
CS261: A Second Course in Algorithms
Lecture #2: Augmenting Path Algorithms for

Maximum Flow∗

Tim Roughgarden†

January 7, 2016

1 Recap

v w
ue (fe)

v w

ue − fe

fe

Figure 1: (a) original edge capacity and flow and (b) resultant edges in residual network.

Recall where we left off last lecture. We’re considering a directed graph G = (V,E) with a
source s, sink t, and an integer capacity ue for each edge e ∈ E. A flow is a nonnegative vector
{fe}e∈E that satisfies capacity constraints (fe ≤ ue for all e) and conservation constraints
(flow in = flow out except at s and t).

Recall that given a flow f in a graph G, the corresponding residual network has two edges
for each edge e of G, a forward edge with residual capacity ue − fe and a reverse edge with
residual capacity fe that allows us to “undo” previously routed flow. See also Figure 1.1

The Ford-Fulkerson algorithm repeatedly finds an s-t path P in the current residual
graph Gf , and augments along p as much as possible subject to the capacity constraints of

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1We usually implicitly assume that all edges with zero residual capacity are omitted from the residual

network.

1

the residual network.2 We argued that the algorithm eventually terminates with a feasible
flow. But is it a maximum flow? More generally, a major course theme is to understand

How do we know when we’re done?

For example, could the maximum flow value in the network in Figure 2 really just be 3?

s

v

w

t

1

100

100

1

1

s

v

w

t

1 (1)

100 (2)

100 (2)

1 (1)

1 (1)

Figure 2: (a) A given network and (b) the alleged maximum flow of value 3.

2 Around the Maximum-Flow/Minimum-Cut Theorem

We ended last lecture with a claim that if there is no s-t path (with positive residual ca-
pacity on every edge) in the residual graph Gf , then f is a maximum flow in G. It’s conve-
nient to prove a stronger statement, from which we can also derive the famous maximum-
flow/minimum cut theorem.

2.1 (s, t)-Cuts

To state the stronger result, we need an important definition, of objects that are “dual” to
flows in a sense we’ll make precise later.

Definition 2.1 (s-t Cut) An (s, t)-cut of a graph G = (V,E) is a partition of V into sets
A,B with s ∈ A and t ∈ B.

Sometimes we’ll simply say “cut” instead of “(s, t)-cut.”
Figure 3 depicts a good (if cartoonish) way to think about an (s, t)-cut of a graph. Such

a cut buckets the edges of the graph into four categories: those with both endpoints in A,
those with both endpoints in B, those sticking out of A (with tail in A and head in B), and
those sticking into A (with head in A and tail in B.

2To be precise, the algorithm finds an s-t path in Gf such that every edge has strictly positive residual
capacity. Unless otherwise noted, in this lecture by “Gf” we mean the edges with positive residual capacity.

2

Figure 3: cartoonish visualization of cuts. The squiggly line splits the vertices into two sets
A and B and edges in the graph into 4 categories.

The capacity of an (s, t)-cut (A,B) is defined as∑
e∈δ+(A)

ue.

where δ+(A) denotes the set of edges sticking out of A. (Similarly, we later use δ−(A) to
denote the set of edges sticking into A.)

Note that edges sticking in to the source-side of an (s, t)-cut to do not contribute to its
capacity. For example, in Figure 2, the cut {s, w}, {v, t} has capacity 3 (with three outgoing
edges, each with capacity 1). Different cuts have different capacities. For example, the cut
{s}, {v, w, t} in Figure 2 has capacity 101. A minimum cut is one with the smallest capacity.

2.2 Optimality Conditions for the Maximum Flow Problem

We next prove the following basic result.

Theorem 2.2 (Optimality Conditions for Max Flow) Let f be a flow in a graph G.
The following are equivalent:3

(1) f is a maximum flow of G;

(2) there is an (s, t)-cut (A,B) such that the value of f equals the capacity of (A,B);

(3) there is no s-t path (with positive residual capacity) in the residual network Gf .

Theorem 2.2 asserts that any one of the three statements implies the other two. The
special case that (3) implies (1) recovers the claim from the end of last lecture.

3Meaning, either all three statements hold, or none of the three statements hold.

3

Corollary 2.3 If f is a flow in G such that the residual network Gf has no s-t path, then
the f is a maximum flow.

Recall that Corollary 2.3 implies the correctness of the Ford-Fulkerson algorithm, and more
generally of any algorithm that terminates with a flow and a residual network with no s-t
path.

Proof of Theorem 2.2: We prove a cycle of implications: (2) implies (1), (1) implies (3), and
(3) implies (2). It follows that any one of the statements implies the other two.

Step 1: (2) implies (1): We claim that, for every flow f and every (s, t)-cut (A,B),

value of f ≤ capacity of (A,B).

This claim implies that all flow values are at most all cut values; for a cartoon of this, see
Figure 4. The claim implies that there no “x” strictly to the right of the “o”.

Figure 4: cartoon illustrating that no flow value (x) is greater than a cut value (o).

To see why the claim yields the desired implication, suppose that (2) holds. This corre-
sponds to an “x” and “o” that are co-located in Figure 4. By the claim, no “x”s can appear
to the right of this point. Thus no flow has larger value than f , as desired.

We now prove the claim. If it seems intuitively obvious, then great, your intuition is
spot-on. For completeness, we provide a brief algebraic proof.

Fix f and (A,B). By definition,

value of f =
∑

e∈δ+(s)

fe︸ ︷︷ ︸
flow out of s

=
∑

e∈δ+(s)

fe −
∑

e∈δ−(s)

fe︸ ︷︷ ︸
vacuous sum

; (1)

the second equation is stated for convenience, and follows from our standing assumption
that s has no incoming vertices. Recall that conservation constraints state that∑

e∈δ+(v)

fe︸ ︷︷ ︸
flow out of v

−
∑

e∈δ−(v)

fe︸ ︷︷ ︸
flow into of v

= 0 (2)

for every v 6= s, t. Adding the equations (2) corresponding to all of the vertices of A \ {s} to
equation (1) gives

value of f =
∑
v∈A

 ∑
e∈δ+(v)

fe −
∑

e∈δ−(v)

fe

 . (3)

4

Next we want to think about the expression in (3) from an edge-centric, rather than vertex-
centric, perspective. How much does an edge e contribute to (3)? The answer depends on
which of the four buckets e falls into (Figure 3). If both of e’s endpoints are in B, then
e is not involved in the sum (3) at all. If e = (v, w) with both endpoints in A, then it
contributes fe once (in the subexpression

∑
e∈δ+(v) fe) and −fe once (in the subexpression

−
∑

e∈δ−(w) fe). Thus edges inside A contribute net zero to (3). Similarly, an edge e sticking
out of A contributes fe, while an edge sticking into A contributes −fe. Summarizing, we
have

value of f =
∑

e∈δ+(A)

fe −
∑

e∈δ−(A)

fe.

This equation states that the net flow (flow forward minus flow backward) across every cut
is exactly the same, namely the value of the flowf .

Finally, using the capacity constraints and the fact that all flows values are nonnegative,
we have

value of f =
∑

e∈δ+(A)

fe︸︷︷︸
≤ue

−
∑

e∈δ−(A)

fe︸︷︷︸
≥0

≤
∑

e∈δ+(A)

ue (4)

= capacity of (A,B), (5)

which completes the proof of the first implication.

Step 2: (1) implies (3): This step is easy. We prove the contrapositive. Suppose f is a
flow such that Gf has an s-t path P with positive residual capacity. As in the Ford-Fulkerson
algorithm, we augment along P to produce a new flow f ′ with strictly larger value. This
shows that f is not a maximum flow.

Step 3: (3) implies (2): The final step is short and sweet. The trick is to define

A = {v ∈ V : there is an s v path in Gf}.

Conceptually, start your favorite graph search subroutine (e.g., BFS or DFS) from s until
you get stuck; A is the set of vertices you get stuck at. (We’re running this graph search
only in our minds, for the purposes of the proof, and not in any actual algorithm.)

Note that (A, V − A) is an (s, t)-cut. Certainly s ∈ A, so s can reach itself in Gf . By
assumption, Gf has no s-t path, so t /∈ A. This cut must look like the cartoon in Figure 5,
with no edges (with positive residual capacity) sticking out of A. The reason is that if there
were such an edge sticking out of A, then our graph search would not have gotten stuck at
A, and A would be a bigger set.

5

Figure 5: Cartoon of the cut. Note that edges crossing the cut only go from B to A.

Let’s translate the picture in Figure 5, which concerns the residual network Gf , back to
the flow f in the original network G.

1. Every edge sticking out of A in G (i.e., in δ+(A)) is saturated (meaning fu = ue). For
if fe < ue for e ∈ δ+(A), then the residual network Gf would contain a forward version
of e (with positive residual capacity) which would be an edge sticking out of A in Gf

(contradicting Figure 5).

2. Every edge sticking into in A in G (i.e., in δ−(A)) is zeroed out (fu = 0). For if
fe < ue for e ∈ δ+(A), then the residual network Gf would contain a forward version
of e (with positive residual capacity) which would be an edge sticking out of A in Gf

(contradicting Figure 5).

These two points imply that the inequality (4) holds with equality, with

value of f = capacity of (A, V − A).

This completes the proof. �

We can immediately derive some interesting corollaries of Theorem 2.2. First is the
famous Max-Flow/Min-Cut Theorem.4

Corollary 2.4 (Max-Flow/Min-Cut Theorem) In every network,

maximum value of a flow = minimum capacity of an (s, t)-cut.

Proof: The first part of the proof of Theorem 2.2 implies that the maximum value of a flow
cannot exceed the minimum capacity of an (s, t)-cut. The third part of the proof implies
that there cannot be a gap between the maximum flow value and the minimum cut capacity.
�

Next is an algorithmic consequence: the minimum cut problem reduces to the maximum
flow problem.

Corollary 2.5 Given a maximum flow, and minimum cut can be computed in linear time.

4This is the theorem that, long ago, seduced your instructor into a career in algorithms.

6

Proof: Use BFS or DFS to compute, in linear time, the set A from the third part of the
proof of Theorem 2.2. The proof shows that (A, V − A) is a minimum cut. �

In practice, minimum cuts are typically computed using a maximum flow algorithm and
this reduction.

2.3 Backstory

Ford and Fulkerson published in the max-flow/min-cut theorem in 1955, while they were
working at the RAND Corporation (a military think tank created after World War II). Note
that this was in the depths of the Cold War between the (then) Soviet Union and the United
States. Ford and Fulkerson got the problem from Air Force researcher Theodore Harris and
retired Army general Frank Ross. Harris and Ross has been given, by the CIA, a map of the
rail network connecting the Soviet Union to Eastern Bloc countries like Poland, Czechoslo-
vakia, and Eastern Germany. Harris and Ross formed a graph, with vertices corresponding
to administrative districts and edge capacities corresponding to the rail capacity between
two districts. Using heuristics, Harris and Ross computed both a maximum flow and mini-
mum cut of the graph, noting that they had equal value. They were rather more interested
in the minimum cut problem (i.e., blowing up the least amount of train tracks to sever con-
nectivity) than the maximum flow problem! Ford and Fulkerson proved more generally that
in every network, the maximum flow value equals that minimum cut capacity. See [?] for
further details.

3 The Edmonds-Karp Algorithm: Shortest Augment-

ing Paths

3.1 The Algorithm

With a solid understanding of when and why maximum flow algorithms are correct, we
now focus on optimizing the running time. Exercise Set #1 asks to show that the Ford-
Fulkerson algorithm is not a polynomial-time algorithm. It is a “pseudopolynomial-time”
algorithm, meaning that it runs in polynomial time provided all edge capacities are poly-
nomially bounded integers. With big edge capacities, however, the algorithm can require a
very large number of iterations to complete. The problem is that the algorithm can keep
choosing a “bad path” over and over again. (Recall that when the current residual network
has multiple s-t paths, the Ford-Fulkerson algorithm chooses arbitrarily.) This motivates
choosing augmenting paths more intelligently. The Edmonds-Karp algorithm is the same as
the Ford-Fulkerson algorithm, except that it always chooses a shortest augmenting path of
the residual graph (i.e., with the fewest number of hops). Upon hearing “shortest paths”
you may immediately think of Dijkstra’s algorithm, but this is overkill here — breadth-first
search already computes (in linear time) a path with the fewest number of hops.

7

Edmonds-Karp Algorithm

initialize fe = 0 for all e ∈ E
repeat

compute an s-t path P (with positive residual capacity) in the
current residual graph Gf with the fewest number of edges
// takes O(|E|) time using BFS

if no such path then
halt with current flow {fe}e∈E

else
let ∆ = mine∈P (e’s residual capacity in Gf)
// augment the flow f using the path P
for all edges e of G whose corresponding forward edge is in P do

increase fe by ∆
for all edges e of G whose corresponding reverse edge is in P do

decrease fe by ∆

3.2 The Analysis

As a specialization of the Ford-Fulkerson algorithm, the Edmonds-Karp algorithm inherits
its correctness. What about the running time?

Theorem 3.1 (Running Time of Edmonds-Karp [?]) The Edmonds-Karp algorithm runs
in O(m2n) time.5

Recall that m typically varies between ≈ n (the sparse case) and ≈ n2 (the dense case),
so the running time in Theorem 3.1 is between n3 and n5. This is quite slow, but at least
the running time is polynomial, no matter how big the edge capacities are. See below and
Problem Set #1 for some faster algorithms.6 Why study Edmonds-Karp, when we’re just
going to learn faster algorithms later? Because it provides a gentle introduction to some
fundamental ideas in the analysis of maximum flow algorithms.

Lemma 3.2 (EK Progress Lemma) Fix a network G. For a flow f , let d(f) denote the
number of hops in a shortest s-t path (with positive residual capacity) in Gf , or +∞ if no
such paths exist.

(a) d(f) never decreases during the execution of the Edmonds-Karp algorithm.

(b) d(f) increases at least once per m iterations.

5In this course, m always denotes the number |E| of edges, and n the number |V | of vertices.
6Many different methods yield running times in the O(mn) range, and state-of-the-art algorithm are still

a bit faster. It’s an open question whether or not there is a near-linear maximum flow algorithm.

8

Since d(f) ∈ {0, 1, 2, . . . , n− 2, n− 1,+∞}, once d(f) ≥ n we know that d(f) = +∞ and s
and t are disconnected in Gf .

7 Thus, Lemma 3.2 implies that the Edmonds-Karp algorithm
terminates after at most mn iterations. Since each iteration just involves a breadth-first-
search computation, we get the running time of O(m2n) promised in Theorem 3.1.

For the analysis, imagine running breadth-first search (BFS) in Gf starting from the
source s. Recall that BFS discovers vertices in “layers,” with s in the 0th layer, and layer
i + 1 consisting of those vertices not in a previous layer and reachable in one hop from a
vertex in the ith layer. We can then classify the edges of Gf as forward (meaning going from
layer i to layer i+ 1, for some i), sideways (meaning both endpoints are in the same layer),
and backwards (traveling from a layer i to some layer j with j < i). By the definition of
breadth-first search, no forward edge of Gf can shortcut over a layer; every forward edge
goes only to the next layer.

We define Lf , with the L standing for “layered,” as the subgraph of Gf consisting only
of the forward edges (Figure 6). (Vertices in layers after the one containing t are irrelevant,
so they can be discarded if desired.)

Figure 6: Layered subgraph Lf

Why bother defining Lf? Because it is a succinct encoding of all of the shortest s-t paths
of Gf — the paths on which the Edmonds-Karp algorithm might augment. Formally, every
s-t in Lf comprises only forward edges of the BFS and hence has exactly d(f) hops, the
minimum possible. Conversely, an s-t path that is in Gf but not Lf must contain at least
one detour (a sideways or backward edge) and hence requires at least d(f) + 1 hops to get
to t.

7Any path with n or more edges has a repeated vertex, and deleted the corresponding cycle yields a path
with the same endpoints and fewer hops.

9

s

v

w

t

3

2

2

5

3

Figure 7: Example from first lecture. Initially, 0th layer is {s}, 1st layer is {v, w}, 2nd layer
is {t}.

s

v

w

t

1

2

2

5

3

2

Figure 8: Residual graph after sending flow on s → v → t. 0th layer is {s}, 1st layer is
{v, w}, 2nd layer is {t}.

s

v

w

t

1

2

5

2
1

2

2

Figure 9: Residual graph after sending additional flow on s → w → t. 0th layer is {s}, 1st
layer is {v}, 2nd layer is {w}, 3rd layer is {t}.

For example, let’s return to our first example in Lecture #1, shown in Figure 7. Let’s
watch how d(f) changes as we simulate the algorithm. Since we begin with the zero flow,
initially the residual graph Gf is the original graph G. The 0th layer is s, the first layer is
{v, w}, and the second layer is t. Thus d(f) = 2 initially. There are two shortest paths,

10

s → v → t and s → w → t. Suppose the Edmonds-Karp algorithm chooses to augment on
the upper path, sending two units of flow. The new residual graph is shown in Figure 8. The
layers remain the same: {s}, {v, w}, and {t}, with d(f) still equal to 2. There is only one
shortest path, s → w → t. The Edmonds-Karp algorithm sends two units along this flow,
resulting in the new residual graph in Figure 9. Now, no two-hop paths remain: the first
layer contains only v, with w in second layer and t in the third layer. Thus, d(f) has jumped
from 2 to 3. The unique shortest path is s → v → w → t, and after the Edmonds-Karp
algorithm pushes one unit of flow on this path it terminates with a maximum flow.

Proof of Lemma 3.2: We start with part (a) of the lemma. Note that the only thing
we’re worried about is that an augmentation somehow introduces a new, shortest path that
shortcuts over some layers of Lf (as defined above).

Suppose the Edmonds-Karp algorithm augments the current flow f by routing flow on
the path P . Because P is a shortest s-t path in Gf , it is also a path in the layered graph Lf .
The only new edges created by augmenting on P are edges that go in the reverse direction
of P . These are all backward edges, so any s-t of Gf that uses such an edge has at least
d(f) + 2 hops. Thus, no new shorter paths are formed in Gf after the augmentation.

Now consider a run of t iterations of the Edmonds-Karp algorithm in which the value of
d(f) = c stays constant. We need to show that t ≤ m. Before the first of these iterations,
we save a copy of the current layered network: let F denote the edges of Lf at this time,
and V0 = {s}, V1, V2, . . . , Vc the vertices if the various layers.8

Consider the first of these t iterations. As in the proof of part (a), the only new edges
introduced go from some Vi to Vi−1. By assumption, after the augmentation, there is still
an s-t path in the new residual graph with only c hops. Since no edge of of such a path can
shortcut over one of the layers V0, V1, . . . , Vc, it must consist only of edges in F . Inductively,
every one of these t iterations augments on a path consisting solely of edges in F . Each
such iteration zeroes out at least one edge e = (v, w) of F (the one with minimum residual
capacity), at which point edge e drops out of the current residual graph. The only way e
can reappear in the residual graph is if there is an augmentation in the reverse direction
(the direction (w, v)). But since (w, v) goes backward (from some Vi to Vi−1) and all of the
t iterations route flow only on edges of F (from some Vi to to Vi+1), this can never happen.
Since F contains at most m edges, there can only be m iterations before d(f) increases (or
the algorithm terminates). �

4 Dinic’s Algorithm: Blocking Flows

The next algorithm bears a strong resemblance to the Edmonds-Karp algorithm, though it
was developed independently and contemporaneously by Dinic. Unlike the Edmonds-Karp
algorithm, Dinic’s algorithm enjoys a modularity that lends itself to optimized algorithms
with faster running times.

8The residual and layered networks change during these iterations, but F and V0, . . . , Vc always refer to
networks before the first of these iterations.

11

Dinic’s Algorithm

initialize fe = 0 for all e ∈ E
while there is an s-t path in the current residual network Gf do

construct the layered network Lf from Gf using breadth-first search,
as in the proof of Lemma 3.2
// takes O(|E|) time

compute a blocking flow g (Definition 4.1) in Lf
// augment the flow f using the flow g
for all edges (v, w) of G for which the corresponding forward edge
of Gf carries flow (gvw > 0) do

increase fe by ge
for all edges (v, w) of G for which the corresponding reverse edge
of Gf carries flow (gwv > 0) do

decrease fe by ge

Dinic’s algorithm can only terminate with a residual network with no s-t path, that is, with a
maximum flow (by Corollary 2.3). While in the Edmonds-Karp algorithm we only formed the
layered network Lf in the analysis (in the proof of Lemma 3.2), Dinic’s algorithm explicitly
constructs this network in each iteration.

A blocking flow is, intuitively, a bunch of shortest augmenting paths that get processed
as a batch. Somewhat more formally, blocking flows are precisely the possible outputs of the
naive greedy algorithm discussed at the beginning of Lecture #1. Completely formally:

Definition 4.1 (Blocking Flow) A blocking flow g in a network G is a feasible flow such
that, for every s-t path P of G, some edge e is saturated by g (i.e.,. fe = ue).

That is, a blocking flow zeroes out an edge of every s-t path.

s

v

w

t

3 (3)

2

2

5 (3)

3 (3)

Figure 10: Example of blocking flow. This is not a maximum flow.

12

Recall from Lecture #1 that a blocking flow need not be a maximum flow; the blocking
flow in Figure 10 has value 3, while the maximum flow value is 5. While the blocking flow
in Figure 10 uses only one path, generally a blocking flow uses many paths. Indeed, every
flow that is maximum (equivalently, no s-t paths in the residual network) is also a blocking
flow (equivalently, no s-t paths in the residual network comprising only forward edges).

The running time analysis of Dinic’s algorithm is anchored by the following progress
lemma.

Lemma 4.2 (Dinic Progress Lemma) Fix a network G. For a flow f , let d(f) denote
the number of hops in a shortest s-t path (with positive residual capacity) in Gf , or +∞ if
no such paths exist (or +∞ if no such paths exist). If h is obtained from f be augmenting f
by a blocking flow g in Gf , then d(h) > d(f).

That is, every iteration of Dinic’s algorithm strictly increases the s-t distance in the current
residual graph.

We leave the proof of Lemma 4.2 as Exercise #5; the proof uses the same ideas as that
of Lemma 3.2. For an example, observe that after augmenting our running example by the
blocking flow in Figure 10, we obtain the residual network in Figure 11. We had d(f) = 2
initially, and d(f) = 3 after the augmentation.

s

v

w

t

2

2

2

3

3

3

Figure 11: Residual network of blocking flow in Figure 10. d(f) = 3 in this residual graph.

Since d(f) can only go up to n − 1 before becoming infinite (i.e., disconnecting s and t
in Gf), Lemma 4.2 immediately implies that Dinic’s algorithm terminates after at most n
iterations. In this sense, the maximum flow problem reduces to n instances of the blocking
flow problem (in layered networks). The running time of Dinic’s algorithm is O(n · BF),
where BF denotes the running time required to compute a blocking flow in a layered network.

The Edmonds-Karp algorithm and its proof effectively shows how to compute a blocking
flow in O(m2) time, by repeatedly sending as much flow as possible on a single path of Lf
with positive residual capacity. On Problem Set #1 you’ll seen an algorithm, based on depth-
first search, that computes a blocking flow in time O(mn). With this subroutine, Dinic’s

13

algorithm runs in O(n2m) time, improving over the Edmonds-Karp algorithm. (Remember,
it’s always a win to replace an m with an n.)

Using fancy data structures, it’s known how to compute a maximum flow in near-linear
time (with just one extra logarithmic factor), yielding a maximum flow algorithm with run-
ning time close to O(mn). This running time is no longer so embarrassing, and resembles
time bounds that you saw in CS161, for example for the Bellman-Ford shortest-path algo-
rithm and for various all-pairs shortest paths algorithms.

5 Looking Ahead

Thus far, we focused on “augmenting path” maximum flow algorithms. Properly imple-
mented, such algorithms are reasonably practical. Our motivation here is pedagogical: these
algorithms remain the best way to develop your initial intuition about the maximum flow
problem.

Next lecture introduces a different paradigm for computing maximum flows, known as
the “push-relabel” framework. Such algorithms are reasonably simple, but somewhat less
intuitive than augmenting path algorithms. Properly implemented, they are blazingly fast
and are often the method of choice for solving the maximum flow problem in practice.

14

