
Algorithms Illuminated
Part 1: The Basics

Tim Roughgarden

c� 2017 by Tim Roughgarden

All rights reserved. No portion of this book may be reproduced in any form
without permission from the publisher, except as permitted by U. S. copyright
law.

Printed in the United States of America

First Edition

Cover image: Stanza, by Andrea Belag

ISBN: 978-0-9992829-0-8 (Paperback)
ISBN: 978-0-9992829-1-5 (ebook)

Library of Congress Control Number: 2017914282

Soundlikeyourself Publishing, LLC
San Francisco, CA
tim.roughgarden@gmail.com
www.algorithmsilluminated.org

Contents

Preface vii

1 Introduction 1
1.1 Why Study Algorithms? 1
1.2 Integer Multiplication 3
1.3 Karatsuba Multiplication 6
1.4 MergeSort: The Algorithm 12
1.5 MergeSort: The Analysis 18
1.6 Guiding Principles for the Analysis of Algorithms 26
Problems 33

2 Asymptotic Notation 36
2.1 The Gist 36
2.2 Big-O Notation 45
2.3 Two Basic Examples 47
2.4 Big-Omega and Big-Theta Notation 50
2.5 Additional Examples 54
Problems 57

3 Divide-and-Conquer Algorithms 60
3.1 The Divide-and-Conquer Paradigm 60
3.2 Counting Inversions in O(n log n) Time 61
3.3 Strassen’s Matrix Multiplication Algorithm 71

*3.4 An O(n log n)-Time Algorithm for the Closest Pair 77
Problems 90

4 The Master Method 92
4.1 Integer Multiplication Revisited 92
4.2 Formal Statement 95
4.3 Six Examples 97

v

vi Contents

*4.4 Proof of the Master Method 103
Problems 114

5 QuickSort 117
5.1 Overview 117
5.2 Partitioning Around a Pivot Element 121
5.3 The Importance of Good Pivots 128
5.4 Randomized QuickSort 132

*5.5 Analysis of Randomized QuickSort 135
*5.6 Sorting Requires ⌦(n log n) Comparisons 145
Problems 151

6 Linear-Time Selection 155
6.1 The RSelect Algorithm 155

*6.2 Analysis of RSelect 163
*6.3 The DSelect Algorithm 167
*6.4 Analysis of DSelect 172
Problems 180

A Quick Review of Proofs By Induction 183
A.1 A Template for Proofs by Induction 183
A.2 Example: A Closed-Form Formula 184
A.3 Example: The Size of a Complete Binary Tree 185

B Quick Review of Discrete Probability 186
B.1 Sample Spaces 186
B.2 Events 187
B.3 Random Variables 189
B.4 Expectation 190
B.5 Linearity of Expectation 192
B.6 Example: Load Balancing 195

Index 199

Preface

This book is the first of a four-part series based on my online algorithms
courses that have been running regularly since 2012, which in turn
are based on an undergraduate course that I’ve taught many times at
Stanford University.

What WeÕll Cover

Algorithms Illuminated, Part 1 provides an introduction to and basic
literacy in the following four topics.

Asymptotic analysis and big-O notation. Asymptotic notation
provides the basic vocabulary for discussing the design and analysis
of algorithms. The key concept here is “big-O” notation, which is a
modeling choice about the granularity with which we measure the
running time of an algorithm. We’ll see that the sweet spot for clear
high-level thinking about algorithm design is to ignore constant factors
and lower-order terms, and to concentrate on how an algorithm’s
performance scales with the size of the input.

Divide-and-conquer algorithms and the master method.
There’s no silver bullet in algorithm design, no single problem-solving
method that cracks all computational problems. However, there are
a few general algorithm design techniques that find successful ap-
plication across a range of different domains. In this part of the
series, we’ll cover the “divide-and-conquer” technique. The idea is
to break a problem into smaller subproblems, solve the subproblems
recursively, and then quickly combine their solutions into one for the
original problem. We’ll see fast divide-and-conquer algorithms for
sorting, integer and matrix multiplication, and a basic problem in
computational geometry. We’ll also cover the master method, which is

vii

viii Preface

a powerful tool for analyzing the running time of divide-and-conquer
algorithms.

Randomized algorithms. A randomized algorithm “flips coins” as
it runs, and its behavior can depend on the outcomes of these coin
flips. Surprisingly often, randomization leads to simple, elegant, and
practical algorithms. The canonical example is randomized QuickSort,
and we’ll explain this algorithm and its running time analysis in detail.
We’ll see further applications of randomization in Part 2.

Sorting and selection. As a byproduct of studying the first three
topics, we’ll learn several famous algorithms for sorting and selection,
including MergeSort, QuickSort, and linear-time selection (both ran-
domized and deterministic). These computational primitives are so
blazingly fast that they do not take much more time than that needed
just to read the input. It’s important to cultivate a collection of such
“for-free primitives,” both to apply directly to data and to use as the
building blocks for solutions to more difficult problems.

For a more detailed look into the book’s contents, check out the
“Upshot” sections that conclude each chapter and highlight the most
important points.

Topics covered in the other three parts. Algorithms Illumi-

nated, Part 2 covers data structures (heaps, balanced search trees,
hash tables, bloom filters), graph primitives (breadth- and depth-first
search, connectivity, shortest paths), and their applications (rang-
ing from deduplication to social network analysis). Part 3 focuses
on greedy algorithms (scheduling, minimum spanning trees, cluster-
ing, Huffman codes) and dynamic programming (knapsack, sequence
alignment, shortest paths, optimal search trees). Part 4 is all about
NP -completeness, what it means for the algorithm designer, and
strategies for coping with computationally intractable problems, in-
cluding the analysis of heuristics and local search.

Skills YouÕll Learn

Mastering algorithms takes time and effort. Why bother?

Become a better programmer. You’ll learn several blazingly fast
subroutines for processing data and several useful data structures for

Preface ix

organizing data that can be deployed directly in your own programs.
Implementing and using these algorithms will stretch and improve
your programming skills. You’ll also learn general algorithm design
paradigms that are relevant for many different problems across differ-
ent domains, as well as tools for predicting the performance of such
algorithms. These “algorithmic design patterns” can help you come
up with new algorithms for problems that arise in your own work.

Sharpen your analytical skills. You’ll get lots of practice describ-
ing and reasoning about algorithms. Through mathematical analysis,
you’ll gain a deep understanding of the specific algorithms and data
structures covered in these books. You’ll acquire facility with sev-
eral mathematical techniques that are broadly useful for analyzing
algorithms.

Think algorithmically. After learning about algorithms it’s hard
not to see them everywhere, whether you’re riding an elevator, watch-
ing a flock of birds, managing your investment portfolio, or even
watching an infant learn. Algorithmic thinking is increasingly useful
and prevalent in disciplines outside of computer science, including
biology, statistics, and economics.

Literacy with computer scienceÕs greatest hits. Studying al-
gorithms can feel like watching a highlight reel of many of the greatest
hits from the last sixty years of computer science. No longer will you
feel excluded at that computer science cocktail party when someone
cracks a joke about Dijkstra’s algorithm. After reading these books,
you’ll know exactly what they mean.

Ace your technical interviews. Over the years, countless stu-
dents have regaled me with stories about how mastering the concepts
in these books enabled them to ace every technical interview question
they were ever asked.

How These Books Are Di!erent

This series of books has only one goal: to teach the basics of algorithms

in the most accessible way possible. Think of them as a transcript
of what an expert algorithms tutor would say to you over a series of
one-on-one lessons.

x Preface

There are a number of excellent more traditional and more encyclo-
pedic textbooks on algorithms, any of which usefully complement this
book series with additional details, problems, and topics. I encourage
you to explore and find your own favorites. There are also several
books that, unlike these books, cater to programmers looking for
ready-made algorithm implementations in a specific programming
language. Many such implementations are freely available on the Web
as well.

Who Are You?

The whole point of these books and the online courses they are based
on is to be as widely and easily accessible as possible. People of all
ages, backgrounds, and walks of life are well represented in my online
courses, and there are large numbers of students (high-school, college,
etc.), software engineers (both current and aspiring), scientists, and
professionals hailing from all corners of the world.

This book is not an introduction to programming, and ideally
you’ve acquired basic programming skills in a standard language (like
Java, Python, C, Scala, Haskell, etc.). For a litmus test, check out
Section 1.4—if it makes sense, you’ll be fine for the rest of the book.
If you need to beef up your programming skills, there are several
outstanding free online courses that teach basic programming.

We also use mathematical analysis as needed to understand
how and why algorithms really work. The freely available lecture
notes Mathematics for Computer Science, by Eric Lehman and Tom
Leighton, are an excellent and entertaining refresher on mathematical
notation (like

P
and 8), the basics of proofs (induction, contradiction,

etc.), discrete probability, and much more.1 Appendices A and B also
provide quick reviews of proofs by induction and discrete probability,
respectively. The starred sections are the most mathematically intense
ones. The math-phobic or time-constrained reader can skip these on
a first reading without loss of continuity.

Additional Resources

These books are based on online courses that are currently running
on the Coursera and Stanford Lagunita platforms. There are several

1http://www.boazbarak.org/cs121/LehmanLeighton.pdf .

Preface xi

resources available to help you replicate as much of the online course
experience as you like.

Videos. If you’re more in the mood to watch and listen than
to read, check out the YouTube video playlists available from
www.algorithmsilluminated.org . These videos cover all of the top-
ics of this book series. I hope they exude a contagious enthusiasm for
algorithms that, alas, is impossible to replicate fully on the printed
page.

Quizzes. How can you know if you’re truly absorbing the concepts
in this book? Quizzes with solutions and explanations are scattered
throughout the text; when you encounter one, I encourage you to
pause and think about the answer before reading on.

End-of-chapter problems. At the end of each chapter you’ll find
several relatively straightforward questions to test your understanding,
followed by harder and more open-ended challenge problems. Solutions
to these end-of-chapter problems are not included here, but readers
can interact with me and each other about them through the book’s
discussion forum (see below).

Programming problems. Many of the chapters conclude with
a suggested programming project, where the goal is to develop a
detailed understanding of an algorithm by creating your own working
implementation of it. Data sets, along with test cases and their
solutions, can be found at www.algorithmsilluminated.org .

Discussion forums. A big reason for the success of online courses
is the opportunities they provide for participants to help each other
understand the course material and debug programs through discus-
sion forums. Readers of these books have the same opportunity, via
the forums available from www.algorithmsilluminated.org .

Acknowledgments

These books would not exist without the passion and hunger supplied
by the thousands of participants in my algorithms courses over the
years, both on-campus at Stanford and on online platforms. I am par-
ticularly grateful to those who supplied detailed feedback on an earlier
draft of this book: Tonya Blust, Yuan Cao, Jim Humelsine, Bayram

xii Preface

Kuliyev, Patrick Monkelban, Kyle Schiller, Nissanka Wickremasinghe,
and Daniel Zingaro.

I always appreciate suggestions and corrections from readers, which
are best communicated through the discussion forums mentioned
above.

Stanford University Tim Roughgarden
Stanford, California September 2017

Chapter 1

Introduction

The goal of this chapter is to get you excited about the study of
algorithms. We begin by discussing algorithms in general and why
they’re so important. Then we use the problem of multiplying two
integers to illustrate how algorithmic ingenuity can improve on more
straightforward or naive solutions. We then discuss the MergeSort
algorithm in detail, for several reasons: it’s a practical and famous
algorithm that you should know; it’s a good warm-up to get you ready
for more intricate algorithms; and it’s the canonical introduction to
the “divide-and-conquer” algorithm design paradigm. The chapter
concludes by describing several guiding principles for how we’ll analyze
algorithms throughout the rest of the book.

1.1 Why Study Algorithms?

Let me begin by justifying this book’s existence and giving you some
reasons why you should be highly motivated to learn about algorithms.
So what is an algorithm, anyway? It’s a set of well-defined rules—a
recipe, in effect—for solving some computational problem. Maybe
you have a bunch of numbers and you want to rearrange them so that
they’re in sorted order. Maybe you have a road map and you want
to compute the shortest path from some origin to some destination.
Maybe you need to complete several tasks before certain deadlines,
and you want to know in what order you should finish the tasks so
that you complete them all by their respective deadlines.

So why study algorithms?

Important for all other branches of computer science. First,
understanding the basics of algorithms and the closely related field
of data structures is essential for doing serious work in pretty much
any branch of computer science. For example, at Stanford University,

1

2 Introduction

every degree the computer science department offers (B.S., M.S., and
Ph.D.) requires an algorithms course. To name just a few examples:

1. Routing protocols in communication networks piggyback on
classical shortest path algorithms.

2. Public-key cryptography relies on efficient number-theoretic
algorithms.

3. Computer graphics requires the computational primitives sup-
plied by geometric algorithms.

4. Database indices rely on balanced search tree data structures.

5. Computational biology uses dynamic programming algorithms
to measure genome similarity.

And the list goes on.

Driver of technological innovation. Second, algorithms play a
key role in modern technological innovation. To give just one obvious
example, search engines use a tapestry of algorithms to efficiently
compute the relevance of various Web pages to a given search query.
The most famous such algorithm is the PageRankalgorithm currently
in use by Google. Indeed, in a December 2010 report to the United
States White House, the President’s council of advisers on science
and technology wrote the following:

“Everyone knows Moore’s Law –– a prediction made in
1965 by Intel co-founder Gordon Moore that the density
of transistors in integrated circuits would continue to
double every 1 to 2 years. . . in many areas, performance
gains due to improvements in algorithms have vastly
exceeded even the dramatic performance gains due to
increased processor speed.”1

1Excerpt from Report to the President and Congress: Designing a Digital
Future, December 2010 (page 71).

1.2 Integer Multiplication 3

Lens on other sciences. Third, although this is beyond the scope
of this book, algorithms are increasingly used to provide a novel
“lens” on processes outside of computer science and technology. For
example, the study of quantum computation has provided a new
computational viewpoint on quantum mechanics. Price fluctuations
in economic markets can be fruitfully viewed as an algorithmic process.
Even evolution can be thought of as a surprisingly effective search
algorithm.

Good for the brain. Back when I was a student, my favorite classes
were always the challenging ones that, after I struggled through them,
left me feeling a few IQ points smarter than when I started. I hope
this material provides a similar experience for you.

Fun! Finally, I hope that by the end of the book you can see why
the design and analysis of algorithms is simply fun. It’s an endeavor
that requires a rare blend of precision and creativity. It can certainly
be frustrating at times, but it’s also highly addictive. And let’s not
forget that you’ve been learning about algorithms since you were a
little kid.

1.2 Integer Multiplication

1.2.1 Problems and Solutions

When you were in third grade or so, you probably learned an algorithm
for multiplying two numbers—a well-defined set of rules for trans-
forming an input (two numbers) into an output (their product). It’s
important to distinguish between two different things: the description
of the problem being solved, and that of the method of solution (that is,
the algorithm for the problem). In this book, we’ll repeatedly follow
the pattern of first introducing a computational problem (the inputs
and desired output), and then describing one or more algorithms that
solve the problem.

1.2.2 The Integer Multiplication Problem

In the integer multiplication problem, the input is two n-digit numbers,
which we’ll call x and y. The length n of x and y could be any positive
integer, but I encourage you to think of n as large, in the thousands or

4 Introduction

even more.2 (Perhaps you’re implementing a cryptographic application
that must manipulate very large numbers.) The desired output in the
integer multiplication problem is just the product x · y.

Problem: Integer Multiplication

Input: Two n-digit nonnegative integers, x and y.

Output: The product x · y.

1.2.3 The Grade-School Algorithm

Having defined the computational problem precisely, we describe an
algorithm that solves it—the same algorithm you learned in third
grade. We will assess the performance of this algorithm through the
number of “primitive operations” it performs, as a function of the
number of digits n in each input number. For now, let’s think of a
primitive operation as any of the following: (i) adding two single-digit
numbers; (ii) multiplying two single-digit numbers; or (iii) adding a
zero to the beginning or end of a number.

To jog your memory, consider the concrete example of multiplying
x = 5678 and y = 1234 (so n = 4). See also Figure 1.1. The algorithm
first computes the “partial product” of the first number and the last
digit of the second number 5678 · 4 = 22712. Computing this partial
product boils down to multiplying each of the digits of the first number
by 4, and adding in “carries” as necessary.3 When computing the next
partial product (5678 · 3 = 17034), we do the same thing, shifting the
result one digit to the left, effectively adding a “0” at the end. And so
on for the final two partial products. The final step is to add up all
the partial products.

Back in third grade, you probably accepted that this algorithm is
correct, meaning that no matter what numbers x and y you start with,
provided that all intermediate computations are done properly, it
eventually terminates with the product x · y of the two input numbers.

2If you want to multiply numbers with different lengths (like 1234 and 56),
a simple hack is to just add some zeros to the beginning of the smaller number
(for example, treat 56 as 0056). Alternatively, the algorithms we’ll discuss can be
modified to accommodate numbers with different lengths.

3
8 · 4 = 32, carry the 3, 7 · 4 = 28, plus 3 is 31, carry the 3, . . .

1.2 Integer Multiplication 5

5678
× 1234
22712

17034
11356
5678
7006652

��2n operations
(per row)

n rows

Figure 1.1: The grade-school integer multiplication algorithm.

That is, you’re never going to get a wrong answer, and the algorithm
can’t loop forever.

1.2.4 Analysis of the Number of Operations

Your third-grade teacher might not have discussed the number of
primitive operations needed to carry out this procedure to its con-
clusion. To compute the first partial product, we multiplied 4 times
each of the digits 5, 6, 7, 8 of the first number. This is 4 primitive
operations. We also performed a few additions because of the carries.
In general, computing a partial product involves n multiplications
(one per digit) and at most n additions (at most one per digit), for
a total of at most 2n primitive operations. There’s nothing special
about the first partial product: every partial product requires at most
2n operations. Since there are n partial products—one per digit of the
second number—computing all of them requires at most n · 2n = 2n2

primitive operations. We still have to add them all up to compute
the final answer, but this takes a comparable number of operations
(at most another 2n2). Summarizing:

total number of operations  constant| {z }
=4

·n2.

Thinking about how the amount of work the algorithm performs
scales as the input numbers grow bigger and bigger, we see that the
work required grows quadratically with the number of digits. If you
double the length of the input numbers, the work required jumps by

6 Introduction

a factor of 4. Quadruple their length and it jumps by a factor of 16,
and so on.

1.2.5 Can We Do Better?

Depending on what type of third-grader you were, you might well
have accepted this procedure as the unique or at least optimal way
to multiply two numbers. If you want to be a serious algorithm
designer, you’ll need to grow out of that kind of obedient timidity.
The classic algorithms book by Aho, Hopcroft, and Ullman, after
iterating through a number of algorithm design paradigms, has this
to say:

“Perhaps the most important principle for the good
algorithm designer is to refuse to be content.”4

Or as I like to put it, every algorithm designer should adopt the
mantra:

Can we do better?

This question is particularly apropos when you’re faced with a naive
or straightforward solution to a computational problem. In the third
grade, you might not have asked if one could do better than the
straightforward integer multiplication algorithm. Now is the time to
ask, and answer, this question.

1.3 Karatsuba Multiplication

The algorithm design space is surprisingly rich, and there are certainly
other interesting methods of multiplying two integers beyond what
you learned in the third grade. This section describes a method called
Karatsuba multiplication.5

4Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms , Addison-Wesley, 1974, page 70.

5Discovered in 1960 by Anatoly Karatsuba, who at the time was a 23-year-old
student.

1.3 Karatsuba Multiplication 7

1.3.1 A Concrete Example

To get a feel for Karatsuba multiplication, let’s re-use our previous
example with x = 5678 and y = 1234. We’re going to execute a
sequence of steps, quite different from the grade-school algorithm,
culminating in the product x · y. The sequence of steps should strike
you as very mysterious, like pulling a rabbit out of a hat; later in
the section we’ll explain exactly what Karatsuba multiplication is
and why it works. The key point to appreciate now is that there’s
a dazzling array of options for solving computational problems like
integer multiplication.

First, to regard the first and second halves of x as numbers in their
own right, we give them the names a and b (so a = 56 and b = 78).
Similarly, c and d denote 12 and 34, respectively (Figure 1.2).

5678
× 1234

a b

c d

Figure 1.2: Thinking of 4-digit numbers as pairs of double-digit numbers.

Next we’ll perform a sequence of operations that involve only the
double-digit numbers a, b, c, and d, and finally collect all the terms
together in a magical way that results in the product of x and y.

Step 1: Compute a · c = 56 · 12, which is 672 (as you’re welcome to
check).

Step 2: Compute b · d = 78 · 34 = 2652.

The next two steps are still more inscrutable.

Step 3: Compute (a+ b) · (c+ d) = 134 · 46 = 6164.

Step 4: Subtract the results of the first two steps from the result
of the third step: 6164� 672� 2652 = 2840.

8 Introduction

Finally, we add up the results of steps 1, 2, and 4, but only after
adding four trailing zeroes to the answer in step 1 and 2 trailing zeroes
to the answer in step 4.

Step 5: Compute 10

4 · 672 + 10

2 · 2840 + 2652 =

6720000 + 284000 + 2652 = 70066552.

This is exactly the same (correct) result computed by the grade-
school algorithm in Section 1.2!

You should not have any intuition about what just happened.
Rather, I hope that you feel some mixture of bafflement and intrigue,
and appreciate the fact that there seem to be fundamentally different
algorithms for multiplying integers than the one you learned as a kid.
Once you realize how rich the space of algorithms is, you have to
wonder: can we do better than the third-grade algorithm? Does the
algorithm above already do better?

1.3.2 A Recursive Algorithm

Before tackling full-blown Karatsuba multiplication, let’s explore a
simpler recursive approach to integer multiplication.6 A recursive
algorithm for integer multiplication presumably involves multiplica-
tions of numbers with fewer digits (like 12, 34, 56, and 78 in the
computation above).

In general, a number x with an even number n of digits can be
expressed in terms of two n/2-digit numbers, its first half and second
half a and b:

x = 10

n/2 · a+ b.

Similarly, we can write

y = 10

n/2 · c+ d.

To compute the product of x and y, let’s use the two expressions
above and multiply out:

x · y = (10

n/2 · a+ b) · (10n/2 · c+ d)

= 10

n · (a · c) + 10

n/2 · (a · d+ b · c) + b · d. (1.1)

6I’m assuming you’ve heard of recursion as part of your programming back-
ground. A recursive procedure is one that invokes itself as a subroutine with a
smaller input, until a base case is reached.

1.3 Karatsuba Multiplication 9

Note that all of the multiplications in (1.1) are either between pairs
of n/2-digit numbers or involve a power of 10.7

The expression (1.1) suggests a recursive approach to multiplying
two numbers. To compute the product x · y, we compute the expres-
sion (1.1). The four relevant products (a · c, a · d, b · c, and b · d) all
concern numbers with fewer than n digits, so we can compute each of
them recursively. Once our four recursive calls come back to us with
their answers, we can compute the expression (1.1) in the obvious way:
tack on n trailing zeroes to a · c, add a · d and b · c (using grade-school
addition) and tack on n/2 trailing zeroes to the result, and finally add
these two expressions to b · d.8 We summarize this algorithm, which
we’ll call RecIntMult , in the following pseudocode.9

RecIntMult

Input: two n-digit positive integers x and y.
Output: the product x · y.
Assumption: n is a power of 2.

if n = 1 then // base case
compute x · y in one step and return the result

else // recursive case
a, b := first and second halves of x
c, d := first and second halves of y
recursively compute ac := a · c, ad := a · d,
bc := b · c, and bd := b · d

compute 10

n · ac+ 10

n/2 · (ad+ bc) + bd using
grade-school addition and return the result

Is the RecIntMult algorithm faster or slower than the grade-school
7For simplicity, we are assuming that n is a power of 2. A simple hack for

enforcing this assumption is to add an appropriate number of leading zeroes to x
and y, which at most doubles their lengths. Alternatively, when n is odd, it’s also
fine to break x and y into two numbers with almost equal lengths.

8Recursive algorithms also need one or more base cases, so that they don’t
keep calling themselves until the rest of time. Here, the base case is: if x and y
are 1-digit numbers, just multiply them in one primitive operation and return the
result.

9In pseudocode, we use “=” to denote an equality test, and “ :=” to denote a
variable assignment.

10 Introduction

algorithm? You shouldn’t necessarily have any intuition about this
question, and the answer will have to wait until Chapter 4.

1.3.3 Karatsuba Multiplication

Karatsuba multiplication is an optimized version of the RecIntMult
algorithm. We again start from the expansion (1.1) of x · y in terms
of a, b, c, and d. The RecIntMult algorithm uses four recursive calls,
one for each of the products in (1.1) between n/2-digit numbers. But
we don’t really care about a · d or b · c, except inasmuch as we care
about their sum a · d+ b · c. With only three quantities that we care
about—a · c, a · d+ b · c, and b · d—can we get away with only three
recursive calls?

To see that we can, first use two recursive calls to compute a · c
and b · d, as before.

Step 1: Recursively compute a · c.

Step 2: Recursively compute b · d.

Instead of recursively computing a·d or b·c, we recursively compute
the product of a+ b and c+ d.10

Step 3: Compute a + b and c + d (using grade-school addition),
and recursively compute (a+ b) · (c+ d).

The key trick in Karatsuba multiplication goes back to the early
19th-century mathematician Carl Friedrich Gauss, who was thinking
about multiplying complex numbers. Subtracting the results of the
first two steps from the result of the third step gives exactly what we
want, the middle coefficient in (1.1) of a · d+ b · c:

(a+ b) · (c+ d)| {z }
=a·c+a·d+b·c+b·d

�a · c� b · d = a · d+ b · c.

Step 4: Subtract the results of the first two steps from the result
of the third step to obtain a · d+ b · c.

The final step computes (1.1), as in the RecIntMult algorithm.
10The numbers a+ b and c+ d might have as many as (n/2) + 1 digits, but

the algorithm still works fine.

1.3 Karatsuba Multiplication 11

Step 5: Compute (1.1) by adding up the results of steps 1, 2, and
4, after adding 10

n trailing zeroes to the answer in step 1 and 10

n/2

trailing zeroes to the answer in step 4.

Karatsuba

Input: two n-digit positive integers x and y.
Output: the product x · y.
Assumption: n is a power of 2.

if n = 1 then // base case
compute x · y in one step and return the result

else // recursive case
a, b := first and second halves of x
c, d := first and second halves of y
compute p := a+ b and q := c+ d using
grade-school addition

recursively compute ac := a · c, bd := b · d, and
pq := p · q

compute adbc := pq � ac� bd using grade-school
addition

compute 10

n · ac+ 10

n/2 · adbc+ bd using
grade-school addition and return the result

Thus Karatsuba multiplication makes only three recursive calls! Sav-
ing a recursive call should save on the overall running time, but by
how much? Is the Karatsuba algorithm faster than the grade-school
multiplication algorithm? The answer is far from obvious, but it is an
easy application of the tools you’ll acquire in Chapter 4 for analyzing
the running time of such “divide-and-conquer” algorithms.

On Pseudocode

This book explains algorithms using a mixture of
high-level pseudocode and English (as in this section).
I’m assuming that you have the skills to translate
such high-level descriptions into working code in your
favorite programming language. Several other books

12 Introduction

and resources on the Web offer concrete implementa-
tions of various algorithms in specific programming
languages.

The first benefit of emphasizing high-level descrip-
tions over language-specific implementations is flexi-
bility: while I assume familiarity with some program-
ming language, I don’t care which one. Second, this
approach promotes the understanding of algorithms
at a deep and conceptual level, unencumbered by low-
level details. Seasoned programmers and computer
scientists generally think and communicate about al-
gorithms at a similarly high level.

Still, there is no substitute for the detailed under-
standing of an algorithm that comes from providing
your own working implementation of it. I strongly
encourage you to implement as many of the algo-
rithms in this book as you have time for. (It’s also a
great excuse to pick up a new programming language!)
For guidance, see the end-of-chapter Programming
Problems and supporting test cases.

1.4 MergeSort: The Algorithm

This section provides our first taste of analyzing the running time of
a non-trivial algorithm—the famous MergeSort algorithm.

1.4.1 Motivation

MergeSort is a relatively ancient algorithm, and was certainly known
to John von Neumann as early as 1945. Why begin a modern course
on algorithms with such an old example?

Oldie but a goodie. Despite being over 70 years old, MergeSort
is still one of the methods of choice for sorting. It’s used all the time
in practice, and is the standard sorting algorithm in a number of
programming libraries.

1.4 MergeSort: The Algorithm 13

Canonical divide-and-conquer algorithm. The “divide-and-
conquer” algorithm design paradigm is a general approach to solving
problems, with applications in many different domains. The basic
idea is to break your problem into smaller subproblems, solve the
subproblems recursively, and finally combine the solutions to the
subproblems into one for the original problem. MergeSort is an ideal
introduction to the divide-and-conquer paradigm, the benefits it offers,
and the analysis challenges it presents.

Calibrate your preparation. Our MergeSort discussion will give
you a good indication of whether your current skill set is a good match
for this book. My assumption is that you have the programming and
mathematical backgrounds to (with some work) translate the high-
level idea of MergeSort into a working program in your favorite
programming language and to follow our running time analysis of the
algorithm. If this and the next section make sense, then you are in
good shape for the rest of the book.

Motivates guiding principles for algorithm analysis. Our run-
ning time analysis of MergeSort exposes a number of more general
guiding principles, such as the quest for running time bounds that
hold for every input of a given size, and the importance of the rate
of growth of an algorithm’s running time (as a function of the input
size).

Warm-up for the master method. We’ll analyze MergeSort us-
ing the “recursion tree method,” which is a way of tallying up the
operations performed by a recursive algorithm. Chapter 4 builds on
these ideas and culminates with the “master method,” a powerful
and easy-to-use tool for bounding the running time of many differ-
ent divide-and-conquer algorithms, including the RecIntMult and
Karatsuba algorithms of Section 1.3.

1.4.2 Sorting

You probably already know the sorting problem and some algorithms
that solve it, but just so we’re all on the same page:

14 Introduction

Problem: Sorting

Input: An array of n numbers, in arbitrary order.

Output: An array of the same numbers, sorted from small-
est to largest.

For example, given the input array

5 4 1 8 7 2 6 3

the desired output array is

1 2 3 4 5 6 7 8

In the example above, the eight numbers in the input array are
distinct. Sorting isn’t really any harder when there are duplicates,
and it can even be easier. But to keep the discussion as simple as
possible, let’s assume—among friends—that the numbers in the input
array are always distinct. I strongly encourage you to think about
how our sorting algorithms need to be modified (if at all) to handle
duplicates.11

If you don’t care about optimizing the running time, it’s not
too difficult to come up with a correct sorting algorithm. Perhaps
the simplest approach is to first scan through the input array to
identify the minimum element and copy it over to the first element
of the output array; then do another scan to identify and copy over
the second-smallest element; and so on. This algorithm is called
SelectionSort . You may have heard of InsertionSort , which can
be viewed as a slicker implementation of the same idea of iteratively
growing a prefix of the sorted output array. You might also know
BubbleSort , in which you identify adjacent pairs of elements that

11In practice, there is often data (called the value) associated with each number
(which is called the key). For example, you might want to sort employee records
(with the name, salary, etc.), using social security numbers as keys. We focus on
sorting the keys, with the understanding that each key retains its associated data.

1.4 MergeSort: The Algorithm 15

are out of order, and perform repeated swaps until the entire array is
sorted. All of these algorithms have quadratic running times, meaning
that the number of operations performed on arrays of length n scales
with n2, the square of the input length. Can we do better? By using
the divide-and-conquer paradigm, the MergeSort algorithm improves
dramatically over these more straightforward sorting algorithms.12

1.4.3 An Example

The easiest way to understand MergeSort is through a picture of
a concrete example (Figure 1.3). We’ll use the input array from
Section 1.4.2.

1 2 3 4 5 6 7 8

5 4 1 8 7 2 6 3

5 4 1 8 7 2 6 3

1 4 5 8 2 3 6 7

divide

.

.

.

.

.

.

.

.
recursive calls

merge

Figure 1.3: A bird’s-eye view of MergeSort on a concrete example.

As a recursive divide-and-conquer algorithm, MergeSort calls itself
on smaller arrays. The simplest way to decompose a sorting problem
into smaller sorting problems is to break the input array in half. The
first and second halves are each sorted recursively. For example, in

12While generally dominated by MergeSort, InsertionSort is still useful in
practice in certain cases, especially for small input sizes.

16 Introduction

Figure 1.3, the first and second halves of the input array are {5, 4, 1, 8}
and {7, 2, 6, 3}. By the magic of recursion (or induction, if you prefer),
the first recursive call correctly sorts the first half, returning the array
{1, 4, 5, 8}. The second recursive call returns the array {2, 3, 6, 7}.
The final “merge” step combines these two sorted arrays of length 4
into a single sorted array of all 8 numbers. Details of this step are
given below, but the idea is to walk indices down each of the sorted
subarrays, populating the output array from left to right in sorted
order.

1.4.4 Pseudocode

The picture in Figure 1.3 suggests the following pseudocode, with
two recursive calls and a merge step, for the general problem. As
usual, our description cannot necessarily be translated line by line
into working code (though it’s pretty close).

MergeSort

Input: array A of n distinct integers.
Output: array with the same integers, sorted from
smallest to largest.

// ignoring base cases
C := recursively sort first half of A
D := recursively sort second half of A
return Merge(C,D)

There are several omissions from the pseudocode that deserve
comment. As a recursive algorithm, there should also be one or
more base cases, where there is no further recursion and the answer
is returned directly. So if the input array A contains only 0 or 1
elements, MergeSort returns it (it is already sorted). The pseudocode
does not detail what “first half” and “second half” mean when n is
odd, but the obvious interpretation (with one “half” having one more
element than the other) works fine. Finally, the pseudocode ignores
the implementation details of how to actually pass the two subarrays
to their respective recursive calls. These details depend somewhat
on the programming language. The point of high-level pseudocode is

1.4 MergeSort: The Algorithm 17

to ignore such details and focus on the concepts that transcend any
particular programming language.

1.4.5 The MergeSubroutine

How should we implement the Merge step? At this point, the two
recursive calls have done their work and we have in our possession two
sorted subarrays C and D of length n/2. The idea is to traverse both
the sorted subarrays in order and populate the output array from left
to right in sorted order.13

Merge

Input: sorted arrays C and D (length n/2 each).
Output: sorted array B (length n).
Simplifying assumption: n is even.

1 i := 1

2 j := 1

3 for k := 1 to n do
4 if C[i] < D[j] then
5 B[k] := C[i] // populate output array
6 i := i+ 1 // increment i

7 else // D[j] < C[i]
8 B[k] := D[j]
9 j := j + 1

We traverse the output array using the index k, and the sorted
subarrays with the indices i and j. All three arrays are traversed
from left to right. The for loop in line 3 implements the pass over
the output array. In the first iteration, the subroutine identifies the
minimum element in either C or D and copies it over to the first
position of the output array B. The minimum element overall is either
in C (in which case it’s C[1], since C is sorted) or in D (in which case
it’s D[1], since D is sorted). Advancing the appropriate index (i or j)

13We number our array entries beginning with 1 (rather than 0), and use
the syntax “A[i]” for the ith entry of an array A. These details vary across
programming languages.

18 Introduction

effectively removes from further consideration the element just copied,
and the process is then repeated to identify the smallest element
remaining in C or D (the second-smallest overall). In general, the
smallest element not yet copied over to B is either C[i] or D[j]; the
subroutine explicitly checks to see which one is smaller and proceeds
accordingly. Since every iteration copies over the smallest element still
under consideration in C or D, the output array is indeed populated
in sorted order.

As usual, our pseudocode is intentionally a bit sloppy, to emphasize
the forest over the trees. A full implementation should also keep track
of when the traversal of C or D falls off the end, at which point
the remaining elements of the other array are copied into the final
entries of B (in order). Now is a good time to work through your own
implementation of the MergeSort algorithm.

1.5 MergeSort: The Analysis

What’s the running time of the MergeSort algorithm, as a function of
the length n of the input array? Is it faster than more straightforward
methods of sorting, such as SelectionSort , InsertionSort , and
BubbleSort ? By “running time,” we mean the number of lines of code
executed in a concrete implementation of the algorithm. Think of
walking line by line through this implementation using a debugger,
one “primitive operation” at a time We’re interested in the number of
steps the debugger takes before the program completes.

1.5.1 Running Time of Merge

Analyzing the running time of the MergeSort algorithm is an intim-
idating task, as it’s a recursive algorithm that calls itself over and
over. So let’s warm up with the simpler task of understanding the
number of operations performed by a single invocation of the Merge
subroutine when called on two sorted arrays of length `/2 each. We
can do this directly, by inspecting the code in Section 1.4.5 (where n
corresponds to `). First, lines 1 and 2 each perform a initialization,
and we’ll count this as two operations. Then, we have a for loop that
executes a total of ` times. Each iteration of the loop performs a
comparison in line 4, an assignment in either line 5 or line 8, and
an increment in either line 6 or line 9. The loop index k also needs

1.5 MergeSort: The Analysis 19

to get incremented each loop iteration. This means that 4 primitive
operations are performed for each of the ` iterations of the loop.14

Totaling up, we conclude that the Mergesubroutine performs at most
4`+ 2 operations to merge two sorted arrays of length `/2 each. Let
me abuse our friendship further with a true but sloppy inequality that
will make our lives easier: for ` � 1, 4`+ 2  6`. That is, 6` is also
a valid upper bound on the number of operations performed by the
Mergesubroutine.

Lemma 1.1 (Running Time of Merge) For every pair of sorted

input arrays C,D of length `/2, the Merge subroutine performs at

most 6` operations.

On Lemmas, Theorems, and the Like

In mathematical writing, the most important techni-
cal statements are labeled theorems. A lemma is a
technical statement that assists with the proof of a
theorem (much as Mergeassists with the implementa-
tion of MergeSort). A corollary is a statement that
follows immediately from an already-proved result,
such as a special case of a theorem. We use the term
proposition for stand-alone technical statements that
are not particularly important in their own right.

1.5.2 Running Time of MergeSort

How can we go from the straightforward analysis of the Mergesubrou-
tine to an analysis of MergeSort, a recursive algorithm that spawns
further invocations of itself? Especially terrifying is the rapid prolifera-
tion of recursive calls, the number of which is blowing up exponentially
with the depth of the recursion. The one thing we have going for us
is the fact that every recursive call is passed an input substantially
smaller than the one we started with. There’s a tension between two

14One could quibble with the choice of 4. Does comparing the loop index k to
its upper bound also count as an additional operation each iteration, for a total
of 5? Section 1.6 explains why such differences in accounting don’t really matter.
So let’s agree, among friends, that it’s 4 primitive operations per iteration.

20 Introduction

competing forces: on the one hand, the explosion of different sub-
problems that need to be solved; and on the other, the ever-shrinking
inputs for which these subproblems are responsible. Reconciling these
two forces will drive our analysis of MergeSort. In the end, we’ll
prove the following concrete and useful upper bound on the number
of operations performed by MergeSort (across all its recursive calls).

Theorem 1.2 (Running Time of MergeSort) For every input ar-

ray of length n � 1, the MergeSort algorithm performs at most

6n log

2

n+ 6n

operations, where log

2

denotes the base-2 logarithm.

On Logarithms

Some students are unnecessarily frightened by the
appearance of a logarithm, which is actually a very
down-to-earth concept. For a positive integer n, log

2

n
just means the following: type n into a calculator,
and count the number of times you need to divide it
by 2 before the result is 1 or less.a For example, it
takes five divide-by-twos to bring 32 down to 1, so
log

2

32 = 5. Ten divide-by-twos bring 1024 down to 1,
so log

2

1024 = 10. These examples make it intuitively
clear that log

2

n is much less than n (compare 10 vs.
1024), especially as n grows large. A plot confirms
this intuition (Figure 1.4).

aTo be pedantic, log
2

n is not an integer if n is not a power
of 2, and what we have described is really log

2

n rounded up
to the nearest integer. We can ignore this minor distinction.

Theorem 1.2 is a win for the MergeSort algorithm and showcases
the benefits of the divide-and-conquer algorithm design paradigm. We
mentioned that the running times of simpler sorting algorithms, like
SelectionSort , InsertionSort , and BubbleSort , depend quadrat-

ically on the input size n, meaning that the number of operations
required scales as a constant times n2. In Theorem 1.2, one of these

