
CS261: A Second Course in Algorithms
Lecture #13: Online Scheduling and Online Steiner Tree∗

Tim Roughgarden†

February 16, 2016

1 Preamble

Last week we began our study of online algorithms with the multiplicative weights algorithm
for online decision-making. We also covered (non-online) applications of this algorithm to
zero-sum games and the fast approximation of certain linear programs. This week covers
more “traditional” results in online algorithms, with applications in scheduling, matching,
and more.

Recall from Lecture #11 what we mean by an online problem.

An Online Problem

1. The input arrives “one piece at a time.”

2. An algorithm makes an irrevocable decision each time it receives a new
piece of the input.

2 Online Scheduling

A canonical application domain for online algorithms is scheduling, with jobs arriving online
(i.e., one-by-one). There are many algorithms and results for online scheduling problems;
we’ll cover only what is arguably the most classic result.

2.1 The Problem

To specify an online problem, we need to define how the input arrives at what action must
be taken at each step. There are m identical machines on which jobs can be scheduled;

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1



these are known up front. Jobs then arrive online, one at a time, with job j having a known
processing time pj. A job must be assigned to a machine immediately upon its arrival.

A schedule is an assignment of each job to one machine. The load of a machine in a
schedule is the sum of the processing times of the jobs assigned to it. The makespan of a
schedule is the maximum load of any machine. For example, see Figure 1.

Figure 1: Example of makespan assignments. (a) has makespan 4 and (b) has makespan 5.

We consider the objective function of minimizing the makespan. This is arguably the
most practically relevant scheduling objective. For example, if jobs represent pieces of a
task to be processed in parallel (e.g., MapReduce/Hadoop jobs), then for many tasks the
most important statistic is the time at which the last job completes. Minimizing this last
completion time is equivalent to minimizing the makespan.

2.2 Graham’s Algorithm

We analyze what is perhaps the most natural approach to the problem, proposed and ana-
lyzed by Ron Graham 50 years ago.

Graham’s Scheduling Algorithm

when a new job arrives, assign it to the machine that currently has the smallest
load (breaking ties arbitrarily)

We measure the performance of this algorithm against the strongest-possible benchmark,
the minimum makespan in hindsight (or equivalently, the optimal clairvoyant solution).1

Since the minimum makespan problem is NP -hard, this benchmark is both omniscient about
the future and also has unbounded computational power. So any algorithm that does almost
as well is a pretty good algorithm!

1Note that the “best fixed action” idea from online decision-making doesn’t really make sense here.

2



2.3 Analysis

In the first half of CS261, we were always asking “how do we know when we’re done (i.e.,
optimal)?” This was the appropriate question when the goal was to design an algorithm
that always computes an optimal solution. In an online problem, we don’t expect any online
algorithm to always compute the optimal-in-hindsight solution. We expect to compromise
on the guarantees provided by online algorithms with respect to this benchmark.

In the first half of CS261, we were obsessed with “optimality conditions” — necessary
and sufficient conditions on a feasible solution for it to be an optimal solution. In the second
half of CS261, we’ll be obsessed with bounds on the optimal solution — quantities that are
“only better than optimal.” Then, if our algorithm’s performance is not too far from our
bound, then it is also not too far from the optimal solution.

Where do such bounds come from? For the two case studies today, simple bounds suffice
for our purposes. Next lecture we’ll use LP duality to obtain such bounds — this will
demonstrate that the same tools that we developed to prove the optimality of an algorithm
can also be useful in proving approximate optimality.

The next two lemmas give two different simple lower bounds on the minimum-possible
makespan (call it OPT ), given m machines and jobs with processing times p1, . . . , pn.

Lemma 2.1 (Lower Bound #1)

OPT ≥ n
max
j=1

pj.

Lemma 2.1 should be clear enough — the biggest job has to go somewhere, and wherever it
is assigned, that machine’s load (and hence the makespan) will be at least as big as the size
of this job.

The second lower bound is almost as simple.

Lemma 2.2 (Lower Bound #2)

OPT ≥ 1

m

n∑
j=1

pj.

Proof: In every schedule, we have

maximum load of a machine ≥ average load of a machine

=
1

m

n∑
j=1

pj.

�

These two lemmas imply the following guarantee for Graham’s algorithm.

Theorem 2.3 The makespan of the schedule output by Graham’s algorithm is always at
most twice the minimum-possible makespan (in hindsight).

3



In online algorithms jargon, Theorem 2.3 asserts that Graham’s algorithm is 2-competitive,
or equivalently has a competitive ratio of at most 2.

Theorem 2.3 is tight in the worst case (as m → ∞), though better bounds are possible
in the (often realistic) special case where all jobs are relatively small (see Exercise Set #7).

Proof of Theorem 2.3: Consider the final schedule produced by Graham’s algorithm, and
suppose machine i determines the makespan (i.e., has the largest load). Let j denote the
last job assigned to i. Why was j assigned to i at that point? It must have been that, at
that time, machine i had the smallest load (by the definition of the algorithm). Thus prior
to j’s assignment, we had

load of i = minimum load of a machine (at that time)

≤ average load of a machine (at that time)

=
1

m

j−1∑
k=1

pk.

Thus,

final load of machine i ≤ 1

m

j−1∑
k=1

pk︸ ︷︷ ︸
≤OPT

+ pj︸︷︷︸
≤OPT

≤ 2OPT,

with the last inequality following from our two lower bounds on OPT (Lemma 2.1 and 2.2).
�

Theorem 2.3 should be taken as a representative result in a very large literature. Many
good guarantees are known for different online scheduling algorithms and different scheduling
problems.

3 Online Steiner Tree

We have two more case studies in online algorithms: the online Steiner tree problem (this
lecture) and the online bipartite matching problem (next lecture).2

3.1 Problem Definition

In the online Steiner tree problem:

2Because the benchmark of the best-possible solution in hindsight is so strong, for many important
problems, all online algorithm have terrible competitive ratios. In these cases, it is important to change the
setup so that theory can still give useful advice about which algorithm to use. See the instructor’s CS264
course (“beyond worst-case analysis”) for much more on this. In CS261, we’ll cherrypick a few problems
where there are natural online algorithms with good competitive ratios.

4



• an algorithm is given in advance a connected undirected graph G = (V,E) with a
nonnegative cost ce ≥ 0 for each edge e ∈ E;

• “terminals” t1, . . . , tk ∈ V arrive online (i.e., one-by-one).

The requirement for an online algorithm is to maintain at all times a subgraph of G that
spans all of the terminals that have arrived thus far. Thus when a new terminal arrives, the
algorithm must connect it to the subgraph-so-far. Think, for example, of a cable company
as it builds new infrastructure to reach emerging markets. The gold standard is to compute
the minimum-cost subgraph that spans all of the terminals (the “Steiner tree”).3 The goal
of an online algorithm is to get as close as possible to this gold standard.

3.2 Metric Case vs. General Case

A seemingly special case of the online Steiner tree problem is the metric case. Here, we
assume that:

1. The graph G is the complete graph.4

2. The edges satisfy the triangle inequality: for every triple u, v, w ∈ V of vertices,

cuw ≤ cuv + cvw.

The triangle inequality asserts that the shortest path between any two vertices is the direct
edge between the vertices (which exists, since G is complete) — that is, adding intermediate
destinations can’t help. The condition states that one-hop paths are always at least as good
as two-hop paths; by induction, one-hop paths are as good as arbitrary paths between the
two endpoints.

For example, distances between points in a normed space (like Euclidean space) satisfy
the triangle inequality. Fares for airline tickets are a non-example: often it’s possible to get
a cheaper price by adding intermediate stops.

It turns out that the metric case of the online Steiner tree problem is no less general than
the general case.

Lemma 3.1 Every α-competitive online algorithm for the metric case of the online Steiner
tree problem can be transformed into an α-competitive online algorithm for the general online
Steiner tree problem.

Exercise Set #7 asks you to supply the proof.

3Since costs are nonnegative, this is a tree, without loss of generality.
4By itself, this is not a substantial assumption — one could always complete an arbitrary graph with

super-high-cost edges.

5



3.3 The Greedy Algorithm

We’ll study arguably the most natural online Steiner tree algorithm, which greedily connects
a new vertex to the subgraph-so-far in the cheapest-possible way.5

Greedy Online Steiner Tree

initialize T ⊆ E to the empty set
for each terminal arrival ti, i = 2, . . . , k do

add to T the cheapest edge of the form (ti, tj) with j < i

For example, in the 11th iteration of the algorithm, the algorithm looks at the 10 edges
between the new terminal and the terminals that have already arrived, and connects the
new terminal via the cheapest of these edges.6

3.4 Two Examples

t1 a

t2

t3

2

2

2
1

1

1

Figure 2: First example.

For example, consider the graph in Figure 2, with edge costs as shown. (Note that the
triangle inequality holds.) When the first terminal t1 arrives, the online algorithm doesn’t
have to do anything. When the second terminal t2 arrives, the algorithm adds the edge
(t1, t2), which has cost 2. When terminal t3 arrives, the algorithm is free to connect it to
either t1 or t2 (both edges have cost 2). In any case, the greedy algorithm constructs a

5What else could you do? An alternative would be to build some extra infrastructure, hedging against
the possibility of future terminals that would otherwise require redundant infrastructure. This idea actually
beats the greedy algorithm in non-worst-case models (see CS264).

6This is somewhat reminiscent of Prim’s minimum-spanning tree algorithm. The difference is that Prim’s
algorithm processes the vertices in a greedy order (the next vertex to connect is the closest one), while the
greedy algorithm here is online, and has to process the terminals in the order provided.

6



subgraph with total cost 4. Note that the optimal Steiner tree in hindsight has cost 3 (the
spokes).

t1

t3 t4 t2t5

1

2 3

4

2

3

1 11

2

Figure 3: Second example.

For a second example, consider the graph in Figure 3. Again, the edge costs obey the
triangle inequality. When t1 arrives, the algorithm does nothing. When t2 arrives, the
algorithm adds the edge (t1, t2), which has cost 4. When t3 arrives, there is a tie between
the edges (t1, t3) and (t2, t3), which both have cost 2. Let’s say that the algorithm picks the
latter. When terminals t4 and t5 arrive, in each case there are two unit-cost options, and it
doesn’t matter which one the algorithm picks. At the end of the day, the total cost of the
greedy solution is 4 + 2 + 1 + 1 = 8. The optimal solution in hindsight is the path graph
t1-t5-t3-t4-t2, which has cost 4.

3.5 Lower Bounds

The second example above shows that the greedy algorithm cannot be better than 2-
competitive. In fact, it is not constant-competitive for any constant.

Proposition 3.2 The (worst-case) competitive ratio of the greedy online Steiner tree algo-
rithm is Ω(log k), where k is the number of terminals.

Exercise Set #7 asks you to supply the proof, by extending the second example above.
The following result is harder to prove, but true.

Proposition 3.3 The (worst-case) competitive ratio of every online Steiner tree algorithm,
deterministic or randomized, is Ω(log k).

3.6 Analysis of the Greedy Algorithm

We conclude the lecture with the following result.

7



Theorem 3.4 The greedy online Steiner tree algorithm is 2 ln k-competitive, where k is the
number of terminals.

In light of Proposition 3.3, we conclude that the greedy algorithm is an optimal online
algorithm (in the worst case, up to a small constant factor).

The theorem follows easily from the following key lemma, which relates the costs incurred
by the greedy algorithm to that of the optimal solution in hindsight.

Lemma 3.5 For every i = 1, 2, . . . , k− 1, the ith most expensive edge in the greedy solution
T has cost at most 2OPT/i, where OPT is the cost of the optimal Steiner tree in hindsight.

Thus, the most expensive edge in the greedy solution has cost at most 2OPT , the second-
most expensive edge costs at most OPT , the third-most at most 2OPT/3, and so on. Recall
that the greedy algorithm adds exactly one edge in each of the k−1 iterations after the first,
so Lemma 3.5 applies (with a suitable choice of i) to each edge in the greedy solution.

To apply the key lemma, imagine sorting the edges in the final greedy solution from
most to least expensive, and then applying Lemma 3.5 to each (for successive values of
i = 1, 2, . . . , k − 1). This gives

greedy cost ≤
k−1∑
i=1

2OPT

i
= 2OPT

k−1∑
i=1

1

i
≤ (2 ln k) ·OPT,

where the last inequality follows by estimating the sum by an integral.
It remains to prove the key lemma.

Proof of Lemma 3.5: The proof uses two nice tricks, “tree-doubling” and “shortcutting,”
both of which we’ll reuse later when we discuss the Traveling Salesman Problem.

We first recall an easy fact from graph theory. Suppose H is a connected multi-graph (i.e.,
parallel copies of an edge are OK) in which every vertex has even degree (a.k.a. an “Eulerian
graph”). Then H has an Euler tour, meaning a closed walk (i.e., a not-necessarily-simple
cycle) that uses every edge exactly once. See Figure 4. The all-even-degrees condition is
clearly necessary, since if the tour visits a vertex k times then it must have degree 2k. You’ve
probably seen the proof of sufficiency in a discrete math course; we leave it to Exercise Set
#7.7

t1 t4

t2

t3

Figure 4: Example graph with Euler tour t1-t2-t3-t1-t4-t1.

7Basically, you just peel off cycles one-by-one until you reach the empty graph.

8



Next, let T ∗ be the optimal Steiner tree (in hindsight) spanning all of the terminals
t1, . . . , tk. Let OPT =

∑
e∈T ∗ ce denote its cost. Obtain H from T ∗ by adding a second copy

of every edge (Figure 5). Obviously, H is Eulerian (every vertex degree got doubled) and∑
e∈H ce = 2OPT . Let C denote an Euler tour of H. C visits each of the terminals at least

one, perhaps multiple times, and perhaps visits some other vertices as well. Since C uses
every edge of H once,

∑
e∈C ce = 2OPT .

t1 t4

t2

t3

t1 t4

t2

t3

Figure 5: (a) Before doubling edges and (b) after doubling edges.

Now fix a value for the parameter i ∈ {1, 2, . . . , k − 1} in the lemma statement. Define
the “connection cost” of a terminal tj with j > 1 as the cost of the edge that was added to
the greedy solution when tj arrived (from tj to some previous terminal). Sort the terminals
in hindsight in nonincreasing order of connection cost, and let s1, . . . , si be the first (most
expensive) i terminals. The lemma asserts that the cheapest of these has connection cost
at most 2OPT/i. (The ith most expensive terminal is the cheapest of the i most expensive
terminals.)

The tour C visits each of s1, . . . , si at least once. “Shortcut” it to obtain a simple cycle Ci

on the vertex set {s1, . . . , si} (Figure 6). For example, if the first occurrences of the terminals
in C happen to be in the order s1, . . . , si, then Ci is just the edges (s1, s2), (s2, s3), . . . , (si, s1).
In any case, the order of terminals on Ci is the same as that of their first occurrences in C.
Since the edge costs satisfy the triangle inequality, replacing a path by a direct edge between
its endpoints can only decrease the cost. Thus

∑
e∈Ci

ce ≤
∑

e∈C ce = 2OPT . Since Ci only
has i edges,

min
e∈Ci

ce︸ ︷︷ ︸
cheapest edge

≤ 1

i

∑
e∈Ci

ce︸ ︷︷ ︸
average edge cost

≤ 2OPT/i.

Thus some edge (sh, sj) ∈ Ci has cost at most 2OPT/i.

9



t1

t2

t3

Figure 6: (a) Solid edges represent original edges, and dashed edge represent edges after
shortcutting from t1 to t2, t2 to t3, t3 to t1 has been done.

Consider whichever of sh, sj arrives later in the online ordering, say sj. Since sh arrived
earlier, the edge (sh, sj) is one option for connecting sj to a previous terminal; the greedy
algorithm either connects sj via this edge or by one that is even cheaper. Thus at least one
vertex of {s1, . . . , si}, namely sj, has connection cost at most 2OPT/i. Since these are by
definition the terminals with the i largest connection costs, the proof is complete. �

10


