
CS264: Beyond Worst-Case Analysis
Lecture #15: Topic Modeling and Nonnegative Matrix

Factorization∗

Tim Roughgarden†

February 28, 2017

1 Preamble

This lecture fulfills a promise made back in Lecture #1, to investigate theoretically the
unreasonable effectiveness of machine learning algorithms in practice. As always, pursuing
provable bounds for algorithms for hard problems can pay off in two different ways. The first
is to achieve a theoretical explanation of the empirical performance of existing algorithms.1

The second is to use a better understanding of the properties of “real-world” instances to
design new and better algorithms. This lecture falls into the second category.

We’ll consider the problem of discovering topics from an unlabeled collection of documents
(so, another unsupervised learning problem). The goal is to discover which documents are
about which topics. But the topics are not given in advance! The algorithm is also responsible
for automatically figuring out what the topics are. It is easy to imagine why solving this task
would be useful, for example in organizing a large collection of documents for easy navigation
by a human. (E.g., recommending documents that are similar to the one currently being
read.)

We’ll see that a natural formulation of this topic discovery problem is NP -hard in the
worst case, but becomes polynomial-time solvable under an assumption that makes sense in
the motivating applications. (So like our work in clustering, articulating plausible structure
in “real” instances leads to provably tractability.) This contributes to an ongoing theme of
the course, of being willing to make compromises in algorithm analysis that are specific to
the application domain, with the goal of getting good advice about how to solve the problem,

∗ c©2014–2017, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Much of our study of “stable” and “planted” solutions has this flavor, with the theory explaining when

tried-and-true algorithms like spectral algorithms or linear programming work well.

1

even if the specific assumptions used do not make sense for other problems. (This contrasts
with worst-case analysis, which is defined generically across all problems.)

2 The Singular Value Decomposition Approach

2.1 The Setup

We summarize a corpus of documents with respect to a fixed vocabulary as an m×n matrix
M, where rows correspond to words and columns to documents. (So m is the number of
words that we’re keeping track of, and n is the number of documents we’ve got.) The
entry Mij denotes the number of times that the ith word occurs in the jth document. This
matrix M is sometimes called the term-by-document matrix. Note that summarizing the
documents by M throws away some information, namely the ordering of the words in each
document. This is sometimes called the “bag of words” assumption, and it is standard in
data mining, natural language processing, etc.

Our goal is to find k topic vectors, which are vectors indexed by words (so in Rm), such
that every document can be described (at least approximately) as a linear combination of
the topic vectors. Intuitively, a topic vector indicates the relative propensity of the different
words to appear in a document on that topic.2

2.2 Low-Rank Factorizations

In matrix terminology, this goal translates to the problem of finding a low-rank approxi-
mation of M. That is, we want to express M (at least approximately) as the product of a
long and skinny (m× k) matrix A and a short and wide (k× n) matrix B (Figure 1). Note
that when such a factorization exists, it means that every column of M can be expressed
as a linear combination of the columns in A (with the corresponding column of B giving
the k coefficients in the linear combination); similarly, every row of M can be expressed as
a linear combination of the rows of B (with the coefficients described by the corresponding
row of A). Thus, we can take the columns of A as our topic vectors—every document arises
a suitable linear combination of them. Each column of B can then be interpreted as the
mixture of topics that the corresponding document is about.

For example, suppose there are three words in the vocabulary and four documents, with
term-by-document matrix

M =

 1 3 2 0
2 0 1 3
3 1 2 4

 . (1)

2How do we know what k is? The same comments apply as in the k-median and k-means problems:
perhaps you have some domain knowledge telling you roughly what k should be, or perhaps you just rerun
an algorithm for several choices of k, settling on one that seems to give you the best results.

2

m A Y

ZT

=

n

m

k

k

n

×

Figure 1: A low-rank factorization. (With A,Y,Z> playing the role of M,A,B in the text.)

This matrix has a low-rank factorization with k = 2, such as 1 3 2 0
2 0 1 3
3 1 2 4

 =

 1 3
2 0
3 1

 · [1 0 1
2

3
2

0 1 1
2
−1

2

]
.

For example, perhaps the two topics represent “politics” and “baseball.” Then, looking at
the first matrix on the right-hand side (whose columns indicate the topics), we see that
the middle word is one that never appears in document on baseball, but sometimes does in
documents on politics (e.g., “filibuster”). The first word is more frequent in documents on
baseball than politics (e.g., “home run”) and vice versa for the third word (e.g., “president”).
The second matrix on the right-hand side indicates what each document is about. So the
first document is solely about politics, the second solely about baseball, and the third about
both, and the fourth document would seem to be strongly about politics and the “opposite”
of baseball (whatever that means).3

Assuming that M admits a low-rank factorization, how can we find one? The standard
approach (as covered in e.g. CS168) is the singular value decomposition (SVD). To remind
you how this works, recall that every m×n matrix M can be written as the product USV>

(Figure 2), where U is an m×m orthogonal matrix (i.e., whose columns form an orthonormal
basis of Rm), V is an n×n orthogonal matrix, and S is a m×n diagonal matrix (meaning with
zeroes in every entry not of the form (i, i) for some i). Moreover, the diagonal entries of S
are nonnegative, and we can permute the rows and columns so that they occur is descending
order. For a proof, see any course on linear algebra or numerical analysis. The columns of

3This model of topics and documents is obviously simplistic. For example, two documents about the
same topic have exactly the same set of words! A more realistic model is that two different documents about
the same topic are i.i.d. samples from some (topic-dependent) distribution over words. The ideas discussed
in this lecture can be extended to this more realistic case (with some additional work); see e.g. [?].

3

Figure 2: The singular value decomposition (SVD). Each singular value in S has an associated
left singular vector in U, and right singular vector in V.

U are called the left singular vectors of M, the columns of V (rows of V>) the right singular
vectors, and the diagonal entries of S the singular values. Note that each singular value
has associated left and right singular vectors. By the “top” left or right singular vector, we
mean the one associated with the largest singular value. (So after the permutation above,
the first column of U or V.) Note that the SVD expresses the columns of the matrix M as
linear combinations of the first min{m,n} left singular vectors (with coefficients given in the
columns of V>, after scaling by the singular values)), and similarly the rows of M as linear
combinations of the first min{m,n} right singular vectors. Thus left singular vectors are
useful for exploring and explaining the column structure of a matrix, while the right singular
vectors are useful for understanding the row structure.

Conceptually, re-representing the matrix M using the SVD provides a list of M’s ingre-
dients (the outer products of the left and right singular vectors), ordered by “importance”
(as measured by the singular values).

We saw a special case of the SVD back in Lecture #9, when we discussed the spectral
theorem for symmetric matrices. There, we could take U = V (provided we allow negative
entries in the diagonal matrix). Of course, a term-by-document matrix is not going to be
symmetric (or even square), so we really do need to talk about the more generally defined
SVD.

2.3 Using the SVD to Define Topic Vectors: Pros and Cons

There is no k in the SVD. So how can we extract k topic vectors from it? Recall that the
goal is to (at least approximately) express documents (i.e., columns of our matrix M) as
linear combinations of the topic vectors. The left singular vectors of the SVD can be used
express the columns of M. We only get to choose k vectors, though, so which ones? The
most important ones, naturally, corresponding to the largest singular values. To summarize,
the SVD approach to topic modeling is to take the topic vectors as the top k left singular
vectors of the term-by-document matrix.

The SVD approach has several things going for it, and in many case produces reason-
able results. First, it is an optimal low-rank approximation of a matrix in various senses.

4

Figure 3: Low rank approximation via SVD. Recall that S is non-zero only on its diagonal,
and the diagonal entries of S are sorted from high to low. Our low rank approximation is
Ak = UkSkV

>
k .

Specifically, suppose we derive a rank-k matrix M(k) from M by throwing out all but the
top k left and right singular vectors and singular values. This leaves us with the product
of an m × k matrix (the top k left singular vectors), a k × k diagonal matrix (of the top k
singular values), and a k × n matrix (the top k right singular vectors). See Figure 3. Then
M(k) minimizes the norm ‖M−A‖ of the residual matrix over all rank-k matrices A (for
the Frobenius norm, or the operator norm). Second, there are reasonably fast algorithms
for computing the SVD, running time O(n2m) or O(m2n) (whichever is smaller). There are
highly optimized implementations in, e.g., Matlab (where a one-line command returns you
U, S, and V on a silver platter).

However, there are also at least two significant drawbacks to the SVD solution. First, the
SVD approach forces the topic vectors to be orthogonal. (Recall U is an orthonormal matrix,
and so its columns are all orthogonal to each other.) Whereas we expect many real-life topics
to be correlated. For example, articles about baseball and articles about basketball might be
treated as different topics, even though there is a significant shared vocabulary. The second
problem is already evident in (1)—negative entries. In the example the negative entry is
not in a topic vector but in the mixing coefficients, but there are also examples where the
topic vectors have negative entries (exercise). Negative entries are bad for interpretability.
One can interpret a negative value for a word in a topic vector as a signal that documents
containing that word are almost never about that topic. But these semantics have problems:
for example, they suggest that two documents that are each very much not about some topic
should be viewed as similar documents.

3 Nonnegative Matrix Factorization

3.1 The Problem

To address both of the issues above, we consider a different formulation of the low-rank
matrix approximation problem. Given is an m × n nonnegative matrix M (meaning all its

5

entries are nonnegative), like a term-by-document matrix. The goal is to express M, at least
approximately, as the product of nonnegative m× k and k × n matrices A and B, where k
is given (and hopefully small).4,5 Figure 1 applies also here, with the additional constraint
that the factor matrices be nonnegative. Note that there is no orthogonality requirement
whatsoever. This is the nonnegative matrix factorization (NMF) problem. For a term-by-
document matrix M, a solution to the NMF problem is naturally interpreted as a solution
to the topic discovery problem, with the k columns of A providing the (nonnegative) topic
vectors, and the n columns of B providing the (nonnegative) topic mixture of each of the
documents.

Unlike the SVD, the NMF problem is NP -hard in the worst case.6 Are there any
well-motivated assumptions that we can impose on the problem to recover computational
tractability?

3.2 The Anchor Words (Separability) Assumption

For the rest of this lecture, we’ll assume that the given term-by-document matrix M admits
a nonnegative matrix factorization M = AB with the following property:

(*) for every column j of A, there exists a row i such that Aij > 0 and Aij′ = 0 for all
j′ 6= j.

Recall that we interpret the columns of A as the topic vectors, indexed by words (the
rows). So what (*) asserts is that each topic (corresponding to column j) has an anchor
word (corresponding to row i) that only ever appears in documents that are about topic j.
While a fairly extreme assumption, it does seem to often hold approximately in practice.
For example, “401K” might only appear in documents that are at least in part about the
topic of personal finance, and similarly for “Buster Posey” and the topic of baseball. We
will call this the anchor words assumption. It is also called the separability assumption.
Importantly, while we assume the existence of an anchor word for each topic, we have no
advance knowledge of which words are the anchor words.

4 The Main Result

We’ll prove the following theorem.

Theorem 4.1 ([?]) Under the anchor words assumption, the NMF problem is polynomial-
time solvable (for arbitrary k).

4It is obviously necessary for M to be nonnegative for this to be possible. Conversely, if M is nonnegative,
the problem is trivially solvable when k = min{m,n} (why?).

5The smallest k for which this can be done is called the nonnegative rank of M. This definition is the
same as (one of the standard definitions of) matrix rank, except for the extra nonnegativity requirement.

6It can be solved in polynomial time when k is a constant (independent of m and n), but the dependence
on k is badly exponential, precluding any practical use [?].

6

A nice feature of this result is that the quest for provable bounds naturally leads to the de-
velopment of new algorithms, some of which have proved superior in practice to the previous
state-of-the-art.

4.1 Normalization

We begin with some preliminary observations regarding normalization. This will make the
solution “more unique,” and also clarify the role of the anchor words assumption.

1. Without loss of generality, for every row of M, the sum of its entries equals 1. We
can enforce this assumption by explicitly scaling each row of the given matrix M
appropriately.7 Any solution M = AB of the original problem maps to a solution of
the new problem, with the rows of A scaled in exactly the same way, and conversely.
Thus any solution to the scaled problem is easily mapped to one of the original problem.

2. Without loss of generality, for every row of B, the sum of its entries equals 1. This is
because for any solution M = AB to the problem, there is another solution M = A′B′

with the desired property. If the ith row of B has sum λi, then scale it through by λi,
and scale the ith column of A by 1/λi. The product of the two matrices is unchanged.

3. Given the previous two assumptions, it follows logically that every row of A also has
unit sum. This is because the NMF expresses every row of M as a nonnegative linear
combination of the rows of B. Since every row of M and of B has row sum 1, this
nonnegative linear combination must actually be a convex combination (i.e., a weighted
average of the rows of B). Thus the entries of the corresponding row of A sum to 1.

With these normalizations, we can now understand the NMF problem as: given a (normal-
ized) m×n matrix M, find a k×n matrix B such that every row of M is in the convex hull
of the rows of B.8 Given such a matrix B, the rows of A then simply describe the coefficients
of the relevant convex combinations.

4.2 The Anchor Words Assumption

We have not yet used the anchor words assumption in any way—how is it helpful? Recall that
the original version (*) of the assumption asserts that for each column j of the (nonnegative)
matrix A, there is a row i (corresponding to the anchor word for topic j) such that Aij is
the only positive entry in the row. Now that we know we can assume that all of the rows of
A have unit sum, we see that this ith row of A must actually have a 1 in the jth column
and zeros elsewhere. Since there exists such a row (i.e., an anchor word) for each column j
(by assumption), we see that A has embedded in it a copy of the k × k identify matrix Ik
(after a permutation of the rows and columns). Since M = AB, with rows of A specifying

7We can also delete any all-zero rows without affecting the problem.
8Recall that the convex hull of a set S = {x1, . . . ,xk} ⊆ Rd of points is the set of their convex combina-

tions: CH(S) = {
∑k

i=1 λixi : λ1, . . . , λk ≥ 0 and
∑k

i=1 λi = 1}.

7

the coefficients of the appropriate convex combinations of the rows of B, we see that there
is a solution M = AB such that every row of B appears as a row of M, unsullied by any
combination with other rows of B. (If the ith row of A has a 1 in the jth column and zeroes
elsewhere, then the ith row of M is the same as the jth row of B.) This is kind of amazing:
B is one of the unknown matrices that we’re trying to reconstruct, and it turns out to be
hiding in plain sight as a subset of the rows of the known matrix M! (And all other rows of
M are in the convex hull of this subset of rows.) This is the crucial implication of the anchor
words assumption. We’re not done though, since we don’t know a priori which rows of M
are also rows of B—equivalently, we don’t know in advance what the anchor words are.

4.3 The Algorithm

Summarizing our previous observations: we are looking for a k×n matrix B such that every
row of M is in the convex hull of the rows of B, and (by the anchor words assumption)
we can restrict attention to matrices B that consist of k of the rows of M. Identifying the
appropriate rows of M (equivalently, the anchor words for the topic vectors of A) can be
done greedily.9

Finding Anchor Words

1. Initialize S to contain all of the rows of M.

2. While there is a row in S that lies in the convex hull of the other rows
in S:

(a) Delete an arbitrary such row from S.

3. Return the matrix B whose rows are the remaining rows in S.

Checking if one point is in the convex hull of other points can be done using linear program-
ming (Homework #8). Note that duplicate rows will automatically be deleted (one copy is
trivially in the convex hull of another), so we assume from now on that all of the rows under
consideration in S are distinct.

For the analysis, let’s first review some basics about convex hulls. First, recall the
definition (for distinct points S = {x1, . . . ,x`} in Rd for some d):

CH(S) =

{∑̀
i=1

λixi : λ1, . . . , λ` ≥ 0 and
∑̀
i=1

λi = 1

}
.

A point y in this convex hull is a vertex if the only way to express y as a convex combination
of the xi’s is by taking λi = 1 for some i (and hence λj = 0 for j 6= i). The reader should
verify the following:

9There is also a faster “bottom-up” version; see [?].

8

(i) Every vertex of the convex hull is one of the points in S, but the converse does not
always hold.

(ii) The vertices of CH(S) are precisely the points of S that are not in the convex hull of
the other points of S.

(iii) Deleting a non-vertex from S does not change the convex hull CH(S).

For the analysis of the algorithm, consider k rows of M such that every row of M lies in
their convex hull. (Which exist by the anchor words assumption and our normalizations.)
By (i), the convex hull of all of the rows of M has at most k vertices (corresponding to the
k chosen rows). By (ii) and (iii), the top-down algorithm will delete all of the rows of M
except for the k (at most) vertices of the convex hull, and so will halt with a set S of at
most k rows such that every row of M is in the convex hull of the rows of S. These rows
form the rows of the matrix B. With B now fixed, the equation M = AB becomes a linear
system (in the Aij’s) and can be solved by (say) Gaussian elimination. This final step is just
solving, for each row i of M, for the coefficients of a convex combination of the rows of B
that is equal to the row.

References

9

	Preamble
	The Singular Value Decomposition Approach
	The Setup
	Low-Rank Factorizations
	Using the SVD to Define Topic Vectors: Pros and Cons

	Nonnegative Matrix Factorization
	The Problem
	The Anchor Words (Separability) Assumption

	The Main Result
	Normalzation
	The Anchor Words Assumption
	The Algorithm

