
CS364B: Frontiers in Mechanism Design
Lecture #9: MIDR Mechanisms via Scaling Algorithms∗

Tim Roughgarden†

February 5, 2014

1 Recap: Welfare Maximization with Logarithmic Sup-

ply

Last lecture we introduced the problem of welfare maximization when there are many copies
of every item.

Scenario #8:

• A set U of m non-identical items.

• k copies of each item. (So, km items in all.)

• Each bidder i wants only one copy of an item, but has an arbitrary private valuation
vi(S) for each bundle S ⊆ U .

• The input model is that valuations are given as black boxes that support value and
demand queries.

Last lecture we discussed the purely algorithmic problem of approximately maximizing
welfare in polynomial time, deferring incentive issues to the present lecture. Our main
algorithmic result was the following strong approximation guarantee.

Theorem 1.1 If k ≥ c logm
ε2

for a sufficiently large constant c, then there is a randomized
algorithm with expected polynomial running time that, with probability 1, outputs a feasible
allocation with welfare at least 1− ε times the maximum possible.

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

To recap the proof: we solved the LP relaxation of the welfare-maximization problem (us-
ing the ellipsoid algorithm, and demand queries to implement the dual separation oracle)
to obtain an optimal LP solution y*; we then repeatedly applied randomized rounding to
(1− ε

2
)y∗ until it produced a feasible solution with welfare at least (1− ε) times the objec-

tive function value of y∗. Linearity of expectation and an averaging argument show that
randomized rounding is likely to produce a solution with good welfare; Chernoff bounds and
our scaling by (1− ε

2
) imply that it is likely to produce a feasible allocation. This argument

did not even require the valuations vi to be monotone (just nonnegative).
The same rounding algorithm can be applied to any feasible solution y — our proof never

used the fact that y∗ was the optimal solution to the linear program.

Theorem 1.2 Under the assumptions of Theorem 1.1, there is a randomized algorithm with
expected polynomial running time that takes as input a feasible LP solution y and, with
probability 1, outputs a feasible allocation (S1, S2, . . . , Sn) with welfare

∑n
i=1 vi(Si) at least

(1− ε)
∑n

i=1

∑
S⊆U vi(S)y∗iS.

The rounding algorithm can be derandomized without affecting the guarantees in Theo-
rem 1.1 and 1.2. This argument is not unduly difficult but it is outside the scope of these
notes; see [2] for details.

2 Recap: The Search for DSIC Multi-Parameter Mech-

anisms

Let’s also recall where we are in the bigger picture of the course. Two lectures ago we
took a seemingly small step beyond gross substitutes — our final tractable special case —
to submodular valuations, for which welfare-maximization is NP-hard. The good news is
that submodular valuations are still well-structured enough to admit good approximation
algorithms, with the Kelso-Crawford auction providing a 1

2
-approximation. The question

was then how to extend such good approximation algorithms into good polynomial-time
DSIC approximation mechanisms. This is a challenging problem because there seem to be
very few DSIC multi-parameter mechanisms (useful or otherwise).

Our approach is bottom up, in the sense that we’re gradually expanding our portfolio
of DSIC mechanism, and Scenario #8 is a good challenge problem for this purpose. The
starting point is the VCG mechanism. What else can we do? Our first baby step was to
consider maximal-in-range (MIR) mechanisms, where the mechanism’s range is restricted up
front (independent of the valuation profile), and then the VCG mechanism is applied to the
restricted range. We saw an application of MIR mechanisms last lecture, with a DSIC 2-
approximation mechanism for welfare-maximization in multi-unit auctions. This mechanism
applies even when bidders’ valuations are not downward-sloping and runs in time polynomial
in n and logm (cf., the clinching auction of Lecture #4). The idea was to bundle the m
items into ≈ m

n2 blocks of ≈ n2 items each, and run the VCG mechanism over the restricted
range that only allocates items in blocks.

2

Solve LP

Oblivious
randomized
rounding
algorith R

v
y∗

dist R(y∗) over
feasible allocs

Figure 1: An algorithm for randomized rounding that is created by composition of a relax-
ation and a rounding algorithm.

The limited applicability of MIR mechanisms motivated the definition of maximal-in-
distributional-range (MIDR) mechanisms. Recall from last lecture that an MIDR allocation
rule fixes up front a compact set D of distributions over outcomes and works as follows:

1. given reported valuations v, let D∗ be the distribution that maximizes

Eω∼D

[
n∑
i=1

vi(ω)

]
(1)

over all D ∈ D.

2. Return an outcome samples at random from D∗.

Recall also that coupling an MIDR allocation rule with an analog of VCG payments yields a
DSIC mechanism (assuming the bidders are risk neutral and care only about their expected
utility).

MIDR allocation rules are obviously more general than MIR rules, but are they useful?
The MIDR condition is still require restrictive: hoping that your favorite allocation rule
happens to be MIDR is delusional, so rules must be explicitly design to meet the requirement.
What kind of algorithms seem closest to MIDR rules? Randomized rounding algorithms,
like the one seen last lecture, share much of the spirit of MIDR allocation rules. We exploit
this connection in this lecture and the next.

3 Scaling Algorithms

We can think of a randomized rounding algorithm as the composition of two algorithms (Fig-
ure 1). The first algorithm takes as input a valuation profile v, perhaps as black boxes that
support various queries, and returns a fractional allocation y∗, such as the optimal solution
to a LP relaxation with an objective function that depends on the provided valuations (like
welfare). The second algorithm takes y∗ as input and produces a random feasible allocation,
distributed according to some distribution R(y∗).1 We call these the relaxation and rounding
algorithms, respectively. The randomized rounding algorithm we designed last lecture for

1We are assuming that the algorithm R depends only on y∗ and does not depend directly on v. Such
oblivious randomized rounding procedures are the ones that are useful in DSIC mechanism design.

3

Scenario #8 provides a concrete example of this more abstract viewpoint: the relaxation step
maximizes welfare over all fractionally feasible allocations, while the rounding step randomly
generates a feasible allocation from a given fractional one. In these notes we consider only
relaxation algorithms that optimally solve a relaxation of the welfare-maximization problem.

A randomized rounding algorithm of the above from induces a randomized allocation rule
x(v), where the output is a random sample from the distribution R(y∗) induced the output
y∗ of the relaxation algorithm (given input v). Is such a rule MIDR? Not necessarily. The
issue that a rule if MIDR only if its maximizes expected welfare over all distributions in its
range. While the relaxation algorithm maximizes welfare over fractional solutions y, this
optimality guarantee need not be preserved by the rounding subroutine. Indeed, since R(y∗)
is oblivious to the profile v that generated y∗, the requirement translates to the distribution
R(y∗) being simultaneously optimal (among distributions in the range) for every profile
v that generates y∗. Since many different profiles v generally lead to the same optimal
fractional solution y∗ — just as many different linear objective functions are maximized by
the same corner of a polytope — this is an intimidating constraint. See the Exercises for a
concrete example.

Can we think of any special types of rounding algorithms R for which optimizing explic-
itly over fractional solutions y optimizes implicitly over the resulting distributions R(y)?
That is, could there be a optimality-preserving procedure for compiling fractional solutions
into distributions over integer solutions? For the welfare-maximization linear relaxation
introduced last lecture (with xiS’s as variables), a simple sufficient condition is the following.

Definition 3.1 For α ∈ [0, 1], an oblivious rounding algorithmR for the welfare-maximization
linear program of Lecture #6 is an α-scaling algorithm if for every input y, every bidder i,
and every bundle S ⊆ U ,

PrR(y)[i gets S] = α · yiS.

The key property of an α-scaling algorithm is that, no matter what the valuation profile
v is, the expected welfare of the algorithm’s output is exactly α times the welfare of the
fractional allocation y. That is, for every v and y,

Eω∼R(y)

[
n∑
i=1

vi(ω)

]
=

n∑
i=1

∑
S⊆U

vi(S)PrR(y)[i gets S] = α ·
n∑
i=1

∑
S⊆U

vi(S)yiS, (2)

where the equalities follow from linearity of expectation and the α-scaling condition, respec-
tively. Thus, maximizing the left-hand side (over y) is the same problem as maximizing the
right-hand side (over y).

Equation (2) immediately implies that composing a relaxation algorithm with a α-scaling
algorithm yields a MIDR rule. Formally, the range D of the allocation rule is a subset of
{R(y) : y ∈ Y }, where Y denotes the feasible region of the LP relaxation. By definition,
for every valuation profile v, the relaxation algorithm computes the feasible solution y∗ ∈ Y
that maximizes the right-hand side of (2). Equation (2) implies that, for every valuation
profile v, R(y∗) maximizes R(y) over y ∈ Y and hence over the rule’s distributional range.

4

An α-scaling algorithm provides an approximation guarantee in addition to a DSIC guar-
antee: by the definition of a relaxation algorithm, the right-hand side of (2), and hence the
expected welfare of the allocation returned by an α-scaling algorithm, is at least α times the
optimal welfare.

4 Non-Scaling Algorithms

Consider the following relaxed version of Definition 3.1: for every input y, every bidder i,
and every bundle S ⊆ U ,

PrR(y)[i gets S] ≥ α · yiS. (3)

Observe that this weaker condition remains sufficient to imply a welfare approximation
guarantee of α. This issue is that composing such a rounding algorithm R with a relaxation
algorithm need not produce an MIDR allocation rule. Intuitively, bidders might misreport
valuations to guide the relaxation algorithm to a fractional solution that the rounding algo-
rithm has an unusually easy time with. To be concrete, suppose α = .8 and consider two
valuation profiles v(1) and v(2). Suppose R(y(1)) and R(y(2)) are two distributions in the
range of the allocation rule, with y(1) optimizing

∑n
i=1

∑
S⊆U v

(1)(S)yiS over y ∈ Y but with∑n
i=1

∑
S⊆U v

(1)(S)y
(2)
iS only slightly less than

∑n
i=1

∑
S⊆U v

(1)(S)y
(1)
iS . Suppose the rounding

algorithm R satisfies (3) with α = .8 for y(1) and with α = .9 for y(2). Then the expected wel-
fare under R(y(2)) is higher than under the computed distribution R(y(1)), and this violates
the MIDR condition.

Let’s return to Scenario #8. Recall from Theorem 1.1 that we have a randomized algo-
rithm for welfare-maximization that, with probability 1, outputs a feasible allocation with
welfare at least 1 − ε times the maximum possible. Moreover, the rounding algorithm sure
seems like a scaling algorithm, with α = 1− ε

2
, since each random trial of the algorithm picks

a bundle S for bidder i according to the probability distribution induced by {(1− ε
2
)yiS}S⊆U .

There is a subtle issue, however: the distribution over feasible allocations induced by the
rounding algorithm is conditioned on a successful trial. That is, if we ignore our imposed
constraints that the computed allocation should be feasible and have welfare at least (1− ε)
times that of the fractional solution y∗, then Pr[i gets S] is indeed (1 − ε

2
)y∗iS for every i

and S. Unfortunately, conditioning on the event that these constraints are met, warps the
distribution in a hard-to-understand way. For an informal example, consider a fractional
LP solution y in which yiS > 0 for a big bundle S. It’s possible that whenever i actually
receives the big bundle S, it blocks many other bidders and thus it becomes less likely that
the rest of the allocation will both be feasible and have high welfare. In such a scenario, the
probability that i gets S conditioned on a successful random trial would be lower than the
unconditional probability of this event.

5

5 Computing Good Scaling Algorithms

We’ll salvage an MIDR allocation rule for Scenario #8 by following the novel approach of
Lavi and Swamy [1]: we use the existence of a (1− ε)-approximate (non-MIDR) randomized
rounding algorithm to compute, in polynomial time, a (1 − ε)-approximate allocation rule
that is MIDR. We’ll accomplish this through a general technique for “smoothing out” the
error in an approximation algorithm, whose applications are not limited to Scenario #8.

Theorem 5.1 ([1]) In scenario #8 with k ≥ c logm
ε2

for a sufficiently large constant c, there
is a (1− ε)-scaling algorithm that runs in polynomial time.

The next corollary follows immediately from Theorem 5.1 and the discussion in Section 3.

Corollary 5.2 In scenario #8 with k ≥ c logm
ε2

for a sufficiently large constant c, there is a
(1− ε)-approximate DSIC mechanism that runs in polynomial time.

As in all our discussion of scenario #8, Corollary 5.2 assumes the provided valuations
support computationally efficient demand queries. It offers one of the most compelling DSIC
guarantees known for combinatorial auctions — the valuation class is very general, the ap-
proximation factor of (1− ε) is excellent and just as good as the state-of-the-art approxima-
tion guarantees for polynomial-time algorithms (without a DSIC constraint). The primary
drawback — in addition to the logarithmic supply requirement — is that the mechanism is
quite complicated. We covered the non-trivial ingredients needed for a good approximation
algorithm last lecture; the next section covers the additional ideas needed for a good DSIC
approximation mechanism.

6 Proof of Theorem 5.1

We build on two tools developed last lecture. First, we assume that, given the valuations v,
we can compute the welfare-maximizing fractional allocation y∗ in polynomial time. Second,
we’ll use the rounding algorithm of Theorem 1.2 as a subroutine; for simplicity, we use the
derandomized variant from [2].

The high-level idea is to use linear programming (again!) to compute the output distri-
bution R(y) of a (1 − ε)-scaling algorithm given the input y. In more detail, let y∗ denote
a possible output of the relaxation algorithm. Since the relaxation algorithm runs in poly-
nomial time (in n, m, and number of bits needed to describe a valuation) and y∗ is its
explicit output, y∗’s description has polynomial length. It follows that the support size of
y∗ has polynomial size — that is, the cardinality of I = {(i, S) : y∗is > 0} is polynomial. By
contrast, the total number of variables in exponential in m.2

2If you prefer, here’s a more formal argument. Since y∗ maximizes welfare with respect to some valuations
v over the polytope Y of fractional allocations, and the welfare objective function is linear in y, we can assume
y∗ is a vertex of Y . The dimension of Y is n(2m−1), so at a vertex of Y at least n(2m−1) of its constraints
are satisfied with equality. Y has only n + m constraints other than the nonnegativity constraints, so all but
at most n + m of the nonnegativity constraints hold with equality. Thus, the support size of y∗ is at most

6

We next observe that the allowable distributions of a (1 − ε)-scaling algorithm on the
input y∗ can be encoded as a system of linear equations inequalities. Let Ω denote the
allocations in which each bidder i receives a bundle Si with either Si = ∅ or with (i, Si) ∈ I.
For (i, S) ∈ I, let ΩiS ⊆ Ω denote the allocations in Ω where bidder i gets the bundle S.
Consider the following linear system:

(LP2)
∑
ω∈ΩiS

λω = (1− ε)y∗iS for every (i, S) ∈ I∑
ω∈Ω

λω = 1

λω ≥ 0 for every ω ∈ Ω.

The feasible solutions to (LP2) correspond to the distributions D over the allocations in
Ω that satisfy Prω∈D[i gets S] = (1 − ε) · y∗iS for every bidder i and non-empty bundle S.
(Observe this holds also for the pairs (i, S) /∈ I, with y∗iS = 0.) Our next task is show that
(LP2) is feasible and that we can compute a feasible solution in polynomial time. We’ll
ultimately want to sample from this distribution, so we’re also hoping to compute one with
polynomial support.

The linear system (LP2) has an exponential number |Ω| of variables, but a polynomial
number |I| + 1 for constraints other than the non-negativity constraints. Thus, the dual
linear system has a polynomial number of variables, and is a candidate for the application
of the ellipsoid method. We next develop intuition for this dual linear system.

How could I convince you that the system (LP2) is infeasible? Suppose I presented you
with pseudo-valuations zi(S) for each (i, S) ∈ I, which need not be nonnegative or monotone
but which satisfy

max
(S1,S2,...,Sn)∈Ω

n∑
i=1

zi(Si)︸ ︷︷ ︸
:=Z∗

< (1− ε)
∑

(i,S)∈I

zi(S)y∗iS. (4)

Then, multiplying each constraint in (LP2) corresponding to (i, S) ∈ I by zi(S) and the
second constraint by −Z∗ and adding the results yields N equations in which the right-hand
side is the scalar

(1− ε)
∑

(i,S)∈I

zi(S)y∗iS − Z∗ > 0.

Also by (4), the coefficient of each (nonnegative) variable λω with ω = (S1, S2, . . . , Sn) ∈ Ω in
the left-hand side of this equation is

∑n
i=1 zi(Si)−Z∗ ≤ 0. This inequality cannot be satisfied

— the left-hand side is non-positive no matter that the λω’s are, while the right-hand side
is strictly positive — which certifies the infeasibility of the linear system (LP2).

The linear system dual to (LP2) is simply the set of proofs of infeasibility of the form (4):

n + m.

7

(D2)
n∑
i=1

zi(Si) ≤ Z∗ for every ω = (S1, S2, . . . , Sn) ∈ Ω

(1− ε)
∑

(i,S)∈I

zi(S)y∗iS > Z∗

Z∗, zi(S) unrestricted for every (i, S) ∈ I.

By definition, if (D2) is feasible, then (LP2) is infeasible. Strong duality — also known
as “Farkas’s Lemma” of the “Theorem of the Alternatives” for the feasibility problems we’re
currently considering — implies the converse, so exactly one of the systems (LP2), (D2) is
feasible.3

We now show that (D2) is infeasible, and hence (LP2) is feasible. For the proof, consider
running the ellipsoid method on the dual linear system (D2). It has a polynomial number
|I| + 1 of variables, so we can solve it in polynomial time — meaning we either exhibit a
feasible solution or conclude that no feasible solution exists — as long as we can provide a
polynomial-time separation oracle. This separation oracle takes as input an alleged feasible
solution (Z∗, z). The last constraint can be checked directly in polynomial time; if it is
violated, we return it as the violated constraint.

If the last constraint is not violated, then

(1− ε)
∑

(i,S)∈I

zi(S)y∗iS > Z∗ (5)

and we proceed as follows. Recall the zi(S)’s need not be nonnegative, so define ẑi(S) =
max{0, zi(S)}. Since y ≥ 0, the inequality (5) continues to hold for ẑ. Interpret the ẑi(S)’s
as valuations (with ẑi(S) = 0 whenever (i, S) /∈ I), and invoke the (derandomized version of
the) algorithm in Theorem 1.2 on y∗ to produce a feasible allocation (S1, S2, . . . , Sn) with

n∑
i=1

ẑi(Si) ≥ (1− ε)
n∑
i=1

∑
S⊆U

ẑi(S)y∗iS > Z∗. (6)

Recall that modulo the derandomization, nothing complicated is going on here: in each
independent random trial, we independently give each bidder a bundle chosen at random
from the distribution {(1 − ε

2
)y∗iS}S⊆U , and we stop the first time a random trial yields a

feasible allocation that satisfies (6).
Now obtain (T1, T2, . . . , Tn) from (S1, S2, . . . , Sn) by setting Ti = ∅ if zi(Si) < 0 (and

hence ẑi(Si) = 0) and Ti = Si otherwise. We then have

n∑
i=1

zi(Ti) =
n∑
i=1

ẑi(Si) > Z∗,

3A proof of Farkas’s Lemmas is beyond the scope of these notes; hopefully you’ve seen it in an optimization
class.

8

which shows that the alleged feasible solution (Z∗, z) violated the constraint of (D2) corre-
sponding to the allocation (T1, T2, . . . , Tn).

Summarizing, we’ve shown that, no matter which alleged solution z we’re given, we can
find a violated inequality in polynomial time. This implies that (D2) has no feasible solution,
and hence (LP2) is feasible.

To compute efficiently a feasible solution of (LP2), we proceed as follows. First, we run the
ellipsoid method on the dual linear system (D2), generating violated inequalities as needed.
After a polynomial number of iterations, the ellipsoid method correctly concludes that the
system (D2) is infeasible. Each of the polynomially many violated inequalities corresponds
to an allocation. Let C denote the family of generated inequalities and Ω∗ = {ω1, . . . , ω`}
the corresponding allocations.

The “reduced dual” (RD), which has only the constraints in C, is already infeasible
(otherwise the ellipsoid method could terminate incorrectly given the input (RD)). The
corresponding “reduced primal” (RP) is simply the original linear system (LP2), except
with variables corresponding only to Ω∗. Strong duality implies that (RP) has a feasible
solution. Since (RP) has a polynomial number of variables and constraints, we can solve
it efficiently using any polynomial-time linear programming algorithm (e.g., the ellipsoid
method or an interior-point method).

7 Recap

Summarizing, here is the polynomial-time MIDR (1 − ε)-approximate allocation rule that
we’ve constructed for Scenario #8:

1. Given valuations as black-boxed that support value and demand queries, solve the
linear programming relaxation of Lecture #8 using the ellipsoid method. Recall from
Lecture #8 that the relevant separation oracle reduces to a demand query. Let y denote
the optimal solution, and I the indices of the polynomially many non-zero variables in
y.

2. Apply the ellipsoid method to the dual linear system (D2); as argued above, the rel-
evant separation oracle reduces to the algorithm in Theorem 1.2. Let Ω∗ denote the
polynomially many allocations that correspond to the violated constraints generated
by the ellipsoid method en route to proving the infeasibility of (D2).

3. Solve the reduced primal (RP), with decision variables corresponding only to Ω∗, using
any polynomial-time linear programming algorithm. Let λ1, . . . , λ` denote the com-
puted feasible solution to (RP).

4. Return an allocation ω∗ chosen at random from Ω∗ according to the distribution
λ1, . . . , λ`.

9

References

[1] Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear
programming. Journal of the ACM, 58(6), 2011. Article 25.

[2] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approxi-
mating packing integer programs. Journal of Computer and System Sciences, 37(2):130–
143, 1988.

10

