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1 Clustering Is Hard Only When It Doesn’t Matter

In some optimization problems, the objective function can be taken pretty literally. If one
wants to maximize profit or accomplish some goal at minimum cost, then the goal translates
directly into a numerical objective function.

In other applications, an objective function is only a means to an end. Consider, for
example, the problem of clustering. Given a set of data points, the goal is to cluster them
into “coherent groups,” with points in the same group being “similar” and those in different
groups being “dissimilar.” There is not an obvious, unique way to translate this goal into
a numerical objective function, and as a result many different objective functions have been
studied (k-means, k-median, k-center, etc.) with the intent of turning the fuzzy notion of
a “good/meaningful clustering” into a concrete optimization problem. In this case, we do
not care about the objective function value per se; rather, we want to discover interesting
structure in the data. So we’re perfectly happy to compute a “meaningful clustering” with
suboptimal objective function value, and would be highly dissatisfied with an “optimal so-
lution” that fails to indicate any patterns in the data (which suggests that we were asking
the wrong question, or expecting structure where none exists).

The point is that if we are trying to cluster a data set, then we are implicitly assuming
that interesting structure exists in the data.1 This perspective suggests that an explicit model
of data could sharpen the insights provided by a traditional worst-case analysis framework
(cf., modeling locality of reference in online paging). This lecture develops theory to support
the idea that clustering is hard only when it doesn’t matter.2 That is, clustering instances
with “meaningful solutions” are computationally easier to solve than worst-case instances.
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1There are exceptions. For example, if one is partitioning a graph as part of a divide-and-conquer

algorithm, then the partition is only a means to an end and is not interesting in its own right.
2This phrase is adapted from the title of [6], which was first suggested by Tali Tishby.
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There has been an explosion of work on this idea over the past decade, and we’ll only have
time to cover some of the most recent developments.

2 The k-Median Problem

We study the k-median problem. The input is an n-point metric space (X, d), meaning that d
is a nonnegative function on X ×X satisfying d(x, x) = 0 for all x ∈ X, d(x, y) = d(y, x) for
all x, y ∈ X (symmetry), and, most importantly, the triangle inequality:

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ X. That is, the shortest path between two points is a direct hop—intermediate
stops can only lengthen the journey.

One generally interprets d as a distance function or (dis)similarity measure. Metric
spaces come up all the time in data analysis. For example, X could be a set of points in Rm

(representing images, say) and d could be Euclidean distance (or distance with respect to
some other norm). Or X could be a set of strings (e.g., genomes), with d being Hamming
distance.3

A k-clustering of a finite metric space is a partition of its points into k non-empty sets.4

We next posit a specific objective function over k-clusterings; the main results in this lecture
carry over to other popular choices, as well (see Homework #3).

To define the objective function in the k-median problem, consider a k-clustering C1, C2, . . . , Ck
and a choice of a center ci ∈ Ci for each cluster. The goal is to minimize the sum of distances
from points to their cluster centers:

k∑
i=1

(∑
x∈Ci

d(ci, x)

)
. (1)

It’s redundant to describe both the clusters and the cluster centers. Given a k-clustering
C1, . . . , Ck, it’s clear how to choose the centers to minimize the objective function: for each
cluster Ci independently, choose the point ci ∈ C that minimizes the ith inner sum in (1)
(trying all possibilities, if necessary). Conversely, given a choice of centers c1, . . . , ck, the
optimal thing to do is to assign each point to its closest center, so that Ci is the set of points
closer to ci than to any other center.

The k-median problem is NP -hard in the worst case (as are almost all clustering prob-
lems). Could the presence of a “meaningful solution” introduce structure that makes the
problem easier? To answer this question, we need to commit to mathematical definition of
a “meaningful clustering.”

3For a non-example, think of airline fares!
4We’ll think of k as known a priori. In some applications one has domain knowledge about what k should

be; in others one runs a k-clustering algorithm for varying values of k and goes with the solution that is
“best” in some sense.
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3 Perturbation Stability

Intuitively, we want a definition that captures the property of being “clearly optimal,” like
a uniqueness assumption on steroids. We first define a notion of “nearby” instances.

Definition 3.1 (γ-Perturbation) For γ ≥ 1, a γ-perturbation of a metric space (X, d) is
another metric space (X, d′) on the same point set such that

d′(x, y) ∈
[
1
γ
d(x, y), d(x, y)

]
.

That is, distances only go down in a γ-perturbation, and they can only go down by a γ
factor. The interesting case is where different edge lengths are scaled by different factors.5

Feel free to think of γ as 2.
The key definition is this: the optimal solution should be the same in all nearby instances.

Definition 3.2 (Perturbation Stability) A k-median instance (X, d) is γ-perturbation-
stable if there is a k-clustering C∗1 , . . . , C

∗
k such that, for every γ-perturbation (X, d′), C∗1 , . . . , C

∗
k

is the unique optimal k-clustering.

Note that the condition in Definition 3.2 does not assert that the optimal objective function
value is the same in all γ-perturbations, and in almost all cases a γ-perturbation will strictly
decrease the optimal value. Definition 3.2 doesn’t even assert that the optimal cluster centers
c1, . . . , ck stay the same in all γ-perturbations. It is the partition of the point set C∗1 , . . . , C

∗
k—

generally what we really care about—that must be invariant over γ-perturbations.
When γ = 1, Definition 3.2 is equivalent to asserting the existence of a unique optimal

solution. The condition becomes more and more stringent as γ increases, and so the k-median
problem (restricted to γ-perturbation-stable instances) can only get easier for larger γ.

Our goal is to prove that, for all γ at least a sufficiently large constant (hopefully not
too large), there is a polynomial-time algorithm that recovers the optimal clustering in every
γ-perturbation-stable instance. That is, we’re hoping that the complexity of the problem
switches from NP -hard to polynomial-time solvable at some reasonable value of γ. We’ll get
bonus points if we can prove our positive results using algorithms that might conceivably be
used (or even better, are already being used) in practice.

Recalling the two escape routes from NP -hardness in the last lecture, this goal falls
under the approach of relaxing correctness. While last time we considered approximation
algorithms (which are approximately correct on all instances), here we’re looking for algo-
rithms that are always correct on a designated subset of instances (the γ-perturbation-stable
ones). That is, we’re looking for a well-motivated and tractable special case of the problem,
rather than relaxed guarantees for the general version of the problem.

5In the literature, it is common to see the requirement that distances can only go up, but by at most a
γ factor. The two definitions differ only by a scaling factor of γ, and there is no difference between the two
definitions for the purposes of Definition 3.2.
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4 Discussion

Why Definition 3.2? In fact, many other formalizations of “clustering instances with a
meaningful solution” have been studied. Perturbation stability was first proposed by Bilu
and Linial [5] in the context of the Maximum Cut problem; see also Lecture #8. Around
the same time, Balcan, Blum, and Gupta [3] proposed the related notion of “approximation
stability;” see Lecture #6 from the 2014 version of this course. There are at least three
other related definitions, as well; see [2, 4] for surveys. Perturbation stability seems to be
emerging as the most well-studied of these definitions, so it is the one we will focus on. But
what’s the best way to interpret the definition, and positive results for instances that satisfy
it?

The motivation behind the γ-perturbation-stability definition is that, in many clustering
applications, the distance function d is heuristic. In some cases, data points really do belong
to some normed space and distances can be taken literally. But when the points represent
images, proteins, documents, etc., there is no “true” distance function, and various standard
distance/dissimilarity measures are used. Solving a clustering problem with such a heuristic
distance function and expecting good results implicitly assumes that the optimal solution
of the problem is not overly sensitive to small perturbations of the distance function. Put
differently, sensitivity of the output to the details of the distance function suggests that the
wrong question is being asked. The γ-perturbation-stability condition is a natural way to
make this implicit assumption precise.

There are two obvious complaints about the definition of perturbation stability. First,
taken literally, it is pretty strong, and it’s not clear that it holds (with reasonable parameter
values) in “real-world” instances. However, the set of instances where one can formally prove
guaranteed good performance of an algorithm is typically a small subset of the instances
where the algorithm performs well empirically. For example, one would hope that the same
algorithms would “work well” even if the stability requirement only holds approximately. An
important challenge for theory is to prove (perhaps approximate) recovery guarantees under
relaxed, more plausible stability notions.

A second critique concerns the difficulty of empirical validation. Given a data set, it
is highly non-trivial to estimate the smallest γ for which it is γ-perturbation stable. (How
would you approach it?) This is different from typical 20th-century research that identified
polynomial-time solvable special cases of NP -hard problems, which typically considered
instance restrictions that can be verified in polynomial time (e.g., planarity in graphs, 2-
SAT and Horn-SAT, polynomially bounded numbers, etc.). But a condition like perturbation
stability remains valuable even in the absence of empirical validation. There is a plausible
story for why real-world data sets might satisfy some approximation version of perturbation
stability (namely, that the optimal solution to a real-world clustering instance should be
roughly the same for any reasonable distance measure). For example, for images of cats and
dogs, it seems unlikely that minor changes to the (dis)similarity measure between images
would yield a highly incorrect classification of the images. And ultimately, we should judge
the value of the definition by the extent to which it leads to a better understanding of an
existing algorithm or (in this case) the development of new algorithmic ideas that might

4



Figure 1: A bad example for single-link clustering when k = 3. The circles represent a
number of co-located nodes, and the edges are distances. Single-link clustering will cut the
“2” and the “10” edge, allocating a single center for the right-hand side.

prove useful for solving the problem.

5 Single-Link Clustering

Single-link clustering is a simple and widely known clustering algorithm. The idea is to think
of the input metric space (X, d) as a complete graph, with vertices X and edge weights given
by d. The algorithm runs Kruskal’s minimum spanning tree (MST) algorithm,6 except it
stops when there are k connected components, where k is the desired number of clusters.
That is, we skip the final k − 1 edge additions of Kruskal’s algorithm.7

The simplest statement that might be true is: for γ sufficiently large, single-link clustering
recovers the optimal k-median solution in every γ-perturbation-stable instance. This would
be the best-case scenario where a highly practical algorithm recovers an optimal solution
under reasonable conditions. But given that single-link clustering doesn’t even look at the
objective function that we’re optimizing (i.e., the k-median objective), this is perhaps too
much to hope for. Indeed, the example shown in Figure 1 shows that this statement is false.
In the example, there are three cities, each with M co-located citizens, and a tiny village,
with 10 co-located citizens. If k = 4, then it’s clear where to locate the centers — one per
city, and one in the village. With k = 3, the optimal solution is also clear: locate one center
per city, with the 10 villagers each traveling 2 units to the nearest center, for an objective
function value of 20. Single-link clustering, however, skips the final 2 iterations of Kruskal’s
algorithm (i.e., the “2” and “10” edges), thus retaining the “1” edge and forcing the location
of a single center between the two cities on the right-hand side. The objective function value
of this solution is M , arbitrarily larger than the optimal value. Moreover, such instances are
γ-perturbation-stable for arbitrarily large γ (as M →∞); see Homework #3. This example
shows that if we want to recover optimal solutions of γ-perturbation-stable instances, we

6Recall this is the algorithm where you sort the input graph’s edges from cheapest to most expensive,
and then do a single pass through them, including an edge in the tree-so-far if and only if it does not create
a cycle.

7Each edge addition fuses two connected components into one and hence decreases the number of com-
ponents by 1; at some point, there are exactly k connected components remaining.
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need a better algorithm than single-link clustering. But a variant of single-link clustering
works!

6 Single-Link++

We now describe single-link++, a more sophisticated version of single-link clustering.

single-link++

1. Run Kruskal’s algorithm until completion to compute the minimum
spanning tree T of the complete graph induced by (X, d).

2. Among all
(
n−1
k−1

)
subsets of k−1 edges of T and the induced k-clusterings

(with one cluster per connected component), compute the one with the
minimum k-median objective function value.8

You’d be right to wonder how to implement the second step—the number of possibilities
is scaling exponentially with k. Have we just replaced one NP -hard problem another?
Fortunately, many problems that are NP -hard in general are polynomial-time solvable on
trees, usually via a dynamic programming algorithm. This is also the case here, although
the dynamic program is relatively elaborate (too hard for CS161, but just right for CS264)
— see Homework #3. We will not discuss further the running time of single-link++.

Observe that, in the example in Figure 1, single-link++ recovers the optimal solution
(leaving the 2 but deleting the 1 and 10 edges). Could the algorithm be correct in general?
Presumably not, since the algorithm runs in polynomial time and, in general, the k-median
problem is NP -hard. (See Homework #3 for an explicit example.)

It is easy to characterize the inputs for which the algorithm is correct.

Lemma 6.1 single-link++ recovers the optimal solution of a k-median instance (X, d) if
and only if every optimal cluster C∗i induces a connected subgraph of the minimum spanning
tree T .9

See Figure 2 for a cartoon of an instance that does not satisfy the condition in Lemma 6.1.

Proof of Lemma 6.1: The single-link++ algorithm can only output a k-clustering obtained
by removing k−1 edges from the MST T . Such an output necessarily produces clusters that
are connected subgraphs of T . Thus if some optimal cluster C∗i is not a connected subgraph
of T , the single-link++ algorithm has no chance of finding it.

Conversely, every partition of X into k (non-empty) connected subgraphs of T can be
obtained by deleting k−1 edges from T (namely, every edge with an endpoint in two different

8The centers of the Ci’s are computed independently and optimally, as usual.
9If (X, d) has multiple optimal solutions, it is enough that one them satisfies this condition.
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C∗1

C∗2

Figure 2: Optimal cluster C∗2 is not connected in this MST.

optimal clusters). Since the single-link++ algorithm explicitly optimizes over k-clusterings
of this form, if the optimal algorithm has this form, then the algorithm will recover it. �

The main result of this lecture is the following.

Theorem 6.2 ([1]) In every 2-perturbation-stable k-median instance, the single-link++

algorithm recovers the optimal solution (in polynomial time).

Theorem 6.2 identifies a novel tractable special case of the k-median problem. To the extent
that we believe that “real-world” clustering instances with “meaningful solutions” are 2-
perturbation-stable, Theorem 6.2 gives a formal sense in which clustering is hard only when it
doesn’t matter. It is a largely open research direction to prove robust versions of Theorem 6.2,
where perturbations can cause a small number of points to switch clusters. (See [3] for such
robust results under a stability notion that is more stringent than perturbation stability.)

7 Proof of Theorem 6.2

The heavy lifting in the proof of Theorem 6.2 is largely done by the following lemma, which
identifies structure that is automatically possessed by any γ-perturbation-stable instance.

Lemma 7.1 For every γ ≥ 1, if (X, d) is a γ-perturbation-stable k-median instance with
optimal k-clustering C∗1 , . . . , C

∗
k and optimal centers c1, . . . , ck, then for every cluster i and

point x ∈ Ci of the corresponding cluster,

d(x, cj) > γ · d(x, ci) (2)

for every j 6= i.

In every k-median instance, every point is assigned to the closest center in any optimal
solution. Lemma 7.1 strengthens this property for γ-perturbation-stable instances: every
point is significantly closer to its own center (in the optimal solution) than to any other
center.
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Proof of Lemma 7.1: We prove the contrapositive. Consider a k-median instance with
optimal k-clustering C∗1 , . . . , C

∗
k and corresponding centers c1, . . . , ck. Suppose there is a

point x ∈ C∗i with
d(x, cj) ≤ γ · d(x, ci). (3)

The plan is to exhibit a γ-perturbation (Definition 3.1) that certifies that this k-median
instance is not γ-perturbation-stable. The rough idea is to decrease the distance between x
and cj so that x is equidistant between ci and cj; then, reassigning x from ci to cj will yield
another optimal clustering, violating perturbation stability.

As a notational shorthand, write r for d(x, ci). Since we start with an optimal solution
for (X, d), we have d(x, cj) ≥ r for every j 6= i (otherwise we would reassign x from ci to cj).

We define a γ-perturbation (X, d′) of (X, d) using the following steps:

1. Let G denote the complete graph on X, with the length of edge (y, z) defined as d(y, z).

2. Obtain G′ from G by reducing the length of the edge (x, cj) from d(x, cj) to r.

3. Define d′(y, z) as the length of a shortest path between y and z in G′.

We need to argue that (X, d′) is indeed a γ-perturbation. In the second step, by (3), we
decreased the length of the edge (x, cj) by at most a γ factor (and all other lengths stayed
the same). This means that the length of any path in G′ is at most an γ factor less than
its length in G. In particular, the length of a shortest path between any two points only
drops by an γ factor, so d′(y, z) ≥ 1

γ
d(y, z) for every y, z ∈ X. Since all edge lengths in G′

are only less than those in G, we also have d′(y, z) ≤ d(y, z) for every y, z ∈ X. Finally, as
shortest-path distances, (X, d′) is automatically a metric (for any y, z, w, one option for an
y-z path is to concatenate shortest paths from y to w and from w to z, and the shortest y-z
path can only be shorter).10

We can complete the proof by showing that, in the γ-perturbation (X, d′), C∗1 , . . . , C
∗
k is

not the unique optimal clustering. The idea is that reassigning x from ci to cj should produce
an equally good clustering. But there is a missing step: we forced x to be equidistant from
ci and cj in the second step of construction, but does this property continue to hold for the
shortest-path distances d′ constructed in the third step?

The final part of the proof shows that d and d′ agree everywhere inside C∗i and C∗j (i.e.,
shrinking the distance between x and cj does not shrink any distances inside either cluster).
We denote by dG(P ) and dG′(P ) the length of a path P in G and G′.

Consider two points y, z ∈ C∗i , and let P be a shortest y-z path in G′ (see Figure 3). If
P does not contain the newly shorter edge (x, cj), then dG(P ) = dG′(P ) and the shortest y-z
path distance is the same in G and G′. If P does contain the edge (x, cj), then it either has
the form

y  x︸ ︷︷ ︸
:=P ′

→ cj  z︸ ︷︷ ︸
:=P ′′

10The requirement that d′ is a metric is the reason the construction goes through the graphs G and G′.
If we tried to just modify d directly by shrinking the distance between a pair of points, we might violate the
triangle inequality (why?).
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Figure 3: Clusters C∗i and C∗j as we reduce the length of (x, cj).

or
y  cj → x z,

where the subpaths between y, z and x, cj do not contain the edge (x, cj). Suppose P is
of the former type. Let Q consist of the the same y  x subpath P ′, followed by the
edge (x, ci), followed the edge (ci, z) (removing any cycles, if necessary). Since P ′ does not
include the edge (x, cj), we have dG(P ′) = dG′(P ′). We also have d(x, ci) = r = d′(x, cj).
Finally, since (X, d) is a metric, dG(x, ci) is at most dG(P ′′); since P ′ does not contain (x, cj),
dG(P ′′) = dG′(P ′′). We conclude that

dG(Q) = dG(P ′) + dG(x, ci) + dG(x, ci) ≤ dG′(P ′) + dG′(x, cj) + dG′(P ′′) = dG′(P ),

and hence the length of a shortest path between y and z is the same in G′ as it is in G
(and hence d(y, z) = d′(y, z)). The arguments for paths of the second type, and for pairs
y, z ∈ C∗j , are similar. �

Our last two lemmas are much shorter. The first lemma is where the “2” comes in.

Lemma 7.2 In every 2-perturbation-stable k-median instance (X, d), for every optimal clus-
ter C∗i , point x ∈ C∗i , and point y /∈ C∗i , d(x, ci) < d(x, y).

That is, in a 2-perturbation-stable instance, every point is closer to its center (in the optimal
clustering) than it is to any other point of any other optimal cluster.

Proof of Lemma 7.2: Suppose y ∈ C∗j . Using the triangle inequality, Lemma 7.1, and the
triangle inequality again, we obtain

d(x, y) ≥ d(x, cj)− d(y, cj)

> 2d(x, ci)−
d(y, ci)

2

≥ 2d(x, ci)−
d(x, y) + d(x, ci)

2
;
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rearranging gives
3

2
d(x, y) >

3

2
d(x, ci)

and proves the lemma. �

Finally, we can complete the proof of Theorem 6.2.

Proof of Theorem 6.2: It is enough to show that the correctness condition in Lemma 6.1
holds—that is, in every 2-perturbation-stable k-median instance, every optimal cluster C∗i
induces a connected subgraph of T .

We proceed by contradiction. If not, there is a point x ∈ C∗i such that the (unique)
ci-x path in T concludes with the edge (y, x) with y /∈ C∗i . At the time (y, x) was added
by Kruskal’s algorithm, x and ci were in different connected components (otherwise the
addition of (y, x) would have created a cycle). Thus, Kruskal’s algorithm also had the
option of including the edge (x, ci) instead. Since the algorithm chose (y, x) over (x, ci),
d(x, y) ≤ d(x, ci). But then x is as close to y /∈ C∗i as its own center, contradicting Lemma 7.2.
�
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