
CS264: Beyond Worst-Case Analysis
Lecture #5: Parameterized Approximation and

Running Time Guarantees∗

Tim Roughgarden†

January 24, 2017

1 Preamble

Recall the two-step approach of parameterized analysis. The first step is to choose a natural
parameterization of the inputs, which intuitively measures the “easiness” of an input. The
second step is a performance analysis of an algorithm — running time, cost incurred, etc.
— as a function of this parameter. We have already seen several examples. In Lecture #2,
we gave three parameterized running time analyses of the Kirkpatrick-Seidel algorithm: a
bound parameterized solely by the input size n (O(n log n)), a bound parameterized by both
the input size and the output size h (O(n log h)), and a more complex “entropy parameter”
necessary for proving the instance-optimality of the algorithm. Last lecture, we analyzed
the page fault rate of the LRU paging algorithm, parameterized by the “degree of locality”
of the input. This is our final lecture that focuses squarely on the parameterized analysis of
algorithms, though the theme will resurface frequently in forthcoming lectures.

Parameterized analysis can make inroads on all three of our goals (the Prediction/Explanation
Goal, the Comparison Goal, and the Design Goal). First, parameterized analysis is strictly
stronger and more informative than worst-case analysis parameterized solely by the input
size. Last lecture we saw how such finer-grained analyses can achieve the Comparison Goal,
allowing us to differentiate algorithms (like LRU vs. FIFO) that coarser analyses deem equiv-
alent.

Second, a parameterized performance guarantee suggests when — meaning on which in-
puts, or in which domains — a given algorithm should be used. (Namely, on the inputs
where the performance of the algorithm is good!) Such advice is progress toward the Pre-
diction Goal and is often useful in practice, in scenarios where someone has no time and/or
interest in developing their own novel algorithm for a problem, and merely wishes to be an

∗ c©2017, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

educated client of existing algorithms. For a simple example, for many graph problems the
algorithms of choice are different for sparse and for dense graphs — this shows the utility
of parameterizing the running time of a graph algorithm by the edge density of the input
graph.

Third, parameterized analysis offers a two-step approach to explaining the good empirical
performance of an algorithm (even when it has poor worst-case performance). The first step
is to prove that the algorithm works well on “easy” inputs, such as request sequences with a
high degree of locality. The second step is to demonstrate that “real-world” inputs are “easy”
according to the chosen parameter, either empirically (e.g., by computing the parameter on
various benchmarks) or mathematically (e.g., by positing a generative model and proving
that it typically generates “easy” inputs).

These three reasons are all motivated by the quest for more faithful and meaningful
analyses of existing algorithms. The fourth reason is motivated by the Design Goal. A novel
parameterization of performance sets up a principled way to explore the algorithm design
space, which in turn can guide one to new and potentially better algorithms for a problem.
This theme will be more prominent in this lecture than in previous lectures.

2 NP -Hard Problems

This lecture, and a majority of the remainder of the course, concerns computational problems
that are NP -hard. These notes assume that you’ve seen the basics of NP -completeness at
some point in your life, but really all you need to remember is:

1. NP -hard problems are ubiquitous in practice — you will certainly encounter some in
your own work after you graduate.

2. An NP -hard problem admits no (worst-case) polynomial-time and always-correct al-
gorithm, unless P = NP . (And P = NP would be surprising, to say the least!)

It’s important to recognize NP -hard problems as such, so that you don’t waste any time
trying to come up with an exact and polynomial-time algorithm for it. But your problem
doesn’t go away just because it’s NP -hard. What can you do?

A natural approach is to relax at least one of the conditions of “worst-case polynomial
running time” and “always-correct.”

Escape route #1: Relax correctness. That is, allow an algorithm to be wrong (or,
for optimization problems, suboptimal) on some inputs.

Escape route #2: Relax the polynomial time constraint. That is, allow an algorithm
to run in super-polynomial time on some inputs.

Of course, we still want our algorithms to be non-trivial. If we relax correctness, we still
want to be correct much more often than random guessing. If we relax the polynomial-time
constraint, we still want to beat naive exhaustive search on all or many inputs.

2

The main point of today’s lecture is that, for both of these escape routes, parameterized
analysis can assist in obtaining meaningful guarantees. The next section illustrates param-
eterized approximation guarantees for polynomial-time algorithms for NP -hard problems
(which are not always correct/optimal). Section 4 considers parameterized running time
bounds of exact algorithms that do not always run in polynomial time.

3 Parameterized Approximation Guarantees

We will content ourselves with a simple example of a parameterized approximation guarantee,
but the idea is widely useful. Homework #3 showcases a couple of the many examples.

3.1 Approximation Algorithms

In this section, we assume that our performance measure corresponds to the objective func-
tion of an optimization problem (and not the running time of the algorithm). For example:
the length of a traveling salesperson tour; the number of clauses satisfied by a truth assign-
ment in an instance of the satisfiability (SAT) problem; the total value of the items packed
in a knapsack; the size of a clique; and so on.

We consider algorithms that are not always optimal. But hopefully they are not too
suboptimal. This idea motivates the next definition.

Definition 3.1 (α-Approximation Algorithm) For α ≥ 1, an α-approximation algo-
rithm A for a minimization problem satisfies

cost(A, z) ≤ α · cost(OPT, z). (1)

for every instance z of the problem.

In Definition 3.1, cost(OPT, z) denotes the smallest objective function value of any feasible
solution to the instance z (the shortest traveling salesperson tour, etc.), while cost(A, z) is
the objective function value of the solution returned by A on z. For maximization problems,
the inequality goes the opposite direction, and α ≤ 1.1 Generally, one thinks about approxi-
mation algorithms that are restricted to run in polynomial time; this will be the case for us,
unless otherwise noted. This is a mathematical abstraction of a “fast heuristic.”

So while a competitive ratio (Lecture #3) of α is the same as an instance-optimality
guarantee (with approximation factor α) with the additional restriction that the designed
algorithm be online, an approximation ratio of α translates to an instance-optimality guar-
antee with the additional restriction that the designed algorithm runs in polynomial time.

1And the notation “cost” should probably be replaced by something more appropriate, like “value.”

3

3.2 The Knapsack Problem

We’ll use the Knapsack problem, familiar from undergraduate algorithms, to make a num-
ber of points. Recall the setup: the input consists of n items, with values v1, v2, . . . , vn and
weights w1, w2, . . . , wn, and a knapsack capacity W . Assume that all numbers are positive
integers. The objective is to identify a subset S ⊆ {1, 2, . . . , n} of the items to maximize
the total value

∑
i∈S vi, subject to the capacity constraint

∑
i∈S wi ≤ W . The Knapsack

problem is very basic and comes up all the time in real life—whenever you need to share
a bounded amount of a resource, you have a Knapsack problem (scheduling courses in a
classroom, assigning computing jobs to servers, etc.).

The following fact is usually proved in an undergraduate complexity course (like CS154).

Fact 3.2 The Knapsack problem is NP -hard.

So let’s think about fast heuristics. In the design of exact or approximation algorithms,
it’s often best to start by thinking about greedy algorithms. It’s usually easy to devise one
or more natural greedy algorithms, and in many cases it can be quickly determined whether
or not any of them are any good. The most obvious greedy approach to the Knapsack
problems is to process the items greedily in some order. But which order? All else being
equal, we prefer items with higher values, and lower weights. This suggests assigning a
“score” to each item that is increasing in value and decreasing in weight. There are many
such functions, but probably the most natural one is the ratio vi/wi, also called the density
(or “bang-per-buck”).

Here’s the greedy heuristic:

A Greedy Heuristic for Knapsack

1. Sort and re-index the items so that they are ordered by density:

v1

w1

≥ v2

w2

≥ · · · ≥ vn
wn
.

2. Pack items into the knapsack in this order, subject to the capacity con-
straint (i.e., skip an item if there isn’t enough room in the knapsack for
it).

Is this greedy heuristic an α-approximation algorithm for the Knapsack problem, for a
reasonable constant α > 0? To see the issue, suppose:

• item #1 has value v1 = 2 and weight w1 = 1;

• item #2 has value v2 = 1000 and weight w2 = 1000;

• the knapsack capacity W is 1000.

4

The greedy algorithm packs the first item (its density is 2), which in turn does not leave
enough room for the second item (with density 1). So the greedy solution has value 2, while
the optimal solution packs only the second item and has value 1000. Since we can replace
“1000” with any number that we want, this greedy algorithm is not an α-approximation
algorithm for any constant α > 0.

To get a meaningful approximation guarantee, we either need to fix the algorithm (mak-
ing it smarter) or fix the analysis (by restricting or parameterizing the inputs). Typical
algorithms courses focus on the first approach. For example, you can take the better solu-
tion of those produced by two different greedy algorithms: the above algorithm that packs
item in order of decreasing density, and the algorithm that packs items greedily in order of
decreasing values. It turns out that this “best-of-2” greedy algorithm is a 1

2
-approximation

algorithm for the Knapsack problem. One can also work harder and use dynamic program-
ming (after rounding the input data) to obtain a (1− ε)-approximation algorithm for any ε
(with the running time depending on 1

ε
).

In this course, we are interested in the second approach. Maybe the simple sort-by-density
heuristic already does well on all of the inputs that we care about?

The sort-by-density greedy heuristic has the following parameterized approximation guar-
antee: it is a (1− β)-approximation algorithm for instances in which no item takes up more
than a β fraction of the knapsack.

Theorem 3.3 If wi ≤ βW for every i ∈ {1, 2, . . . , n} and some β ∈ [0, 1], then the output
of the greedy algorithm has value at least 1− β times that of the maximum possible.

For example, if every item consumes at most 10% of the shared resource, then the sort-
by-density heuristic outputs a solution with value at least 90% times that of the optimal
solution. Homework #3 asks you to prove Theorem 3.3.

Analogous parameterized guarantees are possible for many different approximation algo-
rithms. Often such guarantees are implicit or buried in proofs of worst-case guarantees; it’s
always valuable to state the strongest, most finely-parameterized guarantee than you can.

4 Parameterized Running Times

The second approach to coping withNP -hard problems is to keep insisting on correctness (for
all instances) but relax the constraint that the algorithm runs in polynomial time on every
input. For an NP -hard problem, we expect that the running time of any correct algorithm
will be exponential in the input size on some inputs. But can we parameterize the running
time of such an algorithm so that it’s exponential on some inputs but provably subexponential
(or even polynomial) on all inputs for which the parameter is “small”? This question leads
us to the vibrant field of parameterized algorithms and fixed-parameter tractability, which
has been one of the hottest subareas of algorithms over the past decade. One could easily
teach a semester-long course just on this subject (e.g., using the recent book [2]), but we’ll
only have time for a brief glimpse of it.

5

4.1 Knapsack Revisited

To see how a parameterized running time bound for an algorithm for an NP -hard problem
might work, let’s return to the Knapsack problem (Section 3.2). If you learned anything
about the Knapsack problem in undergrad algorithms, it would have been an exact dynamic
programming algorithm, running time O(nW), where n is the number of items and W is
the capacity of the knapsack. Note this is already an interesting example of a parameterized
running time bound, with two parameters (n and W).

A common point of confusion is: given that the Knapsack problem is NP -hard, why
doesn’t this dynamic programming algorithm imply that P = NP? Well, what’s the “input
size” of an instance of Knapsack, as a function of n and W? We can describe an instance
by writing down 2n+1 positive integers, and a positive integer x can be described in dlog2 xe
bits. Assuming for simplicity that the vi’s and wi’s are at most the knapsack capacity W , it
follows that the description length of an instance of Knapsack is O(n logW). This makes
sense: the input length is supposed to correspond to the number of keystrokes necessary to
communicate the problem instance to a computer, and it doesn’t take a million keystrokes
to communicate the number “1,000,000,” just one keystroke per digit.

With an input size of O(n logW), we see that the O(nW)-time dynamic programming
algorithm is not a polynomial-time algorithm for the Knapsack problem. For example,
suppose W = 2n. Then the input length is O(n2) while the running time of the algorithm is
O(n2n). On the other hand, our parameterized running time bound immediately identifies
a subset of instances for which the algorithm does run in polynomial time, namely those
instances for which W is bounded by a polynomial in n.

Said another way, the running time of the dynamic programming algorithm does run in
time exponential in one parameter of the input (logW), as one would expect for an exact
algorithm for an NP -hard problem, but it runs in time polynomial in the other parameter
(n). This is the basic idea behind fixed-parameter algorithms. To get more experience, let’s
look at a second example of a running time bound that is exponential in one parameter of
the input but polynomial in another parameter.

4.2 The Vertex Cover Problem

In the Vertex Cover problem, the input is an undirected graph G = (V,E), and the goal
to compute a vertex cover with minimum-possible cardinality, where a vertex cover is a subset
S ⊆ V of vertices that contains at least one endpoint of every edge of E. Or in English,
given a bunch of (overlapping) two-person groups (e.g., two people capable of performing
the same task), the goal is to hire as few people as possible while hiring a representative
from every group.

For example, the minimum size of a vertex cover of a star graph is 1 (no matter how
many vertices n there are); of a clique is n− 1; and of a cycle is dn

2
e. (See Figure 1.)

The Vertex Cover problem is a canonical NP -hard problem (as typically proved in a
course like CS154). But could there be an algorithm better than brute-force search, that is
guaranteed to run in polynomial time on a significant subset of instances?

6

Figure 1: Minimum size vertex covers for a star graph, clique, and cycle.

4.3 Bounded-Depth Search Trees

We focus on the decision problem of checking whether or not an instance of Vertex Cover
admits a vertex cover of size at most k (for a given target k). This problem is no easier than
the general problem, since the latter reduces to the former by trying all possible values of k.
Here, you should think of k as “small,” for example between 10 and 20. The graph G can be
arbitrarily large, but think of the number of vertices as somewhere between 100 and 1000.
We’ll show how to beat brute-force search for small k. (Perhaps hiring people is expensive,
and we’re only interested in a vertex cover if it’s within budget.)

The naive brute-force search algorithm for checking whether or not there is a vertex cover
of size at most k is: for every subset S ⊆ V of k vertices, check whether or not S is a vertex
cover. The running time of this algorithm scales as

(
n
k

)
, which is Θ(nk) when k is small.

While technically polynomial for any constant k, there is no hope of running this algorithm
unless k is extremely small (like 3 or 4). Can we do better?

We consider the following algorithm (ignoring the base cases).

1. Pick an edge e = (u, v) arbitrarily. (If there are no edges, then the empty set is already
a vertex cover.)

[Note: every vertex cover contains u, or v, or both.]

2. Recursively check if there is a vertex cover S of size k − 1 in the graph G \ {u} (i.e.,
G with u and u’s incident edges removed). If so, return S ∪ {u}.
[This corresponds to “guessing” that u belongs to a small vertex cover, and proceeding
recursively under the working hypothesis that this guess is correct.]

3. Recursively check if there is a vertex cover of size k − 1 in the graph G \ {v} (i.e., G
with v and v’s incident edges removed). If so, return S ∪ {v}.
[Ditto, for v.]

4. Halt and declare that G has no vertex cover of size k.

7

Why is this algorithm correct? If the first recursive call successfully computes a vertex
cover S of size k − 1, then S ∪ {u} is indeed the desired vertex cover of size k (S includes
at least one endpoint of each of the edges of G \ {u}, and u covers the rest). Similarly for
the second recursive call. What if neither one succeeds? This can only happen if there is no
vertex cover of G of size k—if there were one, it would have to contain at least one of the
vertices u, v, the remaining graph G \ {u} or G \ {v} would contain the other k − 1 vertices
of the vertex cover, and the corresponding recursive call would succeed.

The running time analysis is equally straightforward. The algorithm is recursive, so it’s
useful to think about its recursion tree (with nodes corresponding to recursive calls, and
children of a node corresponding to the calls that it initiates). The branching factor of this
recursion tree is 2 (one recursive call in each of the second and third steps). Since the target
vertex cover size drops by 1 with each recursion level, the depth of the recursion tree is
bounded by k. This means that there are at most 2k recursive calls. Since the work done
in each recursive call is minimal (easily implemented in linear time), the total running time
of the algorithm is O(2k(m+ n)), where m and n denote the number of edges and vertices,
respectively. This algorithm is efficient enough to handle values of k in the 20–30 range, for
reasonable-sized graphs (hundreds of vertices, say). It has been implemented a number of
times with reasonable results (even if no “killer app” has been identified).

We have now seen two parameterized running time bounds that are exponential in one
but not all of the relevant parameters—one for our Knapsack algorithm with running time
polynomial in n but exponential in logW , and one for the algorithm above for Vertex
Cover which is polynomial in n and exponential in k. In general, we say that a problem
is fixed-parameter tractable (FPT) with respect to a parameter k if there is an algorithm
that always solves the problem correctly and runs in time at most f(k) · poly(n, k), where
n denotes the description length of the instance, f is an arbitrary (computable) function of
k only, and poly(n, k) is some polynomial in n and k (with exponent independent of n and
k).2 Obviously, we’d like the polynomial term to be as small as possible (ideally, linear).
We’d also like the function f(k) to be as small as possible, but for NP -hard problems, we
expect f(k) to be at least exponential in k. Every such fixed-parameter problem runs in
polynomial time when the parameter k is sufficiently small (e.g., if f(k) = 2Θ(k), then for all
k = O(log n)). Singly-exponential dependence on a parameter, like in the Vertex Cover
algorithm above, is pretty much the best-case scenario for an exact algorithm for an NP -hard
problem.

Just as some problems admit good approximation algorithms and others do not (assum-
ing P 6= NP), some problems (and parameters) admit fixed-parameter algorithms while
others do not (under appropriate complexity assumptions). This is made precise primarily
via the theory of “W -hardness,” which parallels the familiar theory of NP -hardness. For
example, the independent set problem, despite its close similarity to the vertex cover prob-
lem, is “W [1]-hard” and hence does not seem to admit a fixed-parameter tractable algorithm
(parameterized by the size of the largest independent set).

2k = O(n) in most natural examples, in which case we can write the running time bound simply as
f(k) · poly(n).

8

4.4 Kernelization Algorithms

There are a few general techniques for designing fixed-parameter tractable algorithms. One
is the “bounded search tree” approach of the previous section, which can also be applied to
several other problems (see [2] and Homework #3). Another one, and probably the most
interesting one theoretically, is “kernelization.” The idea is to preprocess the “easy part” of
an instance, and hope that the remaining “hard part” is small, and so solvable by brute-force
search, if nothing else. (For a concrete example, think of unit propagation in SAT problems,
or see below.) Thus the study of kernelization algorithms is sort of a theory about when
preprocessing is guaranteed to make a lot of progress. We will again illustrate the idea
through the Vertex Cover problem, but know that this technique also applies to many
other problems (especially graph problems, again see [2]).

We claim that the following is an FPT algorithm for the minimum-cardinality vertex
cover problem (with budget k).

FPT Algorithm for Vertex Cover

set S = {v ∈ V : deg(v) ≥ k + 1}
set G′ = G \ S
set G′′ equal to G′ with all isolated vertices removed
if G′′ has more than k2 edges then

return “no vertex cover with size ≤ k”
else

compute a minimum-size vertex cover T of G′′ by brute-force search
return “yes” if and only if |S|+ |T | ≤ k

The first five lines can be thought of as preprocessing, with the hard work only coming in
line 7.

We next explain why the algorithm is correct. First, notice that if G has a vertex cover S
of size at most k, then every vertex with degree at least k + 1 must be in S. For if such a
vertex v is not in S, then the other endpoint of each of the (at least k + 1) edges incident
to v must be in the vertex cover; but then |S| ≥ k + 1. In the second step, G′ is obtained
from G by deleting S and all edges incident to a vertex in S. The edges that survive in G′

are precisely the edges not already covered by S. Thus, the vertex covers of size at most k
in G are precisely the sets of the form S ∪ T , where T is a vertex cover of G′ with size at
most k − |S|. Given that every vertex cover with size at most k contains the set S, there is
no loss in discarding the isolated vertices of G′ (all incident edges of such a vertex in G are
already covered by vertices in S). Thus, G has a vertex cover of size at most k if and only
if G′′ has a vertex cover of size at most k − |S|. In the fourth step, if G′′ has more than k2

edges, then it cannot possibly have a vertex cover of size at most k (let alone k − |S|). The
reason is that every vertex of G′′ has degree at most k (all higher-degree vertices were placed
in S), so each vertex of G′′ can only cover k edges, so G′′ has a vertex cover of size at most
k only if it has at most k2 edges. The final step computes the minimum-size vertex cover of
G′′ by brute force, and so is clearly correct.

9

Next, observe that in the final step (if reached), the graph G′′ has at most k2 edges (by
assumption) and hence at most 2k2 vertices (since every vertex of G′′ has degree at least
1). It follows that the brute-force search step can be implemented in 2O(k2) time. Steps
1–4 can be implemented in linear time, so the overall running time is O(m) + 2O(k2), and
hence the algorithm is fixed-parameter tractable. In FPT jargon, the graph G′′ is called
a kernel (of size O(k2)), meaning that the original problem (on an arbitrarily large graph,
with a given budget k) reduces in polynomial time to the same problem on a graph whose
size depends only on k. Using linear programming techniques, it is possible to show that
every unweighted vertex cover instance actually admits a kernel with size at most 2k (see
Homework #3), leading to a running time dependence on k of 2O(k) (as in our first algorithm)
rather than 2O(k2).

In general, a kernelization algorithm (or simply kernel) for a parameterized problem ac-
cepts as input an instance (I, k) of the problem, runs in time polynomial in n (the description
length of I in bits) and k, and outputs an instance (I ′, k′) of the same problem such that:
(i) k′ and the description length of I ′ are bounded by some (computable) function g(k) of k
only; (ii) (I ′, k′) is a “yes” instance if and only if (I, k) is a “yes” instance. The value g(k)
is the size of the kernel. If we allow g to be an arbitrary function of k, then the existence
of a kernelization algorithm turns out to be equivalent to being fixed-parameter tractable
(see Homework #3). For polynomial-size kernels, the story is more interesting: some fixed-
parameter tractable problems have them (like Vertex Cover, above) while others (like
Longest Path, below) do not, under appropriate complexity assumptions.

4.5 Color Coding

The study of fixed-parameter tractability has, to this point, been a primarily theoretical
enterprise (and a quite interesting one). Some fixed-parameter algorithms are effectively
unimplementable, because the parameter dependence is doubly exponential or worse. Other
are perfectly implementable but not obviously superior to competing techniques (like the
bounded-depth search tree algorithm for Vertex Cover). But there is one very nice
example of a genre of fixed-parameter algorithms crossing over into practice; these are based
on a technique known as color coding, introduced by Alon et al. [1].

As usual, we illustrate the general technique through the study of a canonical application,
in this case the Longest Path problem. The input here is a graph G = (V,E) (undirected,
say) and a target path length k. The goal is to determine whether or not G has a k-path (a
sequence of k distinct vertices v1, . . . , vk, with (vi−1, vi) ∈ E for i = 2, 3, . . . , k).

One motivation for solving the Longest Path problem in practice is to find “motifs”
in real-world networks. For example, in protein-protein interaction (PPI) networks, paths
correspond to “linear pathways,” which are of biological interest. In social networks, one
generally looks for more complex (but still small) structures, and the color coding technique
can be correspondingly extended. In both of these application domains, color coding led to
advances in the state-of-the-art (see e.g. [3, 5, 4]).

Unlike the shortest-path problem, the Longest Path problem isNP -hard. For example,
checking whether or not there is a (n − 1)-path is equivalent to the Hamiltonian Path

10

problem, which should be familiar from a course like CS154. One can check for a k-path in
time O(nk) using exhaustive search. Could the problem have a fixed-parameter algorithm?

The answer is yes, and the algorithm is very simple. It is randomized, and runs T
independent trials of the following experiment (for T to be chosen shortly):

1. Independently assign a uniformly random color in {1, 2, . . . , k} to each vertex v ∈ V .

2. If there exists a panchromatic k-path (where each color appears exactly once), halt
and return “yes.”

If all T trials fail, then the algorithm returns “no.”
Where did this algorithm come from? What makes the Longest Path problem hard

is the constraint that the k vertices in the path are distinct. A simple sufficient (but not
necessary) condition for a collection of vertices to be distinct is to have distinct colors.
Intuitively, checking for this sufficient condition is easier than solving the original problem
because, when building up a path edge-by-edge, one only has to keep track of the subset
of colors already in your path (2k possibilities) rather than the subset of vertices already in
your path (≈ nk possibilities). This intuition may become particularly clear after you prove
the following, using dynamic programming (Homework #3).

Lemma 4.1 Checking if a given graph with vertex colors in {1, 2, . . . , k} has a panchromatic
k-path can be done in O(2k · poly(n)) time.

The algorithm is clearly correct whenever it says “yes” (since it provides a certificate).
What is the probability that it says “no,” even though the graph G contains a k-path?
You will prove the following on Homework #3, using counting and Stirling’s approximation
(where e = 2.718 . . .).

Lemma 4.2 If G has a k-path, then each trial succeeds with probability at least e−k.

Figure 2: The inequality 1 + x ≤ ex holds for all real-valued x.

11

Recalling that 1 + x ≤ ex for all real-valued x (Figure 2), if we set T = ek ln(1
δ
), then at

least one trial succeeds with probability at least

1−
(
1− e−k

)T ≤ 1− ee−kT = 1− eln(1/δ) = 1− δ.

Note that δ is a parameter than we can pick as small as we want. The total running time is
then O((2e)kpoly(n) ln 1

δ
), which shows that the Longest Path problem is fixed-parameter

tractable (at least with a randomized algorithm). The algorithm can be modified to replace
the constant 2e with a smaller constant, and it can also be derandomized; see [1, 2] for
details.

References

[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42:844–856, 1995.

[2] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[3] F. Hüffner, S. Wernicke, and T. Zichner. Algorithm engineering for color-coding with
applications to signaling pathway detection. Algorithmica, 52:114–132, 2008.

[4] L. Romijn, B. Ó Nualláin, and L. Torenvliet. Discovering motifs in real-world social
networks. In Proceedings of the 41st International Conference on Theory and Practice of
Computer Science (SOFSEM), pages 462–475, 2015.

[5] Z. Zhao, M. Khan, V. S. Anil Kumar, and M. V. Marathe. Subgraph enumeration in
large social contact networks using parallel color coding and streaming. In Proceedings
of the 39th International Conference on Parallel Processing, 2010.

12

