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Abstract. In this paper we present our work in progress towards obtain-
ing a Nelson-Oppen style combination for combining quantified theories,
where each individual component theory admits quantifier elimination.
We introduces the notion of good model for union theories, for which there
exists a simple quantifier elimination scheme that uses the elimination
procedures for individual component theories as black boxes. We show
that a good model exists for the union theory of dense linear order and
random graph, and it coincides with the Fraissé limit of the class of finite
graph with ordered vertices.

1 Introduction

In 1979, Nelson and Oppen [1] proposed a framework for combining decision
procedures on quantifier-free formulas: if theories T; and T, are stably infi-
nite, over disjoint signatures and stably infinite, then one can obtain a decision
procedure for the quantifier-free fragment of the union theory T; U T, using
the decision procedures for T; and T, as modules. Ever since the foundational
work of Nelson and Oppen, researchers have been asking the general question:
under what condition do we have a combination method for arbitrary first-order (not
necessarily quantifier-free) theories? Recently, a lot of progresses have been made
to relax the conditions on component theories to be combined [2, 3, 4], as well
as to obtain Nelson-Oppen like results for other combination problems such as
many-sorted logic [5], modal systems [6], and abstract interpreters [7].

In this paper we consider a restricted version of the question: providing
that two theories T; and T, both admit quantifier elimination, does the union
theory T; U T, also admit quantifier elimination? If it does, can we find an
elimination procedure for T; U T, using the elimination procedures for T; and
T, as modules?

Suppose for i € {1,2}, T; is an L; theory and ¢; is a conjunction of L;-literals.
To eliminate the existential quantifier in Ay(@1(x, y) A @2(¥, y)), it is desirable to
have
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However, Condition (1) does not hold in general, as shown by the following
example.

Example 1 (Incompatible Dense Linear Orders) Fori € {1, 2}, let L; be the signa-
ture {<;}, and let T; be the Li-theory of dense linear orders. Consider A = (A, <1, <z)
where A is the set of rational numbers, and <1, <y are such that for any u,v € A,
u <1 viffv <o uiffu < v. Obviously A is a model of T, U T,. However, for any a € A,
AEIx(x <y a), AEx(x <pa), but A x(x <1 aAx <3 a).

In this paper we consider only the models of T1 UT; that satisfy Condition (1).
Using a priority argument, we show that such models do exist for the union
theory of dense linear order and random graph, and hence we obtain a decision
procedure for the union theory restricted to those models.

Linear orders and graphs are fundamental objects in computer science and
mathematics. Dense linear order (countable, without endpoints) is essentially
the structure of rational numbers under natural order. Random graph captures
the almost sure theory of finite graphs [8], i.e., {¢ | lim,—e pu(¢p) = 1}, where
pu(¢) is the probability of a graph with n vertices satisfying sentence ¢. Also
dense linear order (without endpoints) is the Fraissé limit of the class of all
finite linear orders and random graph is the Fraissé limit of the class of all finite
graphs [9]. We show that by combining the theory of these two Fraissé limits,
one can obtain the Fraissé limit for all finite models of the combined theory
of linear orders and graphs. This itself is an interesting phenomenon in theory
combination and we believe that it deserves further investigations.

Paper Organization Section 2 provides basic notions and terminology in model
theory, and introduces some notations in our presentation. Section 3 proves
the existence of good models for the union theory of dense linear order and
random graphs. Section 4 provides a further discussion on the properties of
good models. Section 5 concludes with a discussion of complexity and future
work.

2 Preliminary

In this section we introduce notions and terminology used in this paper. We
assume the first-order syntactic notions of variables, parameters and quantifiers,
and semantic notions of structures, satisfiability and validity as in [10].

Basic Notations. We use IN to denote the set of natural numbers, and Q the
set of rational numbers. We use u to denote the sequence uj, ..., u, (for some
n > 0). We abuse notation a bit by also using u to denote the set that consists
of elements in the sequence. For example, by u € S we mean that all elements
in u are contained in S. The meaning should be clear from the context. Also by
(4;)i<w We mean an infinite enumeration of the form ug, u, .. ..

By default we use calligraphic letters A, B,C, ..., to denote structures and
the capital letters A, B, C, ... ., to denote the corresponding domains. For example,



a model of graph is denoted by G = (G, E9). When there is no confusion, we
drop superscripts on function symbols and predicate symbols.

We use A = B to mean that A and B are isomorphic. We use A C B
to mean that A properly embeds into B, i.e.,, A is isomorphic to a proper
substructure of 8. For a structure A and a tuple a € A, whenever we use 4 in
variable substitution, it should be understood that the underlying language is
extended with constants 4, each of which names itself in the extended structure
A = (A,a).

Dense Linear Order. A dense linear order (DLO) without endpoints is a linear order
D = (D, <) such that there is no minimal or maximal element and

Vx,yeD (x<y—-3Jz(x<zAz<y)). (2)

Let Lp denote the language of D and Ty the theory of D. Itis well-known that Tp
is w-categorical, complete and decidable, and it admits quantifier elimination.
[9]. In particular, the linear order on rational numbers, denoted by Q = (Q, <Q),
is the unique countable model of Tp up to isomorphism. In the paper we identify
Q with D.

Lemma 1. For any conjunction of positive Lg-literals ®@(x,y), where y does not
appear in equalities, for any a € Q, if Q = yD(a, y), then there are infinitely many
b € Q such that Q E ©(@a, b).

Proof. Let O(x, y) be a conjunction of positive Lg-literals, where y does not appear
in equalities, and let @ be any tuple in Q. Note that ®(g, y) states that y is
contained in the intersection of finitely many open intervals whose boundaries
are elements in a. Since the intersection of finitely many open intervals is an
open interval, if there is a solution of @(g, y), then by the denseness property of
Q, there exist infinitely many such solutions. O

Random Graph. A Random Graph (RG) is a countable graph G = (G, E) such that
forany n,m > 0,

VX .V, Vyr . YV [/\/\xi Y — Elz[/\ E(x;,z) A —uE(yj,z)]] . (3
=1
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Let Lg denote the language of G and Tg the theory of random graph. Like Tp, Tg
is w-categorical, complete and decidable, and it admits quantifier elimination
[9]. The definition is in line with the standard construction of a random graph
whose edges are defined independently on pairs of vertices with probability 1.

Lemma 2. For any conjunction of Lg-literals O(X,y), where y does not appear in
equalities, for any a € G, if G | AyD(a, y), then there are infinitely many b € G such
that G = ©(a,b).



Proof. Let @(x,y) be a conjunction of Lg-literals, where y does not appear in
equalities, and leta = a4, ..., a, be any tuple in G. Then @(g, y) is of the form

n

/S\E(ﬂi/y) A /\ —E(aj, y) A /\y #b A D), (4)
i=1

j=s+1 beP

where P C 4, y does not appear in Q" and s < n. Since G E dyd(a, y), we have
Nizi Nj=ss1 i # ajand G | @' (@). Now take a finite set S € G such that SNa = 0.
Then by (3) we have, forany S’ C S,

S n
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which tells us that there are at least 2/° distinct witnesses to A%, E(a;, y) A
Nizs+1 7E(@j, ), and hence at least 2°! - |P| solutions to (4). In fact there must be
infinitely many solutions to (4) because S can be arbitrarily large. O

3 Combining Dense Linear Order with Random Graph

In this section we present a model of Tp U Tg which admits quantifier elimina-
tion.

Lemma 3. There exists a model A = (A, <™, E™") of Tp U Tg such that for any
conjunction of positive Lp-literals ®(x,y), and for any conjunction of Lg-literals
W(x,y), if y does not occur in equality in either @ or ¥, then

AE VX [AyP(x, y) A YW (X, y) < Ty (PR, y) AV, Y)] - (6)

Proof. We first outline our construction idea for A. Then we present the detailed
construction. Finally we prove that A is our desired model.

Construction Plan. The direction “«<” is obvious as it holds for any models.
The other direction is considerably involved. We construct an infinite ascending
chain of finite structures, Ay C A; C ..., whose limit is our desired A, i.e.,
A = Ujeny Ai. The domain A of A consists of tuples of the form (1, v) where
u € Q and v € G. Moreover, every u € QQ and every v € G appear in exactly
one tuple in A. Essentially we construct an infinite ascending chain of functions
fo € fi € ..., where each f; is a 1 — 1 partial function from Q to G. Let dom(f;)
denote the effective domain of f;. For each i € N, f; induces A; = (A;, <™, E™)
as follows.

Ai={(u, filu)) e QX G | uedom(f;)} @)
<= {((u,0), W, 0) € Aix Ai | u <@’} (8)
E7 = {((u,0), (W', 0)) € A; x A; | ES(v,0')} ©)



Note that the limit of this chain is a bijective function f : Q — G which induces
A = (A, <™, E) in the same way as defined above.

The essential construction from stage i to stage i+1 is to, for each tuplea € A;,
find witnesses for formulas of the form Jy(P(a, y) A¥(a, y)), providing that both
Jyd(a, y) and IyW¥(a, y) hold separately in A;. Obviously, at a single stage we
might not find witnesses for all pairs of formulas of the form (D(x, y), ¥(x, y)) as
there are infinitely many such pairs. However, by a standard encoding technique
we make sure that witnesses for every such pair will eventually be discovered
at a certain stage. We present the detailed construction as follows, which is
essentially a priority argument.

Construction. Let (D;)i<, be an enumeration of all finite conjunctions of positive
Lp-literals of the form @(x, y) where y does not appear in equalities, and (¥})i<.
an enumeration of all finite conjunctions of Lg-literals of the form ¢(x, y) where
y does not appear in equalities. Note that such enumerations exist since both
Lp and Lg are countable languages. Let (-,-) : N X IN — NN be a pairing func-
tion (i.e., a bijection from IN X N to IN), and / : N — N, r : N — NN be the
corresponding projection functions such that for any n € IN, (I(n), #(n)) = n. This
pairing function is used to enumerate {(?;, ¥)) | i, j € IN}. Also let (;)i<, be an
enumeration of Q, and (v;);<, an enumeration of G.

Let fo = 0 and hence Ay be an empty structure. Suppose f; and A; have been
obtained. We run Algorithm 1 to obtain fi,1 and Ay1.

Algorithm 1 Construction of A;,1.

: Set fi1 = fi.
2: Find the first unused element u € (14;),, and the first unused element v € (v;),,,. Mark
u, v as used. Set fi.1 = fir1 U (u,0).

—_

3: forallae A;and j <ido

4: if .ﬂ,’ |= Hy(D](]')(E, y) A ﬂl‘ '= Hyllfr(j)(ﬁ, y) then

5: Find the first unused element u € (u;)i<,, such that Q = ®@y;(@, u) and the first
unused element v € (v;)i<, such that G | Wy(;(@, v). Mark u, v as used. Set fi;; =
fir1 U (u,0).

6: endif

7: end for

Proof Continued. We show by induction that for each i € IN, Algorithm 1 is sound
and terminates, and for each i € IN, A; C A;,1, ﬂf” cqQ, ﬂfg Cc G, and

Vj<iva e A{ (A FyDuy@ y) A A Ty (@ y)
= A | 3z (D@, 2) A Wy@2)) |- (10)

The casei = Oistrivial. By Step (2), f; C fi+1 and hence A; C A;1. By (7)-(9), we
have ﬂiLD CcQand &z(l.Lg C G. Now A; | AyPy;(@, y) implies ﬂiD E yDy;) @, y),



which in turn implies Q & JyPy;)(a, y). Similarly, we have fﬂig E V)@ y)
implies G F dy¥,;)(a, y). Therefore, Step (5) can be realized due to Lemma 1
and Lemma 2. The termination of Algorithm 1 follows because there are only
finitely many a € A; and j < i. Property (10) holds obviously thanks to Step (5).

Since Step (2) pairs elements in Q with elements in G according to the
enumerations (4;)i<, and (v;)i<e, eventually every element in Q is paired with
one element in G, and vice versa. Therefore, we have ALY =~ Q and Al = G,
and hence A is a model of Tp U Tg.

Let ® = @; and ¥ = V¥, for some 7, j € IN, and a be an arbitrary tuple in
A. Suppose that A E O(a,u) A ¥(a,v) for some u,v € A. Take k € IN such that
k> (i, j),and a,u,v € Ar. We have

AE O@,u) A W(a,v) A E O(@,u) A V(a,v)

=

= Ak 0@ y) A Y@ y)

= A E (D@ y) A Y@, y))

= Ak (DEy) A VY@, vy) =

We call the models that satisfy Lemma 3 good models of T U Tg. Let (Tp U
Tg)coop be the theory of all good models of Tp U Tg.

Theorem 2. (Tp U Tg)coop admits quantifier elimination.

Proof. 1t suffices to show that one can eliminate dy from formulas of the form
dye(x, y) where (¥, y) is a conjunction of literals. Since Ly U Lg contains no
function symbols, any such dy@(x, y) can be rewritten as

Jy (P(x, y) A VX, y)) (11)

where @(X, y) is conjunction of Lp-literals, W(x, y) is a conjunction of Lg-literals.
We further assume that @(x, y) contains only positive literals as —(x < y) can be
replaced by x = y V y < x. We also assume that y does not appear in equalities
(otherwise the elimination of Jy is trivial). Now @(x, y) and W(x, y) satisfy the
requirements in Lemma 3. So (11) can be rewritten as

Ay O, y) A YV (R, y) (12)

Now Jyd(x, y) is a pure Lp-formula and JyW¥(x, y) is a pure Lg-formula. We
can carry out the elimination using the elimination procedure for Q and the
elimination procedure for G. O

Corollary 1. The decision problem for(Lp U Lg)-formulas in good models of T U Tg
is decidable .

Proof. Using the quantifier elimination described in Theorem 2, one can trans-
form an arbitrary closed first-order (LpULg)-formula into an equivalent quantifier-
free formula, which must be either false or true as (Lp ULg) hasno constants. O



4 Properties of Good Models

In this section we further explore the properties of good models. Let L be a
finite signature without function symbols. We say an L-structure A is homo-
geneous if every isomorphism between finite substructures of A extends to an
automorphism of A. Let & be a class of finite L-structures and A be a countable
L-structure. We say that A is the Fraissé limit of & if A is homogeneous and & is
precisely the class of finite structures that can be embedded into A. The Fraissé
limit is sometimes referred to as the universal homogeneous structure of age & and
it is unique up to isomorphism [9]. Now let Tg) be the theory of linear orders
and Tg be the theory of graphs. Let ® be the class of all finite models of the
combined theory Tg) U Tg Note that each model Bin 6 is a finite graph (B, E, <)
with vertex set B, edge relation E, and linear order < on B.

Theorem 3. Let A be a good model of Tp U Tg. Then

1. Ais the Fraissé limit of ®, and
2. (Tp U Tg)coop is w-categorical and complete.

The rest of the section is devoted to the proof of the above theorem. We say
an L-structure H is weakly homogeneous if for any finite L-structures 8, C such
that 8 € C and |C| = |B] + 1, any embedding f : B — H can be extended to an
embedding g : C — H. An L-structure is homogeneous if and only if it is weakly
homogeneous [9].

Lemma 4. A is weakly homogeneous.

Proof. Let 8 = (B,Eg, <g),C = (C E¢, <¢) be finite graphs whose vertices are
linearly ordered, 8 € Cand C = BU {c}. Let B = {by, ..., b,}. Suppose f : B — Ais
an embedding of 8 into A. Let a; = f(b;) for 1 < i < n. Let O(x, a4, ..., a,) be the
conjunction of literals in the set

{a;<x | CEbi<cl U {x<a | CEc<b},
and W(x,ay, ...,a,) the conjunction of literals in
{E(ai,x) | CE E(i,c)} U {=E(;,x) | CE —E(bjc)}.

By the denseness of <A (Property (2)), A E IxD(x, a4, ...,a,), and by the ho-
mogeneity of E (Property (3)), A £ IxV¥(x,ay,...,a,). Thanks to the good-
model property of A, we then have A E Ix(D(x,ay,...,a,) A V(x,a1,...,a4)),
which means that we can find an element a € A such thata ¢ {a,...,a,} and
AE D@, ay,...,a,) N¥Y(a,aq,...,a,). Therefore the mapping f U {(c,a)} is an em-
bedding of C into A. O

Lemma 5. Any structure in the class © is embeddable into A. Hence ® is precisely
the class of finite structures embeddable into A.



Proof. Let C = (C, E, <) be a finite graph with vertex set C, edge relation E, and
linear order < on C. We prove by induction on |C| that C can be embedded into A.
This trivially holds for |C| = 1. Suppose that any structures in ® with n elements
can be embedded into A and |C| = n + 1. Let B = (B, Ep, <g) be a substructure of
C such that |B| = n. By induction hypothesis there is an embedding f : B — A.
By Lemma 4, f can be extended to an embedding g : C — A. O

Proof (Theorem 3). The first statement holds by Lemma 4 and Lemma 5. Since
the Fraissé limit of any class of finite structures is unique up to isomorphism,
(Tp U Tg)coop is w-categorical, and therefore complete. O

5 Conclusion and Future Work

In this paper we introduced the notion of good model and showed a simple quan-
tifier elimination scheme for good models of union theories. Using a priority
argument we showed that T UTg has good models and hence admits quantifier
elimination with respect to those good models. Furthermore, we showed that
(TpUTg)coop is w-categorical and complete, and it has interesting implications
on T9 U Tg, the combined theory of linear orders with graphs. We showed that
(Tp U Tg)coop is indeed the theory of the Fraissé limit for all finite models of
) U Tg. By quantifier elimination, the almost sure theory of all these finite
models is decidable.

We conclude with a remark on the complexity of our decision procedure for
(TpUTg)coop- The algorithm proposed in Corollary 1 is essentially a quantifier
elimination procedure on any (Lp U Lg)-formulas. Suppose the input formula
is in prenex normal form and each V is replaced by —3-. Let n be the size of
the input formula. We eliminate all existential quantifiers one-by-one. In each
iteration, we apply the elimination procedure to the inner-most sub-formula of
the form dyp(x, y) where @ is a quantifier-free formula in disjunctive normal
form. Then we write each disjunct in the form @(x, y) A V(x,y), where @ is a
quantifier-free Lp-formula and W is a quantifier-free Lg-formula. The above can
be done in time 29" as the conversion to DNF requires exponential time. The
complexity of the elimination procedure depends on the respective complexities
of the elimination procedures for Tp and Tg. Suppose that the quantifier elimi-
nations for Tp and for Tg take time (space) f(n) and g(n), respectively. Then the
complexity of each iteration in our algorithm requires O(max{f(n), g(n)} + 2").
Let h(n) = max{f(n), g(n),2"}. For a formula of size n, there could be at most
n quantifiers, and hence at most n iterations. A crude analysis shows that the
complexity of our elimination procedure is O(h"(n)). See [11, 12] for discussions
on the complexity of individual quantifier elimination procedures.

Future Work This is a work in progress towards generalizing Nelson-Oppen
combination for combining quantified theories, providing that each individual
component theory admits quantifier elimination. Although our current result
is only limited to good models, we think it is a good starting point for investi-
gating more general schemes for combining quantifier elimination procedures.



Note that our proof of the existence of good models relies on the “denseness”
property of individual theories, that is, there are infinitely many witnesses to
existential formulas (Lemmas 1 and 2). However, this property does not hold
for many important theories in computer science, such as Presburger arithmetic
and discrete orders. Therefore, we first plan to investigate the necessary condi-
tions for the existence of good models and hope this would give us more insights
on quantifier elimination schemes for the general models of union theories.
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