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1 The Maximum Cut Problem

Today we continue our discussion of exact recovery under perturbation-stability assumptions.
We’ll look at a different cut problem than last lecture, and this will also give us an excuse to
touch on two cool and fundamental topics, metric embeddings and semidefinite programming.

The Maximum Cut problem is a famous NP -hard problem. The input is an undirected
graph G = (V,E), where each edge e ∈ E has a positive weight we > 0. The goal is to
compute a cut (A,B) that maximizes the weight of the crossing edges (i.e., the edges with
one endpoint in each of A,B). The Maximum Cut problem can arise in applications as
a type of 2-clustering problem. For example, if weights represent dissimilarities (between
images, genomes, etc.), then it makes sense to define clusters so that pairs of objects in
different clusters tend to be quite dissimilar.

The fact that the Maximum Cut problem is NP -hard may be confusing, given that
the Minimum s-t Cut problem is polynomial-time solvable (as proved last lecture or by a
reduction to the maximum flow problem).1 It’s tempting to think that we can reduce the
Maximum Cut problem to the Minimum Cut problem just by negating the weights of
all of the edges. Such a reduction would yield an instance of Minimum Cut with negative
weights (or capacities). But all of the polynomial-time algorithms for solving the Minimum
Cut problem require nonnegative edge capacities. Indeed, it’s not hard to prove that the
maximum cut problem is NP -hard.

The goal for today, analogous to last lecture, is to recover the optimal solution in polyno-
mial time in γ-perturbation-stable instances, where γ is as small as possible. The definition
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of γ-perturbation-stable is the same as last lecture: if each of the edge weights is scaled
down by an edge-dependent factor between 1 and γ, then the optimal solution should stay
the same (and be unique).

2 A Linear Programming Relaxation

To argue that a linear program solves to integers under a perturbation-stability assumption,
we need a linear program. Here’s the one we used last lecture for the Minimum s-t Cut
problem:

min
∑
e∈E

cexe.

subject to:

xe ∈ [0, 1]

xe ≥ du − dv
xe ≥ dv − du

for every edge e = (u, v), and also ds = 0 and dt = 1. We could try just flipping the “min”
to a “max,” but then nothing is stopping the linear program from just setting xe = 1 for all
edges e (no matter what the graph is). We could try also flipping the last two inequalities,
so that they read xe ≤ du − dv and xe ≤ dv − du, but this actually forces xe = 0 (instead of
xe ≤ |du − dv|).2

So we need a different linear programming relaxation of the Maximum Cut problem.
We’re not going to bother with the d-variables (which don’t make much sense without s and
t, anyway), but we’ll keep a version of the x-variables (indicating how much each edge gets
cut), and will impose some natural constraints on them.

There will be one decision variable xij for every unordered pair i, j ∈ V of distinct
vertices, whether or not (i, j) ∈ E. The intended semantics are for xij = 1 to indicate that
i, j are on different sides of the cut, and xij = 0 to indicate that i, j are on the same side
of the cut. Note that xij and xji are just two different names for this one decision variable.
We impose the constraint

0 ≤ xij ≤ 1 (1)

on each decision variable.
With these intended semantics, the objective function is clear:

max
∑

(i,j)∈E

wijxij. (2)

Note that only pairs of vertices connected by an edge contribute to the objective function.

2Such issues are to be expected, given that the Minimum s-t Cut problem is polynomial-time solvable
while the Maximum Cut problem is NP -hard. But it’s instructive to see exactly how the previous arguments
break down.
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We clearly need some more constraints, since otherwise nothing is stopping the linear
program from setting all the xij’s to 1. What would it mean if xij = xik = xjk = 1? According
to the intended semantics, this would mean that each of the pairs (i, j), (i, k), (j, k) are on
different sides of the cut. But this makes no sense: if i and j are on different sides and i and
k are also on different sides, then j and k must be on the same side. In inequality-speak:
for each triple i, j, k ∈ V of distinct vertices, we add the constraint

xij + xjk + xik ≤ 2. (3)

Similarly, if we know that i, j are on the same side of the cut and also i, k are on the same
side, then by transitivity j, k are also on the same side:

xjk ≤ xij + xik (4)

for every triple i, j, k ∈ V of distinct vertices. This completes the description of the linear
program.3

Our main result for this linear programming relaxation is the following.

Theorem 2.1 There is a constant c > 0 such that: in every (c log n)-perturbation-stable
instance of the Maximum Cut problem with n vertices, the linear program (1)–(4) solves
to integers.

We’ll improve the value of γ in Theorem 2.1 in Section 4 via semidefinite programming.
But there are fundamental barriers to getting it down to a constant (as we could with the
Minimum Multiway Cut problem last lecture).

3 Proof of Theorem 2.1

Our two results last lecture—exact recovery by linear programming in 1-perturbation-stable
Minimum s-t Cut instances and 4-perturbation-stable Minimum Multiway Cut instances—
were proved using very similar arguments. The only problem-specific part of these proofs is
the design of a randomized rounding algorithm (used only in the analysis!) that outputs a
(random) cut such that the probability of an edge being cut is approximately the same as the
value of the corresponding decision variable. For the Minimum s-t Cut problem, we blew
up a balloon around the source s with a random radius. We used a quite different iterative
algorithm for the Minimum Multiway Cut problem, where each iteration a group and a
threshold for membership in the group are chosen at random.

3.1 A Randomized Rounding Algorithm

For the Maximum Cut problem, the analogous problem-specific tool is the following.

3You might be wondering about the analogous fact that if i, j are on the same side of the cut and i, k
are on different sides, then j, k are also on different sides. These constraints are already implied by (4).
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Lemma 3.1 Fix an instance of the Maximum Cut problem, with F ∗ the edges cut in the
optimal cut, and x̂ the optimal solution to the linear programming relaxation (1)–(4). Then
there exists a randomized algorithm (outputting a random cut (A,B)) and a scaling parameter
σ > 0 such that:

(i) for every edge e = (i, j) /∈ F ∗,

Pr[e cut by (A,B)] ≥ σ · x̂ij
α
,

where α = Θ(log n);

(ii) for every edge e = (i, j) ∈ F ∗,

Pr[e not cut by (A,B)] ≤ σ · (1− x̂ij);

(iii) the rounding algorithm is deterministic (i.e., always outputs the same cut) if and only
if x̂ is integral.

We leave the proof that Lemma 3.1 implies Theorem 2.1 to Homework #4; it follows the
exact same proof template we used last lecture to prove exact recovery in 4-perturbation-
stable instances of Minimum Multiway Cut, with only minor differences in the details.
(The inequalities are flipped compared to last lecture, as we’ve switched from a minimization
problem to a maximization problem.) The scaling parameter σ > 0 plays no real role in the
argument; the reason for its existence will become clear in Theorem 3.3 below.

We now turn to the proof of Lemma 3.1. First, a preliminary proposition.

Proposition 3.2 Fix an instance of the Maximum Cut problem, a cut C, and a feasible
solution x̂ to the linear programming relaxation (1)–(4). For distinct i, j ∈ V , define

ŷij =

{
x̂ij if i, j are on the same side of C;

1− x̂ij if i, j are on different sides of C.

Then ŷ satisfies the triangle inequality:

ŷjk ≤ ŷij + ŷik

for every i, j, k ∈ V .

Proposition 3.2 says that not only does x̂ define a metric space (due to the constraints (4)),
but also ŷ as defined above is a metric (using also the constraints (3) on x̂).4 The proof just
checks a couple of cases, and the details are left to Homework #4.

4Throughout this lecture, we abuse the term “metric” slightly. Normally a metric space (X, d) is required
to satisfy d(x, y) = 0 if and only if x = y. Here, we will allow distinct points to have zero pairwise distance.
(These are sometimes called “semi-metrics.”)
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3.2 Bourgain’s Theorem

The main tool used to prove Lemma 3.1 is a famous result known as Bourgain’s theorem.

Theorem 3.3 (Bourgain’s Theorem [2, 3]) For every n-point metric space (X, d), there
exists a randomized algorithm (outputting a random partition (A,B) of X) and a scaling
parameter σ > 0 such that, for all distinct pairs i, j ∈ X,

Pr[i, j on different sides of (A,B)] ∈ σ ·
[
d(i, j)

α
, d(i, j)

]
, (5)

where α = Θ(log n).

It is clear that the scaling parameter σ > 0 is needed for Theorem 3.3: the left-hand side
of (5) is always between 0 and 1, while the distances on the right-hand side could be anything.

Bourgain’s theorem states the every n-point metric space admits a randomized partition-
ing algorithm so that the separation probabilities between pairs of points are proportional to
the metric’s distances, up to a Θ(log n) factor.5 The proof of Bourgain’s theorem is pretty
cool, and is outlined in a problem on Homework #4.6 The Θ(log n) approximation factor in
Theorem 3.3 is the best possible for arbitrary metric spaces (up to the suppressed constant
factor).7

3.3 Putting the Pieces Together

Fix an instance of Maximum Cut. Let C∗ denote an optimal cut, cutting the edges F ∗. Let
x̂ be an optimal solution to the LP relaxation (1)–(4), and define ŷ as in Proposition 3.2 (with
C∗ playing the role of C). Since ŷ is a metric (Proposition 3.2), we can apply Theorem 3.3
to it and obtain a scaling parameter σ > 0 and a randomized algorithm that outputs a
partition (A,B) such that

Pr[i, j on different sides of (A,B)] ∈ σ ·
[
ŷij
α
, ŷij

]
,

where α = Θ(log n). By the definition of ŷ, this means that

Pr[i, j on different sides of (A,B)] ∈ σ ·
[
x̂ij
α
, x̂ij

]
, (6)

5The field of “metric embeddings” has many results of this type, showing that a complex metric can be
approximated by a simpler metric, with some distortion in the distances. The Johnson-Lindenstrauss (JL)
lemma (see e.g. CS168) is another example. The JL lemma is about dimensionality reduction, and it states
that the pairwise distances between n points in high-dimensional Euclidean space are well approximated by
those between the scaled projections of these points to Θ(log n)-dimensional Euclidean space.

6Bourgain’s theorem is usually stated in terms of approximately distance-preserving embeddings of gen-
eral n-point metric spaces into `1 metrics, meaning metrics that arise as the `1 distances between points in
Rd (for some d). Randomized partitioning algorithms are essentially equivalent to `1 metrics; Homework #4
spells out the details of this.

7It turns out that you can obtain a matching lower bound by considering the metric of shortest-path
distances of a constant-degree expander graph.
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for i, j on the same side of C∗ (and in particular if (i, j) is an edge not in F ∗), while

Pr[i, j on different sides of (A,B)] ∈ σ ·
[

1− x̂ij
α

, 1− x̂ij
]

(7)

for i, j on different sides of C∗ (and in particular if (i, j) ∈ F ∗). The lower bound in (6) gives
us Lemma 3.1(i); the upper bound in (7) yields Lemma 3.1(ii).8

To recap: Theorem 2.1 reduces to Lemma 3.1 by the same reasoning as in last lecture.
Lemma 3.1 reduces to Bourgain’s theorem. The simple trick in Proposition 3.2 of applying
Bourgain’s theorem to ŷ rather than to the LP solution x̂ ensures that the separation prob-
abilities in the resulting randomized algorithm well approximate x̂ij for edges (i, j) not cut
by the optimal cut and 1− x̂ij for the other edges. Homework #4 outlines all of the missing
details.

4 A Semidefinite Programming Relaxation

Can we do better than exact recovery in Θ(log n)-perturbation-stable instances of Maximum
Cut (Theorem 2.1)? Not using the LP relaxation in (1)–(4), in turns out. To get exact
recovery for smaller values of γ, we’re going to have to up our game and use a semidefinite
programming (SDP) relaxation.

4.1 A Quadratic Programming Formulation of Maximum Cut

Semidefinite programming is even more powerful than linear programming, and can still be
done in polynomial time.9 We’ll give a proper treatment of SDPs in Lectures 11–12; for
now, this lecture will just give you a glimpse of it, in the running context of exact recovery
in Maximum Cut instances. Here’s the plan: (i) replace the LP relaxation (1)–(4) with
a more powerful SDP relaxation that imposes more structure on the resulting metric; and
(ii) use an analog of Bourgain’s theorem that exploits this additional structure to achieve a
better approximation.

One good way to think about SDPs is as relaxations of certain types of quadratic programs
(where pairs of decision variables can be multiplied together) with ±1 decision variables. It’s
easy to express an instance of Maximum Cut as such a quadratic program. We have one
decision variable zi ∈ {−1,+1} for each vertex i ∈ V , indicating which side of the cut
i belongs to. (We could use {0, 1}, but {−1,+1} is more convenient to pass to an SDP
relaxation.) To derive the appropriate objective function, first note that zi−zj is 0 if i and j
are on the same side of the cut, and ±2 otherwise. Thus (zi−zj)2—and this is the quadratic
part—is 0 if i, j are on the same side of the cut and 4 otherwise. Thus, the total weight of

8Lemma 3.1(iii) follows directly from the description of the randomized algorithm in the proof of Bour-
gain’s theorem, see Homework #4.

9SDPs can be used in practice, but usually can only deal with medium-size instance (e.g., graphs with
≤ 1000 vertices), while modern LP solvers can handle problem sizes 1–2 orders of magnitude larger.
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a cut (A,B), with zi = −1 for all i ∈ A and zi = +1 for all i ∈ B, is precisely

max
1

4

∑
(i,j)∈E

wij(zi − zj)2. (8)

Optimizing (8) subject to zi ∈ {−1,+1} is exactly the Maximum Cut problem, and hence
is NP -hard.

4.2 A Vector Relaxation

Here’s the crazy idea for a computationally tractable relaxation: rather than forcing each zi
to be either 1 or -1, let’s allow it to be any unit vector in n-dimensional Euclidean space,
where n is the number of decision variables. Thus we replace each scalar zi with a vector
vi ∈ Rn. Wherever we previously had the product of two decision variables, we now take
the inner product of the corresponding vectors. Thus the quadratic program becomes the
following vector program (all norms in this lecture are 2-norms):

max
1

4

∑
(i,j)∈E

wij‖vi − vj‖2 (9)

subject to
vi ∈ Rn (10)

and
‖vi‖2 = 1 (11)

for every i ∈ V .
Several comments. First, remember that 〈u, u〉 = ‖u‖2 for any vector u; this is where

the ‖vi − vj‖2 in the objective function comes from. Second, it probably seems obscure to
write ‖vi‖2 = 1 rather than ‖vi‖ = 1, but this is important for computational tractability, as
we’ll see in a future lecture. We’ll also see later that such vector programs are equivalent to
semidefinite programs, which optimize over the space of positive semidefinite matrices. The
connection is that the vectors vi correspond to the columns of the “square root” of the psd
matrix (more on this later, see Lectures 11–12).

The vector program (9)–(11) is a relaxation of the Maximum Cut problem, since one
always has the option of assigning ±e1 to each vector vi, where e1 denotes the first standard
basis vector. Geometrically, it’s easy to understand what this relaxation is doing: it maps
each vertex to a point on the sphere (in Rn), to make the endpoints of each edge as close
to antipodal as possible (to make (9) large). This relaxation is already interesting in its
own right, and leads to the best-known approximation algorithm for the Maximum Cut
problem (see e.g. CS261, Lecture #20).

For our purposes of exact recovery, however, we want our SDP to generalize our previous
LP relaxation (1)–(4), and in particular to have analogs of the constraints (3) and (4).
Looking at the objective function (9), we see that the term 1

4
‖vi − vj‖2 is playing the same
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role as the variable xij in the LP objective (2). (Note that since vi, vj are unit vectors,
1
4
‖vi − vj‖2 ∈ [0, 1].) This suggests adding the constraints (after scaling by 4)

‖vi − vj‖2 + ‖vj − vk‖2 + ‖vi − vk‖2 ≤ 8 (12)

and
‖vj − vk‖2 ≤ ‖vi − vj‖2 + ‖vi − vk‖2 (13)

for every triple i, j, k ∈ V of distinct vertices. Recall that the constraints (12) enforce the
semantics that if i, j are on different sides of the cut and also j, k are on different sides, then
i, k are on the same side. Similarly, the constraints (12) enforce the semantics that if i, j
are on the same side of the cut and also j, k are on the same side, then i, k are on the same
side. Since bona fide cuts (with all vi’s mapped to ±e1, according to their side of the cut)
satisfy these constraints, the vector program (9)–(13) is still a relaxation of the Maximum
Cut problem, and its optimal objective function value is at least that of the maximum cut.

Here’s the crazy part: the vector programming relaxation (9)–(13) can actually be solved
in polynomial time!10 You might well find this counterintuitive, given that the inner products
in the objective function seem hopelessly quadratic. The moral reason for computational
tractability is convexity. Linear programs have a convex feasible region (convex combinations
of feasible solutions are again feasible) and a linear objective function (a special case of a
convex function). More generally, a convex function can be minimized over a convex set in
polynomial time (under minor conditions, which hold in our applications).

OK. . . but where’s the convexity in the vector relaxation (9)–(13)? (After all, if you take
the average of two points on the unit sphere, you don’t get another point on the unit sphere.)
It comes from the equivalence alluded to earlier between the vectors in the vector program
and positive semidefinite (psd) matrices in the equivalent semidefinite program. The space
of psd matrices is convex, and so can be optimized over efficiently. We’ll say more about all
this later, but let’s take it on faith for now that the vector program (9)–(13) can be solved
in polynomial time.

4.3 `2
2 Metrics

Fix an instance of the Maximum Cut problem and let v̂ denote an optimal solution to (9)–
(13). As shorthand, write

x̂ij =
1

4
‖v̂i − v̂j‖2 (14)

for every pair i, j ∈ V of distinct vertices. Note that all of the x̂ij’s lie in [0, 1].
From the constraints (13), we know that the x̂ij’s, viewed as pairwise distances, form a

metric. But we also know more: these distances arise as the squared Euclidean distances
between pairs of points in Rd for some d. (For us, these points are the v̂i’s computed by the
vector relaxation.) Such metrics are called `22 metrics.11 It is not automatic that the squared

10Strictly speaking, since the optimal solution might be irrational, we only solve it up to arbitrarily small
error.

11Pronounced “ell-too squared.”
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Euclidean distances of points in Rn form a metric (even though their “normal” Euclidean
distances do).12 Not every metric is an `22 metric (can you find an example?). The fact that
`22 metrics are not as general as arbitrary metrics raises the hope that Bourgain’s theorem
(Theorem 3.3) can be improved for this subclass of metrics. This is indeed true, as proved
roughly 10 years ago.

Theorem 4.1 ([1]) For every n-point `22 metric space (X, d), there exists a randomized
algorithm (outputting a random partition (A,B) of X) and a scaling parameter σ > 0 such
that, for all distinct pairs i, j ∈ X,

Pr[i, j on different sides of (A,B)] ∈ σ ·
[
d(i, j)

α
, d(i, j)

]
,

where α = O(
√

log n log log n).

The proof of Theorem 4.1 is outside the scope of this course. Most people believe that
the annoying log log n factor should be removable, and that the optimal guarantee has α =
Θ(
√

log n).13

We’re not looking to apply Theorem 4.1 directly to the metric defined by the x̂ij’s, since
this only implies part (i) of the analog of Lemma 3.1. So we need an analog of Proposition 3.2.

Proposition 4.2 Fix an instance of the Maximum Cut problem, a cut C = (A,B), and
a feasible solution v̂ to the vector programming relaxation (9)–(13) with induced `22 metric x̂
defined as in (14). For distinct i, j ∈ V , define

ŷij =

{
x̂ij if i, j are on the same side of C;

1− x̂ij if i, j are on different sides of C.

Then ŷ is also an `22 metric.

Proof: As in the proof of Proposition 4.2, the constraints (12) and (13) imply that ŷ is a
metric. To prove that it is in fact an `22 metric, we need to exhibit an embedding of the
vertices V into Rd (for some d) such that the ŷij’s arise as squared Euclidean distances. To
this end, define

ûi =

{
v̂i if i ∈ A;
−v̂i if i ∈ B.

We leave it to you to check that

ŷij =
1

4
‖ûi − ûj‖2

for every distinct i, j ∈ V , which proves that ŷ indeed defines an `22 metric. �

12For example, consider the points x = 1, y = 2, and z = 3 in R. The squared Euclidean distance between
x and y is 1; the same for y and z. But the squared Euclidean distance between x and z is 4, a violation of
the triangle inequality.

13Very recently, a lower bound of Ω(
√

log n) for a worst-case `22 metric was proved in [5].
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4.4 Better Exact Recovery

Applying Theorem 4.1 to the `22 metric defined by ŷ in Proposition 4.2, we obtain an analog
of Lemma 3.1.

Lemma 4.3 Fix an instance of the Maximum Cut problem, with F ∗ the edges cut in
the optimal cut, and v̂ the optimal solution to the vector programming relaxation (9)–(13).
Then there exists a randomized algorithm (outputting a random cut (A,B)) and a scaling
parameter σ > 0 such that:

(i) for every edge e = (i, j) /∈ F ∗,

Pr[e cut by (A,B)] ≥ σ ·
1
4
‖vi − vj‖2

α
,

where α = Θ(
√

log n log log n);

(ii) for every edge e = (i, j) ∈ F ∗,

Pr[e not cut by (A,B)] ≤ σ · (1− 1
4
‖vi − vj‖2);

(iii) the rounding algorithm is deterministic (i.e., always outputs the same cut) if and only
if v̂ is integral.

Part (iii) follows from inspection of the randomized algorithm in the proof of Theorem 4.1.
By v̂ being “integral,” we mean that there exists antipodal unit vectors w,−w such that
v̂i ∈ {w,−w} for every i ∈ V , in which case v̂ can be immediately interpreted as a cut with
the same objective function value.

Just as Lemma 3.1 implies Theorem 2.1, Lemma 4.3 implies the following.

Theorem 4.4 ([4]) There is a constant c > 0 such that: in every (c
√

log n log log n)-
perturbation-stable instance of the Maximum Cut problem with n vertices, every optimal
solution of the vector program (9)–(13) is integral.

We should again ask, can we do better? Not by much, it would seem. There are examples
of O(

√
log n)-perturbation-stable instances of Maximum Cut for which the optimal solution

to the vector program (9)–(13) is not integral [4]. There is even evidence that no polynomial-
time algorithm can always recover an optimal solution in γ-perturbation-stable instances,
for arbitrarily large constants γ (see Homework #4).
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