
CS264: Beyond Worst-Case Analysis
Lecture #16: The Random-Order Model for Online

Algorithms∗

Tim Roughgarden†

March 2, 2017

1 Preamble

The remaining five lectures will all be about “hybrid” analysis frameworks, meaning frame-
works that blend aspects of worst-case and average-case analysis. We’ve already seen one
example, in Lectures #11 and 12: semi-random models for planted bisection and planted
clique. (Recall that “nature” goes first and picks a random instance, and then a “monotone
adversary” gets to tinker with the graph before the algorithm sees it.) We’ll see several
more. Today, we’ll look at a semi-random-type model that is particularly well suited for
going beyond the worst-case analysis of online algorithms. Recall that an online algorithm
is presented with its input piece-by-piece, and has to make an irrevocable decision each time
it gets a new pieces of the input (like in the online paging problem from Lectures #3 and
#4).

2 Secretary Problems

2.1 The Random Permutation Model

In the random permutation model, an adversary chooses an arbitrary (worst-case) input.
Then, nature presents the input one piece at a time, in an ordering that is chosen uniformly
at random.1 The goal is to design algorithms that work well no matter what input the
adversary chooses (provided it is subsequently randomly ordered). Like other semi-random-
type models, this model is appealingly agnostic about the details of the input distribution.
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Note that the order of the adversary and of nature is reversed compared to our semi-random
models for planted bisection and clique.

2.2 The Secretary Problem

The canonical problem in the random permutation model is the secretary problem.2 Probably
you’ve heard of it: you are presented with n numbers one-by-one (e.g., the quality of a
candidate you just interviewed), and at each time step you can either accept the current
number (hire the current interviewee) or continue to the next one. The goal is to accept
the highest number in the sequence, even though you have no idea what the overall set of
numbers is. Perhaps this seems unfair—there’s only one correct choice out of n options, and
intuition may suggest that your success probability inevitably goes to 0 as n→∞. But this
is not the case! This trick is to use a “look than leap” strategy, where you passively monitor
the first several numbers to get calibrated, and then go for it the next time you have an
opportunity.

Specifically, when the numbers are adversarially chosen but then randomly ordered, it is
easy to stop on the largest number with 25% probability: watch the first n/2 numbers go
by, and stop on the first subsequent number that exceeds them all (if any). As long as the
highest number is in the second half of the sequence and the second-highest number is in the
first half of the sequence (with ≥ 25% probability), you are guaranteed to stop on the highest
number. An optimized version of this algorithm (which looks at the first 1/e fraction of the
elements) and analysis yields a success probability of ≈ 1

e
≈ 36.7% (see e.g. Wikipedia), thus

yielding the “37% rule” [?].

2.3 The Matroid Secretary Problem3

It is fun to muse about generalizations of the secretary problem, for example where the
algorithm can accept more than a single number of the input sequence. An abstraction that
captures many interesting generalizations is the matroid secretary problem [1]. There is a
universe U of secretaries, each with a value, and a set F ⊆ 2U of feasible sets. Both U and F
are known to the algorithm in advance. The values {vi}i∈U of the secretaries are unknown a
priori, and are presented to the algorithm in random order. Each time an algorithm sees a
new secretary, it must decide irrevocably whether or not to accept it. The algorithm must
terminate with a set S of secretaries that is a feasible set — i.e., with S ∈ F . The goal is to
design an algorithm that, for every set of values {vi}i∈U , outputs a set that is feasible (with
probability 1 over the random order of U), and has expected total value as close as possible
to — ideally, within a constant factor of — the maximum total value of a feasible set.

2It’s amusing to see how motivating anecdotes for this problem changed over the years (it’s a very old
problem). In one era it was a woman trying to choose among male suitors; in another is was a driver
searching for a parking space. The of-the-time name “secretary problem” first appeared in print in the early
1960s, and the name stuck.

3We did not cover this section in lecture.
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For example, the standard secretary problem can be captured by this general framework
by taking F to be the singleton sets plus the empty set. In the natural generalization where
the algorithm can hire up to k secretaries, F consists of all subsets of U that have cardinality
at most k. It is not too difficult to extend the guarantee of 1/e for the secretary problem to
the k-secretary problem for all k; see Homework #10 for details.

The matroid secretary problem imposes two restrictions on the feasible sets F . First, F
should be downward-closed, meaning that S ∈ F and T ⊆ S implies that T ∈ F as well.
This assumption obviously holds in most natural generalizations of the secretary problem,
including the k-secretary problem. The second restriction is called the exchange property,
and it insists that whenever S, T ∈ F with |T | < |S|, there exists i ∈ S \ T such that
T ∪ {i} ∈ F . This assumption also clearly holds for the k-secretary problem: if S includes
more secretaries than T and both contain at most k secretaries, then adding any secretary of
S \ T to T increases the size of T by one without violating feasibility. Thus, the k-secretary
problem is a special case of the matroid secretary problem.

There are several other natural special cases of the matroid secretary problem. In the
graphical secretary problem, U is the edge set of an undirected graph G = (V, U), and a
subset F ⊆ U is feasible (i.e., in F) if and only if (V, F ) is an acyclic graph. It is clear that
such an F is downward closed; a simple argument shows that the exchange property also
holds. There is an algorithm for the graphical secretary problem that guarantees expected
value at least a constant fraction of the maximum possible (a good homework problem).
Another special case is the transversal secretary problem, where the secretaries are the left-
hand-side vertices of a bipartite graph G = (U, V,E), and F ⊆ U belongs to F if and only if
there exists a matching in G such that every vertex in F is matched. (Think, for instance,
of V denoting locations, and edges denoting the locations that a secretary can work, with
only one worker permitted per location.) Like the previous example, it is clear that F is
downward-closed, and the exchange property follows from a combinatorial argument. There
is also an online algorithm for this problem that achieves a constant-factor approximation
guarantee [2, 5]. For a final example, the representable matroid problem, let U denote a set
of vectors over a field F, with F ⊆ U in F if and only if the vectors F are linearly indepen-
dent over F. It is again obvious that F is downward-closed, and elementary linear algebra
verifies the exchange property. While online constant-factor approximation algorithms are
known for special cases of this problem [3], it is an open question whether or not such an
algorithm exists for all representable matroids. The matroid secretary conjecture [1] states
that every matroid secretary problem admits an online algorithm that achieves a constant
approximation. Currently, the best approximation factor known for the general matroid
secretary problem is O(log log k), there k is the rank of the matroid [6, 4].4

4The exchange property implies that every maximal independent set of a matroid has the same cardi-
nality. This common size is called the rank of the matroid. For example, in a graphical matroid with graph
G = (V,U), the rank is precisely |V | − c(G), where c(G) denotes the number of connected components of G.

3



x1

x2

x3

x4 x5

x6

x7 x8

Figure 1: Points assigned to the same center can be viewed as a cluster.

3 Online Facility Location

The primary take-away from today’s lecture is that the random-order model makes sense not
only for the secretary problem, but more generally for many online problems. By “makes
sense” we mean that you get a well-defined mathematical problem, and also that the as-
sumption of random arrivals is reasonable in the motivating applications. We’ll illustrate
this point with a concrete case study on the online facility location problem [?]. This is
basically the same as the k-median problem (Lecture #6), except with a cost-per-cluster
(rather than a fixed number of clusters) and with points arrives online.

3.1 The Model

Here’s the precise setup:

• Points x1 . . . , xn arrive online.5

• When point xi arrives, its distance d(xi, xj) to each previous point xj (j < i) is unveiled.
The distances are constrained to form a metric on the points that have arrived so far.
(As usual, the crucial property will be the triangle inequality: d(x, y) ≤ d(x, z)+d(z, y)
for all points x, y, z.)

• On xi’s arrival, the algorithm must either:

1. make xi a “center,” at a cost of 1; or

2. assign xi to an existing center c (at a cost of d(xi, c)).

The goal of the algorithm is to incur as little cost (center costs and assignment costs com-
bined) as possible. As with the k-median problem, a solution naturally induces a clustering
(i.e., partition) of the points, with one cluster per center, with all points assigned to the
same center viewed as a cluster (Figure 1).

5Unlike in the secretary problem, here it won’t matter for us whether or not n is known in advance.
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Note that if xi is at least distance 1 from every existing center, it always makes sense to
make xi a center. So the interesting case is where typical distances are small, like 1

10
or 1

100
.6

When a point is at distance less than 1 from an existing center, the myopically greedy course
of action is to assign it to that center. But an algorithm might be better off by investing for
the future and create a center for use by points that have yet to arrive.

The name “facility location” sounds old-school, and indeed the problem originates from
the kinds of applications that the name suggests, of constructing physical buildings at multi-
ple locations to serve various needs. A more modern interpretation is as an online clustering
problem. The points could represent documents, images, etc. (mapped into some feature
space), with distances representing (dis)similarities. If you don’t know how many objects
you ultimately want to cluster, it makes sense to not fix the number of clusters a priori.
Since we also don’t want each point in its own cluster, it then makes sense to incur some
kind of penalty for each cluster used. For a machine learning analogy, the center cost can be
thought of as a regularizer that penalizes more complex solutions (meaning solutions with
more clusters). Finally, one should always remember that there are two distinct reasons to
care about online algorithms: first, the problem itself may be fundamentally online; second,
even if the entire input is known in advance, if the input is large and time is short, the
one-pass flavor of online algorithms can make them a practical solution.7

3.2 Results

Recall from earlier lectures that the standard way of measuring the performance of an online
algorithm is through its competitive ratio, which is defined as

max
inputs

cost of online algorithm

cost of offline optimum
.

This is a very strong benchmark—the competition is both omniscient about the input and has
unbounded computational power. Thus, it is not surprising that for many online problems,
there are no online algorithms with good competitive ratios (recall the paging discussion from
Lecture #3). The situation for online facility location is not as dire as for online paging, but
there is a still a lower bound for the standard worst-case arrival order model.

Theorem 3.1 ([?]) For the online facility location problem with an arbitrary arrival order,
there is no O(1)-competitive online algorithm.

The proof of Theorem 3.1 is an explicit example, and we leave the details to Homework #8.

Theorem 3.2 ([?]) For the online facility location problem with an arbitrary metric space
and a random arrival order, there is an algorithm that guarantees expected cost at most 8
times that of the offline optimal solution.

6The assumption that the common center cost is 1 is without loss of generality, by scaling. It is also
possible to extend the ideas from this lecture to accommodate different center costs at different points; see [?]
for details.

7With the latter interpretation, it is often feasible to explicitly enforce the random order assumptions
(e.g., randomly permuting the input before running the algorithm).
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The constant factor may not seem especially impressive, but it seems likely that a better
worst-case upper bound is possible and also that the (elegant) algorithm we present would
perform better than its worst case in many cases. The algorithm will be randomized, so
the expectation in Theorem 3.2 is over both the randomness in the arrival order and the
algorithm’s internal coin flips.

We’ll spend the rest of the lecture proving Theorem 3.2.

3.3 Proof of Theorem 3.2

3.3.1 The Algorithm

The algorithm we’ll analyze is a showcase for the elegance of randomized algorithms.

Online Facility Location Algorithm

1. Initialize Y = ∅. (These are the centers.)

2. When point xi arrives:

(a) Let c ∈ Y be the center closest to xi.

(b) Let ri = min{1, d(xi, c)}. (Or for x1, set r1 = 1.) [Note ri ∈ [0, 1]]

(c) With probability ri:

i. Make xi a center and add it to Y . (And assign xi to itself.)

(d) Otherwise:

i. Assign xi to the center c.

And that’s the entire algorithm! Clearly, the algorithm can be implemented to run quite
quickly.8 We now proceed to the analysis.

3.3.2 The Analysis

We begin with a preliminary observation. Suppose a point xi shows up with closest-center-
distance ri. Conditioned on everything that’s happened in the past, the expected cost
incurred by the algorithm in this step is

ri · 1︸︷︷︸
make xi a center

+ (1− ri) · ri︸ ︷︷ ︸
or not

≤ 2ri, (1)

with the factor of 2 increasingly accurate as ri approaches 0. The key point is that Theo-
rem 3.2 reduces to proving an upper bound on E[

∑n
i=1 ri] relative to the offline optimum,

since the expected cost of the algorithm is at most twice this.

8The precise running time achievable depends on how the distances between a new point xi and the
already chosen centers are presented in the input (why?).
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Figure 2: We can partition an optimal cluster into close points C and far points F .

We’ll upper bound the ri’s cluster by cluster. That is, for the sake of analysis, we’ll focus
on a single center c∗ chosen by the optimal solution (there must be at least one), and on the
points A assigned to c∗ in the optimal solution. We’ll show that E

[∑
xi∈A ri

]
is at most 4

times the cost that the optimal solution incurs for this cluster. Summing over the clusters
and applying the inequality (1) will then complete the proof of Theorem 3.2.

Also for the analysis, we partition A into two equal-sized groups, C and F . (Assume
that |A| is even, for simplicity.) In C are the points of A that are closest to c∗ (the “close”
points), and in F are the rest (the “far” points). That is, we imagine sorting the points of
A in increasing order of distance from the center c∗, and put the first and second halves in
C and F , respectively (Figure 2). Note that this classification of points into close and far
depends only on the structure of the optimal solution, and is independent of the order in
which the points are presented to our online algorithm. We’ll bound E[

∑
i ri] first for only

the close points, and then argue that the cost incurred by the algorithm on the far points
can be “charged” against the cost already incurred on the close points.
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3.4 Close Points

Let r∗ denote the average distance between a point of A and the cluster center c∗:

r∗ =
1

|A|
∑
xi∈A

d(xi, c
∗). (2)

Note that for every close point xi ∈ C, d(xi, c
∗) ≤ 2r∗. (If 50% of the points of A were more

than 2r∗ from c∗, then the average distance would be more than r∗.)
We bound the cost incurred by our algorithm on close points in two phases. By definition,

the second phase begins immediately after some close point xi ∈ C is chosen as a center.
Everything prior to this event is the first phase.

We tackle the second phase first. Suppose xj ∈ C is the first close point chosen as a center.
Recall from above that d(xj, c

∗) ≤ 2r∗. So by the triangle inequality, every subsequent close
point xi is at distance at most d(xi, c

∗) + 2r∗ from the nearest open center (xj, if nothing
else). That is, ri ≤ d(xi, c

∗) + 2r∗. This is good news, since both terms on the right-hand
side can be related to the optimal cost. Summing over all the close points that arrive in
Phase 2, we have ∑

xi∈C
xi in Phase 2

ri ≤
∑
xi∈C

xi in Phase 2

(d(xi, c
∗) + 2r∗)

≤
∑
xi∈C

(d(xi, c
∗) + 2r∗)

=
∑
xi∈C

d(xi, c
∗) +

∑
xi∈A

d(xi, c
∗), (3)

where in the final line we’re using (2) and the fact that |C| = |A|/2.
We should be pleased with the progress so far: the expression in (3) is at most twice the

cost incurred by the optimal solution in the cluster A (actually at most 3
2

as large, do you see
why?). Moreover, this upper bound on the sum of ri’s of the close points in Phase 2 holds
with probability 1, independent of the arrival order and of the algorithm’s random decisions.

So what’s the sum of the ri’s of the close points that arrive in Phase 1? The answer
depends on how long Phase 1 lasts. The first close point xi1 is definitely part of Phase 1,
so it contributes ri1 to the sum. With probability ri1 , xi1 is made a center and Phase 1
ends immediately. With probability 1 − ri1 , Phase 1 continues, and the next close point
xi2 contributes ri2 to the sum. And so on. Thus if the close points show up in the order
xi1 , . . . , xik , then the expected sum of the rij ’s in Phase 1 is exactly

ri1 + (1− ri1) (ri2 + (1− ri2) (ri3 + (1− ri3) (· · · (rik) · · · ))) .

We claim that this expression is at most 1 (no matter what the rij ’s are). One way to see
this is by induction on |C|. If |C| = 1 then this expression is just ri1 ≤ 1. For larger |C|, this
expression is a weighted average (with weights ri1 and 1−ri1) of the number 1 and a number
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that, by induction, is at most 1. This is again a number less than 1. Since this holds for any
values of the ri1 ’s, the analysis again holds for an arbitrary ordering of the input points (in
expectation over the internal coin flips of the algorithm).

Here’s the summary of our progress so far:

Lemma 3.3 For every ordering of the input points,

E

[∑
xi∈C

ri

]
≤ 1 +

3

2

∑
xi∈A

d(xi, c
∗),

where the expectation is over the coin flips of the algorithm.

In Lemma 3.3, we’re using the fact that
∑

xi∈C d(xi, c
∗) ≤ 1

2

∑
xi∈A d(xi, c

∗) (by the definition
of close points).

3.5 Far Points

The next idea is to piggyback on Lemma 3.3 and “charge” the ri’s of far points to those of
close points. In light of Theorem 3.1 and the worst-case bound in Lemma 3.3, we presumably
need to use the random order assumption in this part of the proof.

Suppose that a far point xi arrives after a previous close point xj. Since centers never
close, the center to which xj was closest to upon arrival is one option for xi upon its arrival.
That is,

ri ≤ rj + d(xi, xj) ≤ rj + d(xi, c
∗) + d(xj, c

∗), (4)

where both inequalities follow from the triangle inequality.
Consider running our algorithm but withholding a far point xi from the input. (A, C,

F , etc. are defined as before, with respect to the original input.) Condition on the order of
the input (excluding xi). Lemma 3.3 implies that

E

[∑
xi∈C

ri

]
≤ 1 +

3

2

∑
xi∈A

d(xi, c
∗),

where the expectation is over the internal randomness of the algorithm. Now imagine re-
inserting the withheld point xi, at a random position. By this random order assumption,
each of the close points xj ∈ C is equally likely to be the one that arrived most recently
before xi (plus there’s the same probability 1/(|C|+ 1) that xi arrives before all of the close
points, in which case we use the bound ri ≤ 1).9 Hence, conditioned on the order arrival of

9A subtle point: inserting a new point xi has no effect on the distribution of what happens before its
arrival, such as the distribution of rj ’s of close points that precede xi.
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all other points, inequality (4) implies that

E[ri] ≤
1

|C|+ 1︸ ︷︷ ︸
≤ 1
|C|

1 +
∑
xj∈C

(E[rj] + d(xi, c
∗) + d(xj, c

∗))



≤d(xi, c
∗) +

1

|C|

1 + E

∑
xj∈C

rj

+
∑
xj∈C

d(xj, c
∗)

 .

Now we can use linearity of expectation to sum over all of the far points. Using the fact that
|F | = |C|, we have

E

[∑
xi∈F

ri

]
≤
∑
xi∈F

d(xi, c
∗) + 1 + E

∑
xj∈C

rj

+
∑
xj∈C

d(xj, c
∗).

Adding E
[∑

xj∈C rj

]
to both sides and using Lemma 3.3, we have

E

[∑
xi∈A

ri

]
≤ 1 +

∑
xi∈F

d(xi, c
∗) + 2E

∑
xj∈C

rj

+
∑
xj∈C

d(xj, c
∗)

≤ 1 +
∑
xi∈F

d(xi, c
∗) + 2

(
1 +

3

2

∑
xi∈A

d(xi, c
∗)

)
+
∑
xj∈C

d(xj, c
∗)

= 3 + 4
∑
xi∈A

d(xi, c
∗).

Since the optimal solution incurs cost 1 +
∑

xi∈A d(xi, c
∗) in this cluster, we conclude that

the expected sum of the ri’s of points in this cluster is at most 4 times as large. Summing
over the clusters and recalling from (1) that the expected cost incurred by the algorithm is
at most double the expected sum of the ri’s, we have established the competitive ratio of 8
claimed in Theorem 3.2.10
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