-hand side of (4) and compare it to ui. If
these n tests (one per bidder) are passed, together with the nonnegativity constraints, then
we (correctly) declare (p,u) to be feasible; otherwise, this procedure identifies a violated
constraint that we can return for use in the ellipsoid algorithm. The procedure uses a
polynomial (in n, m, and precision required) number of steps, value queries, and demand
queries.6

Fact 4.2 and the above separation oracle imply that we can solve the dual program
(D − GEN) in polynomial time. By strong duality, the optimal values of (P − GEN) and
(D − GEN) coincide, so we can compute the optimal value of (P − GEN) in polynomial
time. Because the valuations satisfy the gross substitutes condition, Corollary 3.2, this is
also the optimal value for (IP −GEN) — the welfare of an optimal (integral) allocation.

The final step is to use repeatedly our polynomial-time algorithm for computing the
value of a welfare-maximizing allocation to reconstruct the allocation itself. This can be
done using a standard “self-reducibility” trick. The idea is to start with the first item and
try assigning it to each bidder i = 1, 2, . . . , n in turn. One of these n tries is the correct
“guess,” and correctness can be verified by applying our subroutine (on the reduced problem)
for computing the the value of a welfare-maximizing allocation. We leave the details as an
exercise. �

References

[1] A. Ben-Tal and A. Nemirovski. Optimization iii. Lecture notes, 2012.

[2] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer, 1988. Second Edition, 1993.

[3] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20(1):191–194, 1979.

6To this point, we have not used the assumption that the valuations satisfy the gross substitutes condition,
only that they support value and demand queries.

11



[4] N. Nisan and I. Segal. The communication requirements of efficient allocations and
supporting prices. Journal of Economic Theory, 129(1):192–224, 2006.

[5] R. Paes Leme. Gross substitutability: an algorithmic survey. Working paper, 2013.

[6] L. S. Shapley and M. Shubik. The assignment game I: The core. International Journal
of Game Theory, 1(1):111–130, 1972.

[7] R. V. Vohra. Advanced Mathematical Economics. Routledge, 2005.

12


