
CS261: A Second Course in Algorithms
Lecture #15: Introduction to Approximation

Algorithms∗

Tim Roughgarden†

February 23, 2016

1 Coping with NP -Completeness

All of CS161 and the first half of CS261 focus on problems that can be solved in polynomial
time. A sad fact is that many practically important and frequently occurring problems do
not seem to be polynomial-time solvable, that is, are NP -hard.1

As an algorithm designer, what does it mean if a problem is NP -hard? After all, a
real-world problem doesn’t just go away after you realize that it’s NP -hard. The good news
is that NP -hardness is not a death sentence — it doesn’t mean that you can’t do anything
practically useful. But NP -hardness does throw the gauntlet to the algorithm designer, and
suggests that compromises may be necessary. Generally, more effort (computational and
human) will lead to better solutions to NP -hard problems. The right effort vs. solution
quality trade-off depends on the context, as well as the relevant problem size. We’ll discuss
algorithmic techniques across the spectrum — from low-effort decent-quality approaches to
high-effort high-quality approaches.

So what are some possible compromises? First, you can restrict attention to a relevant
special case of an NP -hard problem. In some cases, the special case will be polynomial-
time solvable. (Example: the Vertex Cover problem is NP -hard in general graphs, but on
Problem Set #2 you proved that, in bipartite graphs, the problem reduces to max flow/min
cut.) In other cases, the special case remains NP -hard but is still easier than the general
case. (Example: the Traveling Salesman Problem in Lecture #16.) Note that this approach
requires non-trivial human effort — implementing it requires understanding and articulating
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whatever special structure your particular application has, and then figuring out how to
exploit it algorithmically.

A second compromise is to spend more than a polynomial amount of time solving the
problem, presumably using tons of hardware and/or restricting to relatively modest problem
sizes. Hopefully, it is still possible to achieve a running time that is faster than naive brute-
force search. While NP -completeness is sometimes interpreted as “there’s probably nothing
better than brute-force search,” the real story is more nuanced. ManyNP -complete problems
can be solved with algorithms that, while running in exponential time, are significantly faster
than brute-force search. Examples that we’ll discuss later include 3SAT (with a running
time of (4/3)n rather than 2n) and the Traveling Salesman Problem (with a running time
of 2n instead of n!). Even for NP -hard problems where we don’t know any algorithms that
provably beat brute-force search in the worst case, there are almost always speed-up tricks
that help a lot in practice. These tricks tend to be highly dependent on the particular
application, so we won’t really talk about any in CS261 (where the focus is on general
techniques).

A third compromise, and the one that will occupy most of the rest of the course, is to
relax correctness. For an optimization problem, this means settling for a feasible solution
that is only approximately optimal. Of course one would like the approximation to be as
good as possible. Algorithms that are guaranteed to run in polynomial time and also be
near-optimal are called approximation algorithms, and they are the subject of this and the
next several lectures.

2 Approximation Algorithms

In approximation algorithm design, the hard constraint is that the designed algorithm should
run in polynomial time on every input. For an NP -hard problem, assuming P 6= NP , this
necessarily implies that the algorithm will compute a suboptimal solution in some cases.
The obvious goal is then to get as close to an optimal solution as possible (ideally, on every
input).

There is a massive literature on approximation algorithms — a good chunk of the algo-
rithms research community has been obsessed with them for the past 25+ years. As a result,
many interesting design techniques have been developed. We’ll only scratch the surface in
our lectures, and will focus on the most broadly useful ideas and problems.

One take-away from our study of approximation algorithms is that the entire algorithmic
toolbox that you’ve developed during CS161 and CS261 remains useful for the design and
analysis of approximation algorithms. For example, greedy algorithms, divide and conquer,
dynamic programming, and linear programming all have multiple killer applications in ap-
proximation algorithms (we’ll see a few). And there are other techniques, like local search,
which usually don’t yield exact algorithms (even for polynomial-time solvable problems) but
seem particularly well suited for designing good heuristics.

The rest of this lecture sets the stage with four relatively simple approximation algorithms
for fundamental NP -hard optimization problems.
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2.1 Example: Minimum-Makespan Scheduling

We’ve already seen a couple of examples of approximation algorithms in CS261. For example,
recall the problem of minimum-makespan scheduling, which we studied in Lecture #13.
There are m identical machines, and n jobs with processing times p1, . . . , pn. The goal is to
schedule all of the jobs to minimize the makespan (the maximum load, where the load of a
machine is the sum of the processing times of the jobs assigned to it) — to balance the loads
of the machines as evenly as possible.

In Lecture #13, we studied the online version of this problem, with jobs arriving one-
by-one. But it’s easy to imagine applications where you get to schedule a batch of jobs all
at once. This is the offline version of the problem, with all n jobs known up front. This
problem is NP -hard.2

Recall Graham’s algorithm, which processes the jobs in the given (arbitrary) order, al-
ways scheduling the next job on the machine that currently has the lightest load. This
algorithm can certainly be implemented in polynomial time, so we can reuse it as a legiti-
mate approximation algorithm for the offline problem. (Now the fact that it processes the
jobs online is just a bonus.) Because it always produces a schedule with makespan at most
twice the minimum possible (as we proved in Lecture #13), it is a 2-approximation algo-
rithm. The factor “2” here is called the approximation ratio of the algorithm, and it plays
the same role as the competitive ratio in online algorithms.

Can we do better? We can, by exploiting the fact that an (offline) algorithm knows all of
the jobs up front. A simple thing that an offline algorithm can do that an online algorithm
cannot is sort the jobs in a favorable order. Just running Graham’s algorithm on the jobs
in order from largest to smallest already improves the approximation ratio to 4

3
(a good

homework problem).

2.2 Example: Knapsack

Another example that you might have seen in CS161 (depending on who you took it from)
is the Knapsack problem. We’ll just give an executive summary; if you haven’t seen this
material before, refer to the videos posted on the course site.

An instance of the Knapsack problem is n items, each with a value and a weight. Also
given is a capacity W . The goal is to identify the subset of items with the maximum total
value, subject to having total weight at most W . The problem gets its name from a silly
story of a burglar trying to fill up a sack with the most valuable items. But the problem
comes up all the time, either directly or as a subroutine in a more complicated problem —
whenever you have a shared resource with a hard capacity, you have a knapsack problem.

Students usually first encounter the Knapsack problem as a killer application of dynamic
programming. For example, one such algorithm, which works as long as all item weights

2For the most part, we won’t bother to prove any NP -hardness results in CS261. The NP -hardness
proofs are all of the exact form that you studied in a course like CS154 — one just exhibits a polynomial-
time reduction from a known NP -hard problem to the current problem. Many of the problems that we
study were among the first batch of NP -complete problems identified by Karp in 1972.
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are integers, runs in time O(nW ). Note that this is not a polynomial-time algorithm, since
the input size (the number of keystrokes needed to type in the input) is only O(n logW ).
(Writing down the number W only takes logW digits.) And in fact, the knapsack problem
is NP -hard, so we don’t expect there to be a polynomial-time algorithm. Thus the O(nW )
dynamic programming solution is an example of an algorithm for an NP -hard problem that
beats brute-force search (unlessW is exponential in n), while still running in time exponential
in the input size.

What if we want a truly polynomial-time algorithm? NP -hardness says that we’ll have
to settle for an approximation. A natural greedy algorithm, which processes the items in
order of value divided by size (“bang-per-buck”) achieves a 1

2
-approximation, that is, is

guaranteed to output a feasible solution with total value at least 50% times the maximum
possible.3 If you’re willing to work harder, then by rounding the data (basically throwing out
the lower-order bits) and then using dynamic programming (on an instance with relatively
small numbers), one obtains a (1 − ε)-approximation, for a user-specified parameter ε > 0,
in time polynomial in n and 1

ε
. (By NP -hardness, we expect the running time to blow up

as ε gets close to 0.) This is pretty much the best-case scenario for an NP -hard problem —
arbitrarily close approximation in polynomial time.

2.3 Example: Steiner Tree

Next we revisit the other problem that we studied in Lecture #13, the Steiner tree problem.
Recall that the input is an undirected graph G = (V,E) with a nonnegative cost ce ≥ 0 for
each edge e ∈ E. Recall also that there is no loss of generality in assuming that G is the
complete graph and that the edge costs satisfy the triangle inequality (i.e., cuw ≤ cuv + cvw
for all u, v, w ∈ V ); see Exercise Set #7. Finally, there is a set R = {t1, . . . , tk} of vertices
called “terminals.” The goal is to compute the minimum-cost subgraph that spans all of the
terminals. We previously studied this problem with the terminals arriving online, but the
offline version of the problem, with all terminals known up front, also makes perfect sense.

In Lecture #13 we studied the natural greedy algorithm for the online Steiner tree prob-
lem, where the next terminal is connected via a direct edge to a previously arriving terminal
in the cheapest-possible way. We proved that the algorithm always computes a Steiner tree
with cost at most 2 ln k times the best-possible solution in hindsight. Since the algorithm is
easy to implement in polynomial time, we can equally well regard it as a 2 ln k-approximation
algorithm (with the fact that it processes terminals online just a bonus). Can we do some-
thing smarter if we know all the terminals up front?

As with job scheduling, better bounds are possible in the offline model because of the
ability to sort the terminals in a favorable order. Probably the most natural order in which
to process the terminals is to always process next the terminal that is the cheapest to connect
to a previous terminal. If you think about it a minute, you realize that this is equivalent to
running Prim’s MST algorithm on the subgraph induced by the terminals. This motivates:

3Technically, to achieve this for every input, the algorithm takes the better of this greedy solution and
the maximum-value item.
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The MST heuristic for metric Steiner tree: output the minimum spanning tree of
the subgraph induced by the terminals.

Since the Steiner tree problem is NP -hard and the MST can be computed in polynomial
time, we expect this heuristic to produce a suboptimal solution in some cases. A concrete
example is shown in Figure 1, where the MST of {t1, t2, t3} costs 4 while the optimal Steiner
tree has cost 3. (Thus the cost can be decreased by spanning additional vertices; this is what
makes the Steiner tree problem hard.) Using larger “wheel” graphs of the same type, it can
be shown that the MST heuristic can be off by a factor arbitrarily close to 2 (Exercise Set
#8). It turns out that there are no worse examples.

t1 a

t2

t3

2

2

2
1

1

1

Figure 1: MST heuristic will pick {t1, t2}, {t2, t3} but best Steiner tree (dashed edges) is
{a, t1}, {a, t2}, {a, t3}.

Theorem 2.1 In the metric Steiner tree problem, the cost of the minimum spanning tree of
the terminals is always at most twice the cost of an optimal solution.

Proof: The proof is similar to our analysis of the online Steiner tree problem (Lecture #13),
only easier. It’s easier to relate the cost of the MST heuristic to that of an optimal solution
than for the online greedy algorithm — the comparison can be done in one shot, rather then
on an edge-by-edge basis.

For the analysis, let T ∗ denote a minimum-cost Steiner tree. Obtain H from T ∗ by adding
a second copy of every edge (Figure 2(a)). Obviously, H is Eulerian (every vertex degree got
doubled) and

∑
e∈H ce = 2OPT . Let C denote an Euler tour of H — a (non-simple) closed

walk using every edge of H exactly once. We again have
∑

e∈C ce = 2OPT .

The tour C visits each of t1, . . . , tk at least once. “Shortcut” it to obtain a simple cycle Ĉ
on the vertex set {t1, . . . , tk} (Figure 2(b)); since the edge costs satisfy the triangle inequality,

this only decreases the cost. Ĉ minus an edge is a spanning tree of the subgraph induced by
R that has cost at most 2OPT ; the MST can only be better. �
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Figure 2: (a) Adding second copy of each edge in T ∗ to form H. Note H is Euler-
sian. (b) Shorting cutting edges ({t1, a}, {a, t2}), ({t2, a}, {a, t3}), ({t3, a}, {a, t1}) to
{t1, t2}, {t2, t3}, {t3, t1} respectively.

2.4 Example: Set Coverage

Next we study a problem that we haven’t seen before, set coverage. This problem is a
killer application for greedy algorithms in approximation algorithm design. The input is a
collection S1, . . . , Sm of subsets of some ground set U (each subset described by a list of its
elements), and a budget k. The goal is to pick k subsets to maximize the size of their union
(Figure 3). All else being equal, bigger sets are better for the set coverage problem. But
it’s not so simple — some sets are largely redundant, while others are uniquely useful (cf.,
Figure 3).

Figure 3: Example set coverage problem. If k = 2, we should pick the blue sets. Although
the red set is the largest, picking it is redundant.

Set coverage is a basic problem that comes up all the time (often not even disguised). For
example, suppose your start-up only has the budget to hire k new people. Each applicant
can be thought of as a set of skills. The problem of hiring to maximize the number of distinct
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skills required is a set coverage problem. Similarly for choosing locations for factories/fire
engines/Web caches/artisinal chocolate shops to cover as many neighborhoods as possible.
Or, in machine learning, picking a small number of features to explain as much as the data
as possible. Or, in HCI, given a budget on the number of articles/windows/menus/etc. that
can be displayed at any given time, maximizing the coverage of topics/functionality/etc.

The set coverage problem is NP -hard. Turning to approximation algorithms, the follow-
ing greedy algorithm, which increases the union size as much as possible at each iteration,
seems like a natural and good idea.

Greedy Algorithm for Set Coverage

for i = 1, 2, . . . , k: do
compute the set Ai maximizing the number of new elements covered
(relative to ∪i−1j=1Aj)

return {A1, . . . , Ak}

This algorithm can clearly be implemented in polynomial time, so we don’t expect it to
always compute an optimal solution. It’s useful to see some concrete examples of what can
go wrong. example.

Figure 4: (a) Bad example when k = 2 (b) Bad example when k = 3.

For the first example (Figure 4(a)), set the budget k = 2. There are three subsets. S1

and S2 partition the ground set U half-half, so the optimal solution has size |U |. We trick
the greedy algorithm by adding a third subset S3 that covers slightly more than half the
elements. The greedy algorithm then picks S3 in its first iteration, and can only choose
one of S1, S2 in the second iteration (it doesn’t matter which). Thus the size of the greedy
solution is ≈ 3

4
|U |. Thus even when k = 2, the best-case scenario would be that the greedy

algorithm is a 3
4
-approximation.

We next extend this example (Figure 4(b)). Take k = 3. Now the optimal solution is
S1, S2, S3, which partition the ground set into equal-size parts. To trick the greedy algorithm
in the first iteration (i.e., prevent it from taking one of the optimal sets S1, S2, S3), we add a
set S4 that covers slightly more than 1

3
of the elements and overlaps evenly with S1, S2, S3.

To trick it again in the second iteration, note that, given S4, choosing any of S1, S2, S3 would
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cover 1
3
· 2
3
· |U | = 2

9
|U | new elements. Thus we add a set S5, disjoint from S4, covering slightly

more than a 2
9

fraction of U . In the third iteration we allow the greedy algorithm to pick one
of S1, S2, S3. The value of the greedy solution is ≈ |U |(1

3
+ 2

9
+ 1

3
4
9
) = 19

27
|U |. This is roughly

70% of |U |, so it is a worse example for the greedy algorithm than the first
Exercise Set #8 asks you to extend this family of bad examples to show that, for all k,

the greedy solution could be as small as

1−
(

1− 1

k

)k
times the size of an optimal solution. (Note that with k = 2, 3 we get 3

4
and 19

27
.) This

expression is decreasing with k, and approaches 1 − 1
e
≈ 63.2% in the limit (since 1 − x

approaches e−x for x going to 0, recall Figure 5).4

−5 5 10

−5

5

10

y = 1− x

y = e−x

Figure 5: Graph showing 1− x approaching e−x for small x.

These examples show that the following guarantee is remarkable.

Theorem 2.2 For every k ≥ 1, the greedy algorithm is a (1 − (1 − 1
k
)k)-approximation

algorithm for set coverage instances with budget k.

Thus there are no worse examples for the greedy algorithm than the ones we identified
above. Here’s what’s even more amazing: under standard complexity assumptions, there is
no polynomial-time algorithm with a better approximation ratio!5 In this sense, the greedy
algorithm is an optimal approximation algorithm for the set coverage problem.

We now turn to the proof of Theorem 2.2. The following lemma proves a sense in which
the greedy algorithm makes healthy progress at every step. (This is the most common way
to analyze a greedy algorithm, whether for exact or approximate guarantees.)

4There’s that strange number again!
5As k grows large, that is. When k is a constant, the problem can be solved optimally in polynomial time

using brute-force search.
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Lemma 2.3 Suppose that the first i− 1 sets A1, . . . , Ai−1 computed by the greedy algorithm
cover ` elements. Then the next set Ai chosen by the algorithm covers at least

1

k
(OPT − `)

new elements, where OPT is the value of an optimal solution.

Proof: As a thought experiment, suppose that the greedy algorithm were allowed to pick k
new sets in this iteration. Certainly it could cover OPT − ` new elements — just pick all of
the k subsets in the optimal solution. One of these k sets must cover at least 1

k
(OPT − `)

new elements, and the set Ai chosen by the greedy algorithm is at least as good. �

Now we just need a little algebra to prove the approximation guarantee.

Proof of Theorem 2.2: Let gi = | ∪ij=1 Ai| denote the number of elements covered by the
greedy solution after i iterations. Applying Lemma 2.3, we get

gk = (gk − gk−1) + gk−1 ≥
1

k
(OPT − gk−1) + gk−1 =

OPT

k
+

(
1− 1

k

)
gk−1.

Applying it again we get

gk ≥
OPT

k
+

(
1− 1

k

)(
OPT

k
+

(
1− 1

k

)
gk−2

)
=
OPT

k
+

(
1− 1

k

)
OPT

k
+

(
1− 1

k

)2

gk−3.

Iterating, we wind up with

gk ≥
OPT

k

[
1 +

(
1− 1

k

)
+

(
1− 1

k

)2

+ · · ·+
(

1− 1

k

)k−1]
.

(There are k terms, one per iteration of the greedy algorithm.) Recalling from your discrete
math class the identity

1 + z + z2 + · · ·+ zk−1 =
1− zk

1− z
for z ∈ (0, 1) — just multiply both sides by 1− z to verify — we get

gk ≥
OPT

k
·

1− (1− 1
k
)k

1− (1− 1
k
)

= OPT

[
1−

(
1− 1

k

)k]
,

as desired. �
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2.5 Influence Maximization

Guarantees for the greedy algorithm for set coverage and various generalizations were already
known in the 1970s. But just over the last dozen years, these ideas have taken off in the
data mining and machine learning communities. We’ll just mention one representative and
influential (no pun intended) example, due to Kempe, Kleinberg, and Tardos in 2003.

Consider a “social network,” meaning a directed graph G = (V,E). For our purposes, we
interpret an edge (v, w) as “v influences w.” (For example, maybe w follows v on Twitter.)

We next posit a simple model of how an idea/news item/meme/etc. “goes viral,” called
a “cascade model.”6

• Initially the vertices in some set S are “active,” all other vertices are “inactive.” Every
edge is initially “undetermined.”

• While there is an active vertex v and an undetermined edge (v, w):

– with probability p, edge (v, w) is marked “active,” otherwise it is marked “inac-
tive;”

– if (v, w) is active and w is inactive, then mark w as active.

Thus whenever a vertex gets activated, it has the opportunity to active all of the vertices
that it influences (if they’re not already activated). Note that once a vertex is activated, it
is active forevermore. A vertex can get multiple chances to be activated, corresponding to
the number of its influencers who get activated. See Figure 6. In the example, note that a
vertex winds up getting activated if and only if there is a path of activated edges from v to
it.

a

b

c

d

Figure 6: Example cascade model. Initially, only a is activated. b (and similarly c) can get
activated by a with probability p. d has a chance to get activated by either a, b or c.

The influence maximization problem is, given a directed graph G = (V,E) and a budget k,
to compute the subset S ⊆ V of size k that maximizes the expected number of active vertices
at the conclusion of the cascade, given that the vertices of S are active at the beginning.

6Such models were originally proposed in epidemiology, to understand the spread of diseases.
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(The expectation is over the coin flips made for the edges.) Denote this expected value for
a set S by f(S).

There is a natural greedy algorithm for influence maximization, where at each iteration
we increase the function f as much as possible.

Greedy Algorithm for Influence Maximization

S = ∅
for i = 1, 2, . . . , k: do

add to S the vertex v maximizing f(S ∪ {v})
return S

The same analysis we used for set coverage can be used to prove that this greedy algorithm
is a (1 − (1 − 1

k
)k)-approximation algorithm for influence maximization. The greedy algo-

rithm’s guarantee holds for every function f that is “monotone” and “submodular,” and the
function f above is one such example (it is basically a convex combination of set coverage
functions). See Problem Set #4 for details.
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