
The Decidability of the First-order Theory of
Knuth-Bendix Order

Ting Zhang, Henny B. Sipma, Zohar Manna?

Computer Science Department
Stanford University

Stanford, CA 94305-9045
{tingz,sipma,zm}@theory.stanford.edu

Abstract. Two kinds of orderings are widely used in term rewriting and
theorem proving, namely recursive path ordering (RPO) and Knuth-Bendix
ordering (KBO). They provide powerful tools to prove the termination of
rewriting systems. They are also applied in ordered resolution to prune
the search space without compromising refutational completeness. Solv-
ing ordering constraints is therefore essential to the successful application
of ordered rewriting and ordered resolution. Besides the needs for deci-
sion procedures for quantifier-free theories, situations arise in constrained
deduction where the truth value of quantified formulas must be decided.
Unfortunately, the full first-order theory of recursive path orderings is un-
decidable. This leaves an open question whether the first-order theory of
KBO is decidable. In this paper, we give a positive answer to this question
using quantifier elimination. In fact, we shall show the decidability of a
theory that is more expressive than the theory of KBO.

1 Introduction
Two kinds of orderings are widely used in term rewriting and theorem prov-

ing. One is recursive path ordering (RPO) which is based on syntactic precedence
[9]. The other is Knuth-Bendix ordering (KBO) which is of hybrid nature; it re-
lies on numerical values assigned to symbols as well as syntactic precedence
[13]. In ordered term rewriting, a strategy built on ordering constraints can dy-
namically orient an equation, at the time of instantiation, even if the equation
is not uniformly orientable. This provides a powerful tool to prove the ter-
mination of rewriting systems [6]. In ordered resolution and paramodulation,
ordering constraints are used to select maximal literals to perform resolution.
It also serves as enabling conditions for inference rules and such conditions
can be inherited from previous inferences at each deduction step. This helps
to prune redundancy of the search space without compromising refutational
completeness [25].

Solving ordering constraints is therefore essential to the successful applica-
tion of ordered rewriting and ordered resolution. The decision procedures for
? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,

CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant DAAD19-01-1-0723,
and by NAVY/ONR contract N00014-03-1-0939.

quantifier-free constraints of both types of orderings have been well-studied
[3, 12, 23, 22, 24, 14, 15]. However, situations arise where we need to decide the
truth values of quantified formulas on those orderings, especially in the ∃∗∀∗
fragment. Examples include checking the soundness of simplification rules in
constrained deduction [7]. Unfortunately, the full first-order theory of recursive
path orderings is undecidable [28, 7] except for the special case where the lan-
guage only has unary functions and the precedence order is total [21]. Until now
it has been an open question whether the first-order theory of Knuth-Bendix
order is decidable (RTA open problem] 99). Here we answer this question
affirmatively by showing that an extended theory of term algebras with Knuth-
Bendix order admits quantifier elimination.

The basic framework is the combination of term algebras with Presburger
arithmetic. The extended language has two sorts; the integer sortZ and the term
sort TA. Intuitively, the language is the set-theoretic union of the language of
term algebras and the language of Presburger arithmetic. Formulas are formed
from term literals and integer literals using logical connectives and quantifica-
tions. The combination is tightly coupled in the following sense. We have a
weight function mapping terms to integers as well as various boundary functions
mapping integers to terms. In addition, the Knuth-Bendix order is expanded
in two directions. First, the order is decomposed into three disjoint suborders
depending on which of three conditions is used in the definition. Secondly, all
orders (including the suborders) are extended to gap orders, which assert the
least number of distinct objects between two terms. Moreover, as Knuth-Bendix
order is recursively defined on a lexicographic extension of itself, gap orders
are extended to tuples of terms. Thus we actually establish the decidability of a
richer theory.

Related Work and Comparison. Presburger arithmetic (PA) was first shown
to be decidable in 1929 by the quantifier elimination method [10]. Efficient
algorithms were later discovered by Cooper [8] and further improved in [26].

The decidability of the first-order theory of term algebras was first shown
by Mal’cev using quantifier elimination [20]. This result was proved again later
in different settings [19, 5, 11, 4, 2, 27, 17, 18, 29, 30].

Quantifier elimination has been used to obtain decidability results for var-
ious extensions of term algebras. [19] shows the decidability of the theory of
infinite and rational trees. [4] presents an elimination procedure for term alge-
bras with membership predicate in the regular tree language. [2] presents an
elimination procedure for structures of feature trees with arity constraints. [27]
shows the decidability of term algebras with queues. [18] shows the decidabil-
ity of term powers, which are term algebras augmented with coordinatewise-
defined predicates. [29] extends the quantifier elimination procedure in [11] for
term algebras with constant weight function.

The decidability of the theory of RPO has been well-studied. [3] proves the
decidability of the quantifier-free theory of total lexicographic path ordering
(LPO, a variant of RPO). A similar result holds for RPO [12]. [23] (resp. [22])
establishes the NP-completeness for the quantifier-free theory of LPO (resp.

2

RPO). A more efficient algorithm for the quantifier-free theory of RPO is given
in [24]. [28, 7] show the undecidability of the first-order theory of LPO and the
undecidability of the first-order theory of RPO in case of partial precedence. The
decidability of the first-order theory of RPO (LPO) in case of unary signature
and total precedence is due to [21]. The decidability of the first-order theory of
RPO in case of total precedence remains open.

Recently some partial decidability results for the theory of KBO have been
obtained. [14] shows the decidability of the quantifier-free theory of term alge-
bras with KBO. [15] improves the algorithm and shows that the quantifier-free
theory of KBO is NP-complete. Analogous to [21], [16] shows the decidability
of the first-order theory of KBO in the case where all functions are unary.

In this paper, we show the general decidability result for an extended theory
of KBO with arbitrary function symbols and weight functions. The method
combines the extraction of integer constraints from term constraints with a
reduction of quantifiers on term variables to quantifiers on integer variables.
Paper Organization. Section 2 defines term algebras. Section 3 introduces the
theory of term algebras with Knuth-Bendix ordering and presents the technical
machinery for eliminating quantifiers. Section 4 presents the main contribution
of this paper: it expands the elimination procedure in [29] for the extended
theory of KBO and proves its correctness. Section 5 briefly explains how to
adapt the elimination procedure to the special case where the language contains
a unary function of weight 0. Section 6 concludes with some ideas for future
work. Due to space limitation all proofs have been omitted from this paper. An
extended version of this paper, which includes a detailed description of notation
and terminology, and all proofs, is available from the first author’s webpage.

2 Term Algebras
We present a general language and structure of term algebras. In this paper

we assume that the signature of our language is finite. For notation convenience, we
do not distinguish syntactic terms in the language from semantic terms in the
corresponding structure. The meaning should be clear from the context.
Definition 1. A term algebra ATA : 〈TA;C,A,S,T〉 consists of
1. TA: The term domain, which exclusively consists of terms recursively built up from

constants by applying constructors. The type of a term t, denoted by type(t), is the
outmost constructor of t. We say that t is α-typed (or is an α-term) if α = type(t).

2. C: A finite set of constructors: α, β, γ, . . . The arity of α is denoted by ar(α).
3. A: A finite set of constants: a, b, c, . . . We require A , ∅ andA ⊆ C. For a ∈ A,

ar(a) = 0 and type(a) = a.
4. S: A finite set of selectors. For a constructor α with arity k > 0, there are k selectors

sα1 , . . . , s
α
k in S. We call sαi (1 ≤ i ≤ k) the ith α-selector. For a term x, sαi (x) returns

the ith component of x if x is an α-term and x itself otherwise.
5. T : A finite set of testers. For each constructor α there is a corresponding tester Isα.

For a term x, Isα(x) is true if and only if x is an α-term. Note that for a constant a,
Isa(x) is just x = a. In addition there is a special tester IsA such that IsA(x) is true
if and only if x is a constant.

3

We use LTA to denote the language of term algebras.

Proposition 1 (Axiomatization of Term Algebras). Let z̄α abbreviate z1,. . . ,zar(α).
The following formula schemes, in which variables are implicitly universally quantified
over TA, axiomatize Th(ATA).

A1. t(x) , x, if t is built solely by constructors and t properly contains x.
A2. α(x1 . . . , xar(α)) , β(y1, . . . , yar(β)), if α, β ∈ C and α . β.
A3. α(x1, . . . , xar(α)) = α(y1, . . . , yar(α))→

∧

1≤i≤ar(α) xi = yi.
A4. Isα(x)↔ ∃ z̄αα(z̄α) = x, if α ∈ C \A; Isa(x)↔ x = a, if a ∈ A.
A5. IsA(x)↔

∨

a∈A Isa(x).
A6. sαi (x) = y↔ ∃z̄α

(

α(z̄α) = x ∧ y = zi)
)

∨
(

∀z̄α(α(z̄α) , x)∧ x = y
)

.

This set of axioms is a variant of the axiomatization given in [11].

Selectors and testers can be defined by constructors and vice versa. One
direction has been shown by (A4-A6), which are pure definitional axioms. The
other direction follows from the equivalence of

∧k
i=1 sαi (x) = xi ∧ Isα(x) and

x = α(x1, . . . , xk). For simplicity, from now on we assume LTA only has selector
functions, and we use x = α(x1, . . . , xk) only in discussions at the semantic level.

We write α = (sα1 , . . . , s
α
k) (k > 0) to mean that α is a constructor of arity k,

and sα1 , . . . , s
α
k are the corresponding selectors of α. We use L to denote selector

sequences. If L = s1, . . . , sn, Lx stands for s1(. . . (sn(x) . . .)), and we say that the
depth of x in Lx is n. The depth of x in a formula ϕ is the maximum depth of x in
the selector terms in ϕ, denoted by depthϕ(x).

3 Term Algebras with Knuth-Bendix Order
In this section we introduce the theory of term algebras with KBO and present

the technical machinery needed in the quantifier elimination procedure.
Let Σ be a finite signature in the constructor language (i.e., Σ = C in Def.

1) and W : Σ→ N a weight function. We expand dom(W) to TA by recursively
defining W(α(t1, . . . , tk)) =W(α)+

∑k
i=1 W(ti). Let ≺Σ be a linear precedence order

on symbols in Σ. We enumerate all symbols in the decreasing≺Σ-order such that
α1 �

Σ α2 �
Σ . . . �Σ α|Σ|.

Definition 2 (Knuth-Bendix Order [13]). A Knuth-Bendix order (KBO) ≺kb (pa-
rameterized with a weight function W and a precedence order ≺Σ) is defined recursively
such that for u, v ∈ TA, u ≺kb v if and only if one of the following conditions holds:
(i) W(u) < W(v), (ii) W(u) = W(v) and type(u) ≺Σ type(v), (iii) W(u) = W(v),
u ≡ α(u1, . . . , uk), v ≡ α(v1, . . . , vk) and

(∃i)
[

1 ≤ i ≤ k ∧ ui ≺
kb vi ∧ ∀ j(1 ≤ j < i→ u j = v j)

]

. (1)

The KBO ≺kb is a well-founded total order on TA [13, 1]. To guarantee well-
foundedness, two compatibility conditions for W and ≺Σ are required: (i) W(a) > 0
for any constant a, and (ii) a unary function of weight 0, if present, should be
the maximum in ≺Σ. Let us denote by ⊥ the smallest term with respect to ≺kb.

4

It follows from (i) and (ii) that ⊥ must be an atom and so it can be determined
when W and ≺Σ are given. By (ii) if a unary function of weight 0 exists, it must
be unique. For presentation simplicity, we assume that W(α1) > 0. However, the
existence of such function actually simplifies our decision procedure. We defer
the discussion to Sec. 5.

Definition 3. The structure of term algebras with KBO is Akb = 〈ATA;≺kb〉. Let Lkb

denote the language of Akb.

3.1 Proof Plan
We shall show the decidability of Th(Akb) by quantifier elimination. The

procedure relies on the following two ideas: solved form and depth reduction.

1. Solved Form. A quantifier-free formula ϕ(x, ȳ) is solved in x if it is in the form
∧

i≤m
ui ≺

kb x ∧
∧

j≤n
x ≺kb v j ∧ ϕ′(ȳ), (2)

where x does not appear in ui, vi andϕ′. It is not hard to argue that (∃x)ϕ(x, ȳ)
simplifies to

∧

i≤m, j≤n
ui ≺

kb
2 v j ∧ ϕ′(ȳ) (3)

where ≺kb
n , called gap order, is an extension of ≺kb such that x ≺kb

n y states
there is an increasing chain from x to y with at least n−1 elements in between
[10, page 196]. It is clear that the elimination of ∃x, the transformation from
(2) to (3), becomes straightforward once the matrix ϕ(x, ȳ) is solved in x, or
equivalently, depthϕ(x) = 0. That leads us to the notion of depth reduction.

2. Depth Reduction. Let us first consider the simple case where x is α-typed for
a proper constructor α and all occurrences of x have depth greater than 0.
By introducing new variables x1, . . . , xar(α) (called the descendants of x) to
represent x, we can rewrite ∃xϕ(x, ȳ) to

∃x1, . . . ,∃xar(α)ϕ
′(x1, . . . , xar(α), ȳ), (4)

where ϕ′(x1, . . . , xar(α), ȳ) is obtained from ϕ(x, ȳ) by substituting xi for sαi x
(1 ≤ i ≤ ar(α)). It is clear that depthϕ′(xi) < depthϕ(x). If all occurrences of
x have the same depth, then by repeating the process we can generate a
formula solved in x̄∗ where x̄∗ are descendants of x. A difficulty arises when
not all occurrences of x have equal depth. So eventually we meet the situation
where some occurrences of x have depth 0 and some do not. Here we have
to represent all occurrences of x of depth 0 in terms of sα1 (x), . . . , sαar(α)(x).
This amounts to reducing literals of the form x ≺kb

n t and literals of the form
t ≺kb

n x to quantifier-free formulas using sα1 (x), . . . , sαar(α)(x). After that we
can introduce new variables and do quantifier manipulation just as in the
simple case to bring ∃xϕ(x, ȳ) into the form of (4). Therefore depth reduction
essentially depends on the reduction of x ≺kb

n t and reduction of t ≺kb
n x. In

order to carry out the reduction we need to extend the language as follows.

5

(a) We decompose ≺kb into three disjoint suborders ≺w, ≺p and ≺l, each of
which is also extended to gap orders.

(b) We introduce Presburger arithmetic explicitly in order to define counting
constraints to count how many distinct terms there are at certain weight,
and define boundary functions to delineate gap orders.

(c) The reduction of literals like x ≺kb
n t or t ≺kb

n x eventually comes down
to resolving relations between two terms of the same weight and of the
same type. So we need to extend all aforementioned notions to tuples
of terms of the same total weight.

In the rest of this section we define these extensions.
3.2 Decomposition of Knuth-Bendix Order
Definition 4. A Knuth-Bendix order≺kb can be decomposed into three disjoint orders,
a weight order ≺w, a precedence order ≺p, and a lexicographical order ≺l, as
follows:

u ≺w v⇔W(u) < W(v),
u ≺p v⇔W(u) =W(s) & type(u) ≺Σ type(v),
u ≺l v⇔W(u) =W(v) & type(u) = type(v) & u ≺kb v,

such that u ≺kb v is equivalent to u ≺w v ∨ u ≺p v ∨ u ≺l v. We write u ≺pl v as an
abbreviation for u ≺p v ∨ u ≺l v.

3.3 Gap Orders
To express formulas of the form ∃x(u ≺] x ≺] v) in a quantifier-free language

we need to extend all aforementioned orders to “gap” orders.

Definition 5 (Gap Orders). Define ≺kb
n (n ≥ 0) such that

u ≺kb
n v↔ (∃u1, . . . ,∃un)

[

u ≺kb u1 ≺
kb . . . ≺kb un �

kb v
]

.

For] ∈ {w, p, l, pl}, define ≺]n such that u ≺]n v ↔ u ≺kb
n v ∧ u ≺] v, and u �]n v such

that (u ≺]n v) ∧ ¬(u ≺]n+1 v).

A gap order u ≺]n v (n ≥ 1) states that “u is less than v w.r.t. ≺], and there are
at least n − 1 elements in between.” Similarly, u �]n v (n ≥ 1) states that “u is less
than v w.r.t. ≺], and there are exactly n − 1 elements in between”. Note that ≺]1 is
just ≺], ≺]0 is �], �]0 is =, and we have u ≺]n v↔ u ≺]n+1 v ∨ u �]n v.

Example 1. The formula ∃x(u ≺l x ≺l v) reduces to u ≺l
2 v if u, v do not contain x.

3.4 Boundary Functions
Consider the formula u �w

1 v. Intuitively it states “W(u) < W(v) and there
are no terms z such that u ≺kb z ≺kb v, that is, u is the largest term of weight
W(u) and v is the smallest term of weight W(v)”. To express this we introduce
boundary functions.

6

Definition 6 (Boundary Functions). Let n, p > 0. The following functions are called
boundary functions:

1. 0w :N→ TA such that 0w(n) is the smallest term (w.r.t. ≺kb) of weight n,
2. 0p :N2 → TA such that 0p(n, p) is the smallest term (w.r.t. ≺kb) of weight n and

type αp,

where, for all of the above, f (n) = ⊥ and f (n, p) = ⊥, if no such term exists.

Similarly we define 1w :N → TA and 1p :N2 → TA as the largest terms with
the corresponding properties. We write 0](...) for 0](. . .) and 1](...) for 1](. . .). Terms
having one of these functions as root symbol are called boundary terms. A literal
of the form u ? v, where ? is either equality or a gap order, is open if both u
and v are ordinary terms in TA, closed if both u and v are boundary terms, and
half-open otherwise.
3.5 Integer Extension of Term Algebras

To be able to express the boundary terms in the formal language, we extend
term algebras with Presburger arithmetic (PA).

Definition 7. The structure of term algebras with integers is AZTA = 〈ATA;AZ;(.)w〉,
where AZ is Presburger arithmetic and (.)w denotes the weight function.

We call terms of sort TA (resp. Z) TA-terms (resp. integer terms), similarly
for variables and quantifiers. We also use “term” for “TA” when there is no
confusion. A TA-term can occur inside the weight function. Such occurrence
is called integer occurrence to be distinguished from the normal term occurrence.
From now on, we freely use integer terms tw to form Presburger formulas, and
we use depthϕ(x) to denote the maximum depth of term occurrences of x in ϕ.

Example 2. The formula (∃x : TA)
[

0w
(xw) ≺

pl x ≺pl 1w
(xw)

]

states that there exists a
term t ∈ TA such that there are at least three elements with the same weight as t
(including t itself). Note that the first and the third occurrences of x are integral
while the second one is an ordinary term.

The truth value of the formula in Ex. 2 relies on the number of distinct TA-terms
of a certain weight. This is the essential use of Presburger arithmetic.

Definition 8 (Counting Constraint). A counting constraint is a predicate CNTαn(z)
that states there are at least n+1 different α-terms of weight z. CNTn(z) is similarly
defined with α-terms replaced by TA-terms. We write Treeα (resp. Tree) for CNTα0
(resp. CNT0).

Counting constraints play a central role in our elimination procedure; it helps
reduce term quantifiers to integer quantifiers.

Example 3. The formula from Ex. 2 is reduced to (∃z :Z) CNT2(z).

It was proved in [14, 29] that counting constraints can be expressed in PA.

7

Example 4. Consider AZlist = (Alist;AZ; (.)w) where Alist = 〈list, cons, car, cdr, a〉 is
the LISP list structure with the only atom a, and (.)w is a constant weight function
equal to 1. It has been shown in [30] that CNTcons

n (x) is x ≥ 2m− 1∧ 2 - m where
m is the least number such that the m-th Catalan number Cm =

1
m
(2m−2

m−1
) is greater

than n. This is not surprising as Cm gives the number of binary trees with m
leaves (that tree has 2m − 1 nodes).

3.6 Extension of Knuth-Bendix Order
Definition 9. The structure of term algebras with KBO, extended with gap orders,
boundary functions and Presburger arithmetic, is

A
Z
kb+ = 〈Akb; AZ; ≺]n,�]n,] ∈ {kb,w, p, l, pl}, n ≥ 0; 0∗(...), 1

∗
(...), ∗ ∈ {w, p}〉.

We denote by Lkb+ the language extending Lkb with gap orders and bound-
ary terms and by LZ the language of Presburger arithmetic (including weight
functions on terms). The complete language is denoted by L Z

kb+ .
3.7 Tuples of Terms

The extensions for tuples of terms are defined as follows:

Definition 10 (Orders on Tuples). Let ū = 〈u1, . . . , uk〉, v̄ = 〈v1, . . . , vk〉 such that
Σk

i=1W(ui) = Σk
i=1W(vi). The lexicographical extension ≺k;kb (k ≥ 1) of ≺kb on k-tuples

of the same weight is defined such that ū ≺k;kb v̄ if and only if (1) holds.

Definition 11 (Suborders on Tuples). Let ū = 〈u1, . . . , uk〉, v̄ = 〈v1, . . . , vk〉 ∈ TAk,
] ∈ {w, p, l, pl}. We define those composite orders on tuples as follows.

ū ≺k;] v̄↔ u1 ≺
] v1 ∨ (u1 = v1 ∧ 〈u2, . . . , uk〉 ≺

k−1;kb 〈v2, . . . , vk〉)
We say that ū ≺k;] v̄ is proper if u1 ≺

] v1 and we have ū ≺k;kb v̄↔ ū ≺k;w v̄ ∨ ū ≺k;p

v̄ ∨ ū ≺k;l v̄.

Definition 12 (Gap Orders between Tuples). We define ≺k;kb
n (k ≥ 1; n ≥ 0) such

that
ū ≺k;kb

n v̄↔ (∃ū1, . . . ,∃ūn :TAk)
[

ū ≺k;kb ū1 ≺
k;kb . . . ≺k;kb ūn �

k;kb v̄
]

.

For] ∈ {w, p, l, pl}, define ≺k;]
n such that ū ≺k;]

n v̄↔ ū ≺k;kb
n v̄ ∧ ū ≺k;] v̄, and ū �k;]

n v̄
such that (ū ≺k;]

n v̄) ∧ ¬(ū ≺k;]
n+1 v̄). Again note that ≺k;]

1 is just ≺k;], ≺k;]
0 is �k;], �k;]

0 is
=, and ū ≺k;]

n v̄↔ ū ≺k;]
n+1 v̄ ∨ ū �k;]

n v̄.

Definition 13 (Tuple Boundary Functions). Let k, n,m, p > 0. Define partial func-
tions:

1. 0̄k;kb :N→ TAk (k ≥ 1) such that 0̄k;kb(n) is the smallest k-tuple (w.r.t. ≺k;kb) of
weight n.

2. 0̄k;w :N2→TAk (k ≥ 1) such that 0̄k;w(n,m) is the smallest k-tuple (w.r.t. ≺k;kb) of
weight n and the first component has weight m.

3. 0̄k;p :N3→TAk (k ≥ 1) such that 0̄k;p(n,m, p) is the smallest k-tuple (w.r.t. ≺k;kb) of
weight n and the first component has weight m and type αp.

8

Similarly we define 1̄k;kb : N → TAk, 1̄k;w : N2 → TAk and 1̄k;p : N3 → TAk

to be the largest k-tuples with the corresponding properties. As before these
functions are made total by assigning 〈⊥, . . .⊥〉 to undefined values. We write
0̄k;]

(...) for 0̄k;](. . .) and 1̄k;]
(...) for 1̄k;](. . .). Terms having one of these functions as root

symbol are called boundary tuples. As before we call a literal ū ? v̄ open if both
ū and v̄ are ordinary tuples, closed if both ū and v̄ are boundary tuples, and
half-open otherwise.

To avoid unnecessary complications, we choose to treat tuples (including
boundary tuples) as “syntactic sugar”; they are only used in the intermediate
steps of the reduction. Lemma 5 shows that literals containing tuples can be
reduced to formulas in L Z

kb+ .
3.8 Delineated Gap Order Completion

Revisiting the transformation from (2) to (3), we see that the number of gap
orders in (3) is quadratic in the number of gap orders in (2). This complicates
the termination proof for the elimination procedure. Nevertheless, we can avoid
this difficulty by postulating the relative positions of parameters. This leads to
the notion of order completion.

Definition 14 (Gap Order Completion). A gap order completion (GOC) ϕ′ of a
conjunction of literalsϕ(t1, . . . , tn) is chain t f (1) � . . . � t f (n),where f is a permutation
function on {1, . . . , n} and � stands for =, �]n or ≺]n (] ∈ {w, p, l, pl}, n ≥ 1).

Example 5. A possible GOC of ϕ(x, y, z) : x ≺w
9 y∧x ≺pl z∧ z ≺w y is x ≺pl

5 z ≺w
4 y.

However, gap order completions are not sufficient. It is quite clear to see
(∃x : TA)[u ≺w x ≺p v] implies u ≺w

2 v. But for the converse to hold, v , 0w
(vw)

is required. As another example, (∃x : TA)[u ≺p x ≺p v] implies u ≺p
2 v, but not

vice versa. In order to preserve equivalence, intuitively, we need to “delineate”
a GOC to make sure ordinary terms in different intervals (a notion to be define
precisely soon) are not related in any gap orders. For example, consider the
linear order x1 ≺

w
n1

x2 ≺
p
n2 x3 ≺

l
n3

x4 The order imposed may be viewed as
follows

•
⊥

•
x1

•
x2

•
x3

•
x4

p−intvl�

oo p−intvl �

// p−intvl�

oo p−intvl �

// p−intvl�

oo p−intvl �

//

w−intvl�

oo w−intvl �

// w−intvl�

oo w−intvl �

//

The weight of x1 is strictly lower than that of x2, x3, and x4. The weight of
x2, x3, and x4 is the same, but the precedence of x2 is lower than that of x3 and
x4. Finally, x3 is smaller than x4 in the lexicographic order. We call a maximal
list of elements with the same weight a w-interval, and similarly a maximal list
of elements with the same weight and precedence order a p-interval. Thus, the
second w-interval above has two inner p-intervals.

We want to avoid relating ordinary elements at different levels in different
intervals. Therefore we augment the gap order completion with boundary terms,
called a delineated gap order completion.

9

Definition 15 (Delineated Gap Order Completion). A delineated gap order com-
pletion (DGOC) is a GOC in which if there occurs the following pattern v1 �

]
n1 u�

\
n2 v2,

where n1, n2 > 0, � stands for either ≺ or �,], \ ∈ {w, p, l, pl}, and u is an ordinary
term in Lkb, then either] ≡ \ ≡ pl or] ≡ \ ≡ l. I.e., ordinary terms do not delineate
two intervals unless they are asserted equal to boundary terms.

Example 6. Revisit Ex. 5. A possible DGOC of ϕ(x, y, z) is
ϕ′(x, y, z) : 0w

(xw) ≺
pl
1 x ≺pl

5 z ≺pl
2 1w

(xw)
︸ ︷︷ ︸

w-interval

≺w
1 0w

(yw) ≺
pl
1 y ≺pl

1 1w
(yw)

︸ ︷︷ ︸

w-interval
Now we have (∃z :TA)ϕ′(x, y, z)↔ 0w

(xw) ≺
pl
1 x ≺pl

7 1w
(xw) ≺

w
1 0w

(yw) ≺
pl
1 y ≺pl

1 1w
(yw).

Lemma 1 (Delineated Gap Order Completion). Any conjunction of positive lit-
erals in Lkb+ is equivalent to a finite disjunction of delineated gap order completions.

Now we state a sequence of lemmas which will justify the elimination pro-
cedure given in the next section. These lemmas share the following common
features: (i) they state the soundness of symbolic transformations for formulas
in primitive form, a special prenex form where the prefix only consists of exis-
tential quantifiers and the matrix is a conjunction of literals; (ii) a formula ϕ is
transformed to a finite disjunction

∨

i ϕi where for any i, ϕi is in primitive form
and the matrix of ϕi contains no more open gap order literals than that of ϕ
does. To save space, we omit these conditions in the description of each lemma.

In principle, boundary terms can appear in the weight function or in selec-
tors, selector terms can occur in the weight function, and the weight function
can be used to construct boundary terms. Repeating this process we can build
more and more complex terms. The following lemma eliminates this superficial
complication. From now on, we assume that boundary terms are not properly
embedded in other terms.

Lemma 2 (Depth Reduction of Boundary Terms). Any formula in L Z
kb+ can be

effectively reduced to an equivalent formula in which no boundary terms appear inside
selectors or the weight function.

The following lemma states that we can always assume that all term occur-
rences of a TA-variable have the same depth, and hence we are able to reduce
them all together to depth 0.

Lemma 3 (Depth Reduction). Let? ∈ {≺kb
n ,≺

w
n ,≺

p
n,≺

l
n,≺

pl
n ,�

kb
n ,�

w
n ,�

p
n,�

l
n,�

pl
n }. If

x is of type αp with αp = (sαp
1 , . . . , s

αp
k) and t is an arbitrary term, then x ? t (t ? x)

can be effectively reduced to an equivalent quantifier-free formula ϕ(sαp
1 x, . . . , sαp

k x) (in
L Z

kb+) in which x does not appear and s
αp
i x (1 ≤ i ≤ k) is not inside selectors.

As we mentioned before, this is the main battlefield of quantifier elimination.
To streamline the proof, we introduce the following two lemmas.

Lemma 4 (Term Reduction). Let ? ∈ {≺kb
n ,≺

w
n ,≺

p
n,≺

l
n,≺

pl
n ,�

kb
n ,�

w
n ,�

p
n,�

l
n,�

pl
n }.

10

1. If x is an ordinary term of type αp withαp = (sαp
1 , . . . , s

αp
k) and t is either a boundary

term or an ordinary term not containing x, then x?t (t?x) can be effectively reduced
to an equivalent quantifier-free formulaϕ(sαp

1 x, . . . , sαp
k x) in which x does not occur

and s
αp
i x (1 ≤ i ≤ k) is not inside selectors.

2. If x?t (t?x) is closed, i.e., both t and x are boundary terms, then it can be effectively
reduced to an equivalent Presburger formula.

Lemma 4 states that literals containing non-atom terms can be expressed only
using the components of those terms. The reduction eventually comes down to
the success of decomposing relations between tuples of the same weight, as is
stated by the following lemma.

Lemma 5 (Tuple Reduction). Let ? ∈ {≺k;kb
n ,≺k;w

n ,≺k;p
n ,≺k;l

n ,≺
k;pl
n ,�k;kb

n ,�k;w
n ,�k;p

n
,�k;l

n ,�
k;pl
n }, and U,V be k-tuples of the same weight.

1. If U = 〈u1, . . . , uk〉 is an ordinary tuple, then U ? V (V ? U) can be effectively
reduced to an equivalent quantifier-free formula ϕ(u1, . . . , uk) (in L Z

kb+) in which
ui (1 ≤ i ≤ k) does not occur inside selectors.

2. If U ? V (V ?U) is a closed tuple, i.e., both U and V are boundary tuples, then it
can be effectively reduced to an equivalent Presburger formula.

Lemma 6 (Elimination of Term Variables). Let x be a term variable, ϕkb+(x) a
conjunction of literals in Lkb+ with depthϕkb+

(x) = 0, and ϕZ(x) a Presburger formula
in which x occurs inside the weight function. Then (∃x : TA)[ϕkb+(x) ∧ ϕZ(x)] can be
effectively reduced to ϕ′kb+ ∧ ϕ

′
Z

in which x does not occur and ϕ′kb+ is quantifier-free.

Lemma 6 states that we can remove term quantifiers by reducing them to integer
quantifiers. The next lemma guarantees the elimination of integer quantifiers.

Lemma 7 (Elimination of Integer Variables). Let z be an integer variable, ϕkb+(z)
a conjunction of literals in Lkb+ where z occurs inside boundary terms, and ϕZ(z)
a Presburger formula. Then (∃z : Z)[ϕkb+(z) ∧ ϕZ(z)] can be effectively reduced to
ϕ′kb+ ∧ ϕ

′
Z

where no z occurs and ϕ′kb+ is quantifier-free.

4 Quantifier Elimination for Th(AZ
kb+

)
In this section we extend the quantifier elimination procedure for Th(AZTA)

[29] to an elimination procedure for Th(AZkb+). First we introduce some notations
to simplify the algorithm description.
4.1 Primitive Form

It is well-known that eliminating arbitrary quantifiers reduces to eliminating
existential quantifiers from primitive formulas of the form

(∃x) ϕ(x, ȳ) ≡ (∃x)
[

Ai(x, ȳ) ∧ · · · ∧ An(x, ȳ)
]

, (5)
where Ai(x, ȳ) are (1 ≤ i ≤ n) literals [11]. We also assume that Ai(x, ȳ) are not
of the form x = t in case t does not contain x, as (∃x)[x = t ∧ ϕ′(x, ȳ)] simplifies
to ϕ′(t, ȳ). In addition we can assume Ai are positive literals. The details of
elimination of negation are given in the extended version of this paper.

11

4.2 Nondeterminism
All transformations are carried out on formulas of the form (5). Each step

of the transformations manipulates (5) to produce a version of the same form
(or multiple versions of the same form in case disjunctions are introduced), and
thus in each step (∃x)ϕ(x, ȳ) refers to the updated version rather than to the
original input formula. Whenever we say “guess ψ”, we mean to add a finite
disjunction

∨

i ϕi, which is valid in the context and contains ψ as a disjunct, to
ϕ(x̄, ȳ). It should be understood that an implicit disjunctive splitting is carried
out and we work on each resultant “simultaneously”.
4.3 Type Completion

We say a selector term sαi (t) is proper if Isα(t) holds. We can make selector
terms proper with type information.
Definition 16 (Type Completion). ϕ′ is a type completion of ϕ if ϕ′ is obtained
from ϕ by conjoining tester predicates such that for any term t in ϕ, exactly one type of
tester predicate Isα(t) (α ∈ C) is in ϕ′.
Example 7. Let α, β ∈ C, α . β and α = (sα1). A possible type completion for
y = sα1 (x) is y = sα1 (x) ∧ Isβ(x) ∧ Isβ(sα1 (x)) ∧ Isβ(y), which simplifies to y =
x ∧ Isβ(x) ∧ Isβ(y) by Axioms (A4) and (A6). Another type completion is y =
sα1 (x) ∧ Isα(x) ∧ Isβ(sα1 (x)) ∧ Isβ(y) in which the selector term is proper. As the
third example, a type completion could be y = sα1 (x)∧ Isα(x)∧ Isα(sα1 (x))∧ Isβ(y)
which simplifies to false.
We assume that all formulas are type-complete. In particular, all selector terms
are (simplified to) proper ones. The reason behind this assumption is that a sym-
bolic transformation can always be carried out to replace a non-type-complete
formula ϕ by an equivalent finite disjunction of type completions of ϕ. In terms
of efficiency, however, one would prefer doing the on-the-fly disjunctive split-
ting when the type information of a specific term is needed. We also assume that
every type completion is sound with respect to types. Certain type completion
of ϕ may be contradictory due to type conflicts. For example, IsA(x) ∧ Isα(s(x))
(α ∈ C \ A) is unsatisfiable. Nevertheless, unsatisfiable disjuncts will not affect
soundness of the transformation and they can be easily detected and removed.
At last, note that we omit listing tester literals unless they are needed for cor-
rectness proof.
4.4 Elimination Procedure

The elimination procedure consists of the following two algorithms:
Algorithm 1 (Elimination of Integer Variables).

We assume that formulas with quantifiers on integer variables are in the form
(∃z̄ :Z)

[

ϕZ(x̄, ȳ, z̄) ∧ ϕkb+(x̄, ȳ, z̄)
]

, (6)
where ȳ, z̄ are integer variables, x̄ are term variables. Note that x̄ may occur inside
the weight function in ϕZ(x̄, ȳ, z̄) and ȳ, z̄ may appear inside boundary terms in
ϕkb+(x̄, ȳ, z̄).

Repeatedly apply the following subprocedures (A’) and (B’) to (6) until z̄ = ∅.

12

(A’) If none of z̄ appears inside any boundary terms, thenϕkb+(x̄, ȳ, z̄) is justϕkb+(x̄, ȳ),
which can be moved out of ∃z̄. We then obtain

(∃z̄ :Z)
[

ϕZ(x̄, ȳ, z̄)
]

∧ ϕkb+(x̄, ȳ).
Since (∃z̄ :Z)[ϕZ(x̄, ȳ, z̄)] is in LZ, we can proceed to remove the block of existential
quantifiers using Cooper’s method ([8, 26]). In fact, we can defer the elimination
until all term quantifiers are gone.

(B’) If for some z ∈ z̄, z occurs inside some boundary terms, we eliminate z by Lemma 7.

Algorithm 2 (Elimination of Term Variables).
We assume that formulas with quantifiers on term variables are in the form

(∃x̄ :TA)
[

ϕkb+(x̄, ȳ, z̄) ∧ ϕZ(x̄, ȳ, z̄)
]

, (7)
where x̄, ȳ are term variables, z̄ are integer variables. Note that z̄ may occur inside
boundary terms in ϕkb+(x̄, ȳ, z̄), and x̄, ȳ may occur inside the weight function in
ϕZ(x̄, ȳ, z̄).

Repeatedly apply the following subprocedures (A) and (B) to (7) until x̄ = ∅.

(A) Depth Reduction. Repeat (a),(b),(c) in the order while (∀x ∈ x̄) depthϕkb+
(x) > 0.

(a) S. Select a α-typed variable x ∈ x̄ for some α = (sα1 , . . . , s
α
ar(α)). This

selection is always possible as depthϕkb+
(x) > 0. We require that in the next

run of (a), we choose one of the variables generated by this run of (b). I.e., the
variable selection is done in depth-first manner. This is crucial to guarantee
that a run eventually leaves (A). Let x̄′ ≡ x̄ \ x.

(b) D. We rewrite (7) to:
(

∃ x̄′, x1, . . . , xar(α), x :TA
) [

Isα(x) ∧
∧

1≤i≤ar(α)
sαi (x) = xi

∧ ϕkb+(x̄, ȳ, z̄) ∧ ϕZ(x̄, ȳ, z̄)
]

. (8)
(c) S. Exhaustively apply the following simplification rules to ϕkb+

and ϕZ in (8):
(1) replace sαi (x) by xi (1 ≤ i ≤ ar(α));
(2) replace xw by Σar(α)

i=1 xw
i +W(α);

(3) replace x ≺]n t by - (x ≺]n t);
(4) similar for t ≺]n x, x �]n t and t �]n x.
The existence of - follows from Lemma 3. Let the resulting
formula be
(

∃ x̄′, x1, . . . , xar(α), x :TA
) [

Isα(x) ∧
∧

1≤i≤ar(α)
sαi (x) = xi

ϕ′kb+(x̄′, sα1 (x), . . . , sαar(α)(x), ȳ, z̄) ∧ ϕ′
Z

(x̄′, sα1 (x), . . . , sαar(α)(x), ȳ, z̄)
]

. (9)
It is now clear that if x occurs in ϕ′kb+ and ϕ′

Z
it occurs inside some of

sα1 (x), . . . , sαar(α)(x). Since
(

∀x1, . . . , xar(α) :TA
)(

∃x :TA
)[

Isα(x) ∧
∧

1≤i≤ar(α)
sαi (x) = xi

]

13

is valid in ATA, we can replace in (9), sα1 (x), . . . , sαar(α)(x), respectively, by
x1, . . . , xar(α), and hence remove

∧

1≤i≤ar(α) sαi (x) = xi, Isα(x) together with ∃x,
obtaining
(

∃ x̄′, x1, . . . , xar(α) :TA
) [

ϕ′kb+(x̄′, x1, . . . , xar(α), ȳ, z̄)

∧ ϕ′Z(x̄′, x1, . . . , xar(α), ȳ, z̄)
]

. (10)
(B) Elimination. Repeat (B) while (∃x ∈ x̄) depthϕkb+

(x) = 0.
Take the x as in the guard condition, guess a DGOC for all terms related with x in
gap order literals (by Lemma 1) and then eliminate x by Lemma 6.

Theorem 1. Th(AZkb+) is decidable, and hence so is Th(Akb).

Example 8. Let us go through an example with emphasis on the depth reduction.
Due to space limitation, we only show one simple trace of the reduction. Consider
in the LISP list structure the following formula

(∃x)
[

car(x) ≺l
2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l

3 y
]

, (11)
where depth(11)(x) = 3. At the first run of (A), we introduce fresh variables
x1 and x2 to replace car(x) and cdr(x), respectively. By a standard quantifier
manipulation we obtain

(∃x1∃x2)
[

x1 ≺
l
2 cdr(x2) ∧ cdr(cdr(x1)) ≺l

3 y
]

, (12)
where depth(12)(x1) = 2 and depth(12)(x2) = 1, both less than depth(11)(x). In the
second run of (A), we pick x1 and replace x1 ≺

l
2 cdr(x2) by car(x1) = car(cdr(x2))∧

cdr(x1) ≺l
2 cdr(cdr(x2)) (which is one of several choices). We obtain

(∃x2∃x11∃x12)
[

x11 = car(cdr(x2)) ∧ x12 ≺
l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

. (13)
At this point we have depth(13)(x11) = 0 and the run enters (B). In this case we
can immediately remove ∃x11, obtaining

(∃x2∃x12)
[

x12 ≺
l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

, (14)
where depth(14)(x12) = 1 and depth(14)(x2) = 2. At the third run of (A), we select
x12. The run could give us

(∃x2∃x121∃x122)
[

x121 = car(cdr(cdr(x2))) ∧ x122 ≺
l
2 cdr(cdr(x2))∧ x122 ≺

l
3 y
]

, (15)
which as before by (B) simplifies to

(∃x2∃x122)
[

x122 ≺
l
2 cdr(cdr(x2)) ∧ x122 ≺

l
3 y
]

. (16)
Still we have depth(16)(x122) = 0 which justifies another run of (B). Let us take a
gap order completion x122 ≺

l
2 cdr(cdr(x2)) ≺l

1 y (which again is just one of many
choices) and rewrite (16) to

(∃x2∃x122)
[

x122 ≺
l
2 cdr(cdr(x2)) ≺l

1 y
]

. (17)
With the help of boundary functions, (17) reduces to

(∃x2)
[

0w
((cdr(cdr(x2)))w) ≺

l
2 cdr(cdr(x2)) ≺l

1 y
]

. (18)

14

The fourth and the fifth runs of (A) (with the same trick of quantifier manipu-
lation) give us

(∃x222)
[

0w
(xw

222) ≺
l
2 x222 ≺

l
1 y
]

. (19)

After that the run comes back again to (B) as depth(19)(x222) = 0. Here we have
to reduce term quantifiers to integer quantifiers in that x222 also appears in
boundary terms. By Lemma 6, (19) is equivalent to

(∃z)
[

0w
(z) ≺

l
3 y ∧ Treecons(z)

]

, (20)

which simplifies to 0w
(yw) ≺

l
3 y ∧ Treecons(yw), and in turn to

0w
(yw) ≺

l
3 y, (21)

as 0w
(yw) ≺

l
3 y implies Treecons(yw). It is not hard to verify that (21) implies (11) as

desired. (We do not have equivalence because this is just one trace of reduction.)

We note that the depth reduction of a variable is at the expense of increasing
the depth of a term on the other side of a relation. This happens when ϕ
contains x ? t (or t ? x) and depthϕ(x) > 0. For example, from (12) to (13), the
depth of x2 increases by 1. Moreover, the depth reduction in general introduces
more existential quantifiers and more equalities in the matrix (e.g., also in the
reduction from (12) to (13)). In each transformation, however, the number of
open gap order literals in each resulting primitive formula is no more than that
in the original (primitive) formula. Moreover, the final elimination procedure
removes at least one open gap order literal if the eliminated variable occurs in
such literals (e.g., from (17) to (18) and from (19) to (20)). When all open gap
order literals are gone, the depths of terms will be strictly decreasing. This forces
the run to eventually leave (A) and from then on to stay in (B) until all existential
quantifiers are removed.

5 Presence of a 0-weight unary function
As mentioned earlier, the presence of a unary function α0 of weight 0 in Σ

simplifies the elimination procedure. Intuitively, the existence of α0 makes ≺w

and ≺p dense almost everywhere except around atoms. This follows from the
fact that 1w

(m) and 1p
(m,p) are undefined (i.e., no maximum) except when αp is an

atom and m =W(αp). Accordingly, if u is not an atom, then for any n ≥ 1, u ≺w
n v

(resp. u ≺p
n v) is equivalent to u ≺w v (resp. u ≺p v). Also, it suffices for L Z

kb+ to
only have lower boundary functions in order to decompose gap orders. More
details are given in the extended version of this paper.

6 Conclusion
We showed the decidability of the first-order theory of term algebras with

Knuth-Bendix order by quantifier elimination. Our method combines the extrac-
tion of integer constraints from term constraints with the reduction of quantifiers
on term variables to quantifiers on integer variables. In fact, we established the
decidability of a much more expressive theory.

15

Two problems related to practical complexity need further investigation.
First, as a rule of thumb, more expressive power means higher complexity. Even
if the theoretical complexity bound is the same, in practice the efficiency will
be compromised. It is worthwhile to search for the smallest extension of KBO
which admits quantifier elimination. Second, the elimination is intrinsically
limited to processing quantified variables one at a time. We plan to extend the
method in [30] to eliminate a block of quantifiers of the same kind in one step.
We believe this will be a significant improvement in pragmatic terms, since in
most applications the quantifier alternation depth is small.

We also plan to investigate the decidability issue of the first-order theory of
KBO in the term domain with variables [13, 1].

7 Acknowledgments
We thank Aaron Bradley for his comments on an earlier version of this paper.

We thank the anonymous referees for their careful reading and suggestions.

References
1. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,

Cambridge, UK, 1999.
2. Rolf Backofen. A complete axiomatization of a theory with feature and arity constraints. Journal

of Logical Programming, 24(1&2):37–71, 1995.
3. Hubert Comon. Solving symbolic ordering constraints. International Journal of Foundations of

Computer Science, 1(4):387–411, 1990.
4. Hubert Comon and Catherine Delor. Equational formulae with membership constraints. Infor-

mation and Computation, 112(2):167–216, 1994.
5. Hubert Comon and Pierre Lescanne. Equational problems and disunification. Journal of Symbolic

Computation, 7:371–425, 1989.
6. Hubert Comon and Ralf Treinen. Ordering constraints on trees. In Proceedings of the 19th

International Colloquium on Trees in Algebra and Programming (CAAP’94), volume 787 of Lecture
Notes in Computer Science, pages 1–14, Edinburgh, U.K., Apr 1994. Springer-Verlag.

7. Hubert Comon and Ralf Treinen. The first-order theory of lexicographic path orderings is
undecidable. Theoretical Computer Science, 176(1-2):67–87, 1997.

8. D. C. Cooper. Theorem proving in arithmetic without multiplication. In Machine Intelligence,
volume 7, pages 91–99. American Elsevier, 1972.

9. Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 7:279–
301, 1982.

10. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2001.
11. Wilfrid Hodges. Model Theory. Cambridge University Press, Cambridge, UK, 1993.
12. Jean-Pierre Jouannaud and Mitsuhiro Okada. Satisfiability of systems of ordinal notation with

the subterm property is decidable. In Proceedings of the 18th International Colloquium on Automata,
Languages and Programming (ICALP’91), volume 510 of Lecture Notes in Computer Science, pages
455–468. Springer-Verlag, 1991.

13. Donald E. Knuth and Peter Bendix. Simple word problems in universal algebras. In Computa-
tional Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970. Reprinted in Automation
of Reasoning, Vol. 2 Jürgen Siekmann and G. Wrightson, editors, pp. 342-376, Springer-Verlag,
1983.

14. Konstantin Korovin and Andrei Voronkov. A decision procedure for the existential theory of
term algebras with the Knuth-Bendix ordering. In Proceedings of the 15th IEEE Symposium on
Logic in Computer Science (LICS’00), pages 291 – 302, IEEE Computer Society Press, 2000.

16

15. Konstantin Korovin and Andrei Voronkov. Knuth-Bendix constraint solving is NP-complete. In
Proceedings of 28th International Colloquium on Automata, Languages and Programming (ICALP’01),
volume 2076 of Lecture Notes in Computer Science, pages 979–992. Springer-Verlag, 2001.

16. Konstantin Korovin and Andrei Voronkov. The decidability of the first-order theory of the
Knuth-Bendix order in the case of unary signatures. In Proceedings of the 22th Conference on
Foundations of Software Technology and Theoretical Computer Science, (FSTTCS’02), volume 2556 of
Lecture Notes in Computer Science, pages 230–240. Springer-Verlag, 2002.

17. Viktor Kuncak and Martin Rinard. On the theory of structural subtyping. Technical Report
MIT-LCS-TR-879, Massachusetts Institute of Technology, January 2003.

18. Viktor Kuncak and Martin Rinard. The structural subtyping of non-recursive types is decidable.
In Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS’03), pages 96–107.
IEEE Computer Society Press, 2003.

19. M. J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite tree. In
Proceedings of the 3th IEEE Symposium on Logic in Computer Science (LICS’88), pages 348–357.
IEEE Computer Society Press, 1988.

20. A. I. Mal’cev. Axiomatizable classes of locally free algebras of various types. In The Meta-
mathematics of Algebraic Systems, Collected Papers, chapter 23, pages 262–281. North Holland,
1971.

21. Paliath Narendran and Michael Rusinowitch. The theory of total unary RPO is decidable. In
Proceedings of the 1st International Conference on Computational Logic (CL 2000), volume 1861 of
Lecture Notes in Artificial Intelligence, pages 660–672. Springer-Verlag, 2000.

22. Paliath Narendran, Michael Rusinowitch, and Rakesh M. Verma. RPO constraint solving is in
NP. In Proceedings of the 12th International Workshop on Computer Science Logic (CSL’98), volume
1584 of Lecture Notes in Computer Science, pages 385 – 398. Springer-Verlag, 1999.

23. Robert Nieuwenhuis. Simple LPO constraint solving methods. Information Processing Letters,
47(2):65–69, 1993.

24. Robert Nieuwenhuis and J. Rivero. Solved forms for path ordering constraints. In Proceedings
of 10th International Conference on Rewriting Techniques and Applications (RTA’99), volume 1631 of
Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, 1999.

25. Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering and equality con-
strained clauses. Journal of Symbolic Computation, 19(4):321–351, 1995.

26. C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quantifier alternation.
In Proceedings of the 10th Annual Symposium on Theory of Computing, pages 320–325. ACM Press,
1978.

27. Tatiana Rybina and Andrei Voronkov. A decision procedure for term algebras with queues.
ACM Transactions on Computational Logic, 2(2):155–181, 2001.

28. Ralf Treinen. A new method for undecidability proofs of first order theories. Journal of Symbolic
Computation, 14:437–457, 1992.

29. Ting Zhang, Henny Sipma, and Zohar Manna. Decision procedures for recursive data structures
with integer constraints. In Proceedings of the 2nd International Joint Conference on Automated
Reasoning (IJCAR’04), volume 3097 of Lecture Notes in Computer Science, pages 152–167. Springer-
Verlag, 2004.

30. Ting Zhang, Henny Sipma, and Zohar Manna. Term algebras with length function and bounded
quantifier alternation. In Proceedings of the 17th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’04), volume 3223 of Lecture Notes in Computer Science, pages 321–
336. Springer-Verlag, 2004.

17

