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1 The Story So Far

Recall the scenario studied last lecture:

• A set U of m non-identical items.

• Each bidder i = 1, 2, . . . , n has an additive valuation drawn from a prior distribution
Fi. Recall this means that the valuation vi is an m-vector, with vi(S) =

∑
j∈S vij. The

distribution Fi has a finite support Vi and the probabilities {fi(vi)}vi∈Vi
are provided

explicitly as input. The vij’s can be correlated across items j for a fixed bidder i, but
are independent across bidders.

Recall what we are shooting for: a multi-parameter analog of Myerson’s theory of revenue-
maximizing optimal auctions. Single-parameter optimal mechanisms are virtual welfare max-
imizers. We’ve seen that multi-parameter optimal mechanisms are generally randomized. It
would seem that the coolest statement that could be true is: revenue-maximizing optimal
auctions for multi-parameter problems are always distributions over virtual welfare maximiz-
ers. This lecture identifies conditions under which this coolest-possible statement is actually
true.

Recall that the reduced form (y,q) induced by a direct-revelation mechanism (x,p)
consists of an interim allocation rule y defined by

yij(vi) := Ev−i∼F−i
[xij(vi,v−i)]

=
∑

v−i∈V−i

f−i(v−i)xij(vi,v−i) (1)
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for every bidder i, item j, and reported valuation vi, and an interim payment rule given by

qi(vi) := Ev−i∼F−i
[pi(vi,v−i)] =

∑
v−i∈V−i

f−i(v−i)pi(vi,v−i) (2)

for every bidder i and reported valuation vi.
The culmination of last lecture was an explicit description as a linear program of the

reduced forms of BIC and IIR mechanisms:

max
n∑

i=1

f(vi)qi(vi)

subject to∑
j∈U

vijyij(vi)− qi(vi) ≥
∑
j∈U

vijyij(vi
′)− qi(vi

′) ∀i and vi, vi
′ ∈ Vi (3)∑

j∈U

vijyij(vi)− qi(vi) ≥ 0 ∀i and vi ∈ Vi (4)

n∑
i=1

∑
vi∈Vi

Fi(vi)yij(vi) ≤ 1−
n∏

i=1

(
1−

∑
vi∈Vi

Fi(vi)

)
∀j ∈ U and S1 ⊆ V1, . . . , Sn ⊆ Vn. (5)

Observe that the number of BIC constraints and IIR constraints is polynomial in the total
number

∑n
i=1 |Vi| of possible types (and n), while the number of feasibility constraints is

exponential in this quantity.
It will also be helpful to have a geometric interpretation of this result. For a given prior F,

we can think of passing from a mechanism (x,p) to its reduced form (y,q) as a “projection”
via the linear operators (1) and (2). This maps the original high-dimensional linear program
from Lecture #18 — with decision variables corresponding to the ex post allocation and
payment rules — to the relatively low-dimensional linear program above (Figure 1). A
linear projection of a polytope — i.e., an intersection of halfspaces that is bounded — is
again a polytope (Exercise), and hence can be described as the solutions to a finite number of
linear inequalities. The linear program above is an explicit description of these inequalities.
This projection step from the set of mechanisms to the set of reduced forms is not generally
injective — many different ex post allocation and payment rules yield the same reduced
form.

2 Next Steps

Satisfying as it may be, the explicit description above raises more problems than it solves.

1. Does this explicit description helps us understand the structure of optimal mechanisms?

2. Can we optimize over this explicit description — which still has exponentially many
constraints — in time polynomial in n and

∑n
i=1 |Vi|?
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Figure 1: A geometric interpretation of the projection.

3. Given a reduced form, can we recover a direct-revelation mechanism that induces it in
polynomial time?

4. Can we say anything beyond bidders with additive valuations?

In this lecture we focus on the first, structural question. The best way to do this is to
tackle the fourth question simultaneously. There are corresponding tractability results for
the second and third questions [2]; other than the brief discussion in Section 5, we won’t
have time to cover them here.

For concreteness, we focus on bidders with unit-demand valuations.1 Recall how this
compares with additive valuations: a bidder’s valuation is still described fully by its valua-
tions vi1, . . . , vim for singletons, but now vi(S) = maxj∈S vij rather than vi(S) =

∑
j∈S vij.

That is, a bidder effectively throws away all of its items except for its favorite. For this
reason, we can restrict attention to mechanisms that always give at most one item to each
bidder. With this restriction, feasible allocations correspond to bipartite matchings between
the bidders and the items.

With the original massive linear program from Lecture #18, it’s easy to add constraints
corresponding to unit-demand bidders: in addition to the original feasibility constraints

n∑
i=1

xij(v) ≤ 1 (6)

for every j ∈ U and v ∈ V , we just add the constraints
n∑

j=1

xij(v) ≤ 1 (7)

for every bidder i ∈ U and v ∈ V . Border’s theorem describes what the inequalities (6) look
like after projecting to the lower-dimensional space of reduced forms; what happens when
we also have the constraints (7)?

We won’t answer this question as explicitly as we did with Border’s theorem, but we’ll
be able to say enough to meet our original goal of deriving a structural characterization of
optimal mechanisms.

1The structural results in Sections 3 and 4 hold more generally, with the same proofs, for an arbitrary
linear system of extra feasibility constraints.
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3 Main Structural Theorem

Define a virtual welfare maximizer (VWM) as an (ex post) allocation rule x that, for some
functions ϕij : Vi → R for every bidder i and item j, chooses for each valuation profile v the
feasible allocation that maximizes the virtual welfare

n∑
i=1

∑
j∈U

ϕij(vi)xij(v).

For example, for bidders with unit-demand valuations, a VWM chooses an allocation corre-
sponding to a maximum-weight bipartite matching, where the weight of edge (i, j) is ϕij(vi).
If y is an interim allocation rule induced by a VWM, then we call y an interim VWM
(iVWM).

When there is only one item, Myerson’s theory (CS364A, Lecture #5) implies that ev-
ery optimal auction is a virtual welfare maximizer; in this sense, revenue-maximization
reduces to welfare-maximization for single-parameter problems. The next results, due to
Cai, Daskalakis, and Weinberg [2], outline the appropriate generalization to certain multi-
parameter problems.2 Let X denote the polytope of feasible ex post allocation rules x and
Y the corresponding polytope of interim allocation rules y (cf., Figure 1).

Theorem 3.1 ([2]) Every vertex3 of Y is an iVWM.

We give a proof of Theorem 3.1 in the next section. We next explain how it yields a multi-
parameter analog of Myerson’s characterization of optimal mechanisms.

Corollary 3.2 For every allocation rule x ∈ X, there is an allocation rule x′ ∈ X such that
x′ is a probability distribution over VWMs and such that x and x′ induce the same interim
allocation rule.

Proof: Consider any allocation rule x ∈ X, and let y ∈ Y be the corresponding interim
allocation rule. The vector y can be written as a convex combination of the vertices of Y .
Moreover, the number of vertices needed is most one more than the (polynomial) number of
dimensions.4, By Theorem 3.1, this convex combination can be interpreted as a probability
distribution over iVWMs — say, the iVWMs y1, . . . ,y` with probabilities λ1, . . . , λ`. Each
iVWM yh is the interim rule of some VWM xh. Since the projection from X to Y is linear,
setting x′ to be the probability distribution over the xh’s (with the λh’s as probabilities)
yields a distribution over VWMs with the same interim rule as x. �

Corollary 3.3 There is a revenue-maximizing auction with an allocation rule that is a dis-
tribution over VWMs.

2Related results appear in Alaei et al. [1].
3The vertex v of a polytope P is, intuitively, a “corner.” One of several equivalent definitions is that v

cannot be written as a non-trivial convex combination of other points of P . Another is that there exists a
halfspace H such that H ∩ P = {v}.

4This is an elementary property of polytopes; see e.g. [3].
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unique optimizer

optimization direction

Figure 2: The marked vertex is the unique optimizer in the given direction.

For example, with unit-demand bidders, there is an optimal auction that picks random edge
weights from some distribution and then allocates to a maximum-weight matching (and
charges suitable prices).

Proof of Corollary 3.3: Let (x∗,p∗) be a revenue-maximizing auction. By Corollary 3.2,
there is an allocation rule x′ that is a distribution over VWMs and that induces the same
interim rule as x∗. Since the incentive constraints and expected revenue depend only on the
induced interim rules, (x′,p∗) is also a revenue-maximizing mechanism. �

Conceptually, the only drawbacks of Corollary 3.3 relative to Myerson’s single-parameter
theory are: (i) the virtual valuation functions ϕij are randomized rather than deterministic;
and (ii) the virtual valuation functions have no closed form, and instead are the output of
a linear program. The examples in Lecture #18 provided early warnings that these two
drawbacks would be necessary, and in this this sense Corollary 3.3 is a best-case scenario.
Conceptually, revenue-maximization continues to reduce to welfare-maximization.

4 Proof of Theorem 3.1

Consider a vertex y∗ of the polytope Y . An intuitive and elementary fact about polytopes is
that a point ŷ in a polytope is a vertex if and only if there exists an linear objective function
w (i.e., a direction) such that ŷ is the unique maximizer of wTy over all feasible points y
(Figure 2).5 The idea is now to show that when an interim allocation rule is optimizing some
linear function, then there is a corresponding ex post rule (inducing the interim rule) that is
optimizing some linear function, and this linear optimization corresponds to virtual welfare
maximization with respect to the appropriate virtual valuation functions.

5One direction is clear: if y is not a vertex, then y can be written as a non-trivial convex combination
of two other feasible points, so there is no linear objective for which y is the unique maximum. For the
converse, let H be a halfspace whose intersection with the polytope is {y}, and choose w as -1 times the
normal vector of H.
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Let w be a linear objective function for which y∗ is the unique maximum over Y . Recalling
the decision variables that define Y , this objective function is

max
n∑

i=1

∑
vi∈Vi

∑
j∈U

wij(vi)yi(vi).

Define virtual valuation functions by

ϕij(vi) =
wij(vi)

fi(vi)
. (8)

We next observe that the expected virtual welfare obtained by an (ex post) allocation
rule is a function only of its interim allocation rule. Precisely, for every allocation rule x
with interim rule y, its expected virtual welfare is

∑
v∈V

f(v)
n∑

i=1

∑
j∈U

ϕij(vi)xij(v) =
n∑

i=1

∑
vi∈Vi

fi(vi)
∑
j∈U

ϕij(vi)yj(vi) =
n∑

i=1

∑
vi∈Vi

∑
j∈U

wij(vi)yj(vi),

(9)
where the first equation follows from linearity of expectation and the second from the defi-
nition (8) of the virtual valuations.

It is clear which allocation rule x∗ maximizes the left-hand side of (9): for each v ∈ V , set
x∗(v) equal to the feasible allocation that maximizes the virtual welfare

∑n
i=1

∑
j∈U ϕij(vi)xij(v).

By definition, x∗ is a VWM for the virtual valuations defined in (8). Because y∗ is the unique
maximizer of the right-hand side of (9), the interim allocation rule of x∗ must be y∗. Since
y∗ was an arbitrary vertex of Y , the proof is complete.

5 Computational Considerations

Now that we understand the structure of optimal mechanisms, we would like two types of
computational tractability results. First, given a description of the prior distributions, we
would like to compute a revenue-maximizing mechanism in time polynomial in

∑n
i=1 |Vi|.

Second, we would like the mechanism itself to run in polynomial time.
Efficient solutions to the following computational questions lead to the above tractability

results.

1. Given a vector y, can we efficiently check membership in the polytope Y ?

2. Can we efficiently optimize a linear function (like expected revenue) over the polytope
of reduced forms?

3. Given a feasible y ∈ Y (like a revenue-maximizing reduced form), can we efficiently
reconstruct an ex post allocation rule x with interim rule y? The goal here is a
constructive version of Corollary 3.3.
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We discuss only the first question; “ellipsoid magic” effectively reduces the second and
third questions to the first. In the spirit of Farkas’s Lemma and strong duality, let’s ask:
what would convince you that a given vector y does not belong to the polytope Y of interim
allocation rules? Suppose for a linear objective {wij(vi)}i,j,vi

} and corresponding virtual
valuation functions ϕij defined by (8), the right-hand side of (9) is strictly larger than the
maximum-possible virtual welfare of an ex post allocation rule. Then, by the equality (9),
y cannot be a realizable interim allocation rule. Strong linear programming duality can
be shown to imply the converse: if for every w, the right-hand side of (9) is at most the
maximum virtual welfare with respect to the virtual valuation functions (8), then y ∈ Y .
This characterization, together with relatively standard “ellipsoid magic” (cf., Lectures #6
and #9), implies that the first computational question above reduces in polynomial time to
the following subroutine:

(*) given the alleged interim allocation rule y, is there an objective function w and a
number W such that

n∑
i=1

∑
vi∈Vi

∑
j∈U

wij(vi)yj(vi) ≥ W (10)

while ∑
v∈V

f(v)
n∑

i=1

∑
j∈U

ϕij(vi)xij(v) < W (11)

for every ex post allocation rule x, where the ϕij’s are defined as in (8)?

Observe that the problem (*) is a linear program with polynomially many decision variables
(w and W ) and a huge number of constraints. Recalling the ellipsoid method (Lectures #6
and #9), we can solve this problem if we can design a polynomial-time separation oracle.
The input to this oracle is a fixed w and W (and y, which was fixed beforehand). The con-
straint (10) can be checked directly. Checking the constraints (11) reduces to checking it only
for the ex post allocation rule that maximizes the left-hand side. Doing this exactly would
seem to require enumerating over the exponentially many valuation profiles v ∈ V , and com-
puting the virtual welfare-maximizing allocation for each. Randomly sampling a polynomial
number of valuation profiles and maximizing the virtual welfare for each yields a good enough
approximation to push the “ellipsoid magic” through; see [2] for the non-trivial arguments.
This shows that approximate revenue-maximization reduces to welfare-maximization also in
a computational sense: if welfare-maximization can be solved in polynomial time (e.g., for
unit-demand bidders), then there is a polynomial-time algorithm for computing an approxi-
mately revenue-maximizating (and approximately BIC) auction for given prior distributions,
and this optimal auction runs in polynomial time.
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